文档库 最新最全的文档下载
当前位置:文档库 › 计算机体系结构论文剖析

计算机体系结构论文剖析

计算机体系结构论文剖析
计算机体系结构论文剖析

计算机体系结构

期末考试论文

题目一种容错实时计算机体系结构的研究与实现__ 信息工程学院计算机科学与技术专业级147班

学号:

姓名:

指导教师:

成绩:______________

完成时间: 2015 年 12 月

一种容错实时计算机体系结构的研究与实现

【摘要】为满足对安全关键领域日益增长的可靠性需求,通过对容错关键技术和多处理器系统的深入研究,提出了一种基于松耦合多处理器体系结构的双机容错实时嵌入式系统设计方案。该方案无缝整合了计算机硬件级、操作系统级、应用级的容错技术,以达到从整体上提高系统可靠性的目的。然后,利用马尔科夫状态图法对该系统进行了可靠性分析和数值模拟,结果表明该设计方案能显著地从整体上提高系统的可靠性水平。

【关键词】双机热备份;容错;实时嵌入式系统;可靠性。

Design and Implementation of a Fault-Tolerance Real-Time

Computer Architecture

Abstract Based on fault-tolerance technique and multi-processors system, a fault-tolerance

real-time embedded dual system solusion is put forward in this paper. The proposed solusion is based upon the loosely coupled multiprocessors architecture. this architecture seamlessly. integrates the fault-tolerance design techniques of hardware level, operating system level, and application level The system reliability is analyzed by the Markov state diagram The results show that the design scheme can enhance the system reliability remarkably.

Key words duplicated hot backup; fault–tolerant; real-time embedded system; reliability。

随着计算机技术的日益成熟,以及计算机硬件成本的迅速降低,各种结构复杂、功能强大的实时计算机系统被广泛应用于航空航天器、武器装备、核电监控装置和医疗设备等安全关键系统中。确保这些计算机系统的可靠成为人们日益关注的问题。

双机热备份设计方案可切实提高系统的可靠性。但它主要针对硬件错误,对于软件错误却无能为力。目前,由于硬件制造技术水平的提高和硬件容错技术的成熟,软件错误成为导致系统失效的主要原因。据调查,在具有硬件容错能力的计算机系统中,其失效65%来自软件。

早期的实时计算机系统为特定的应用设计专用的硬件和软件,其最大的缺点是软硬件的耦合度大,不利于系统可靠性设计,特别是软件错误容忍设计。随着实时操作系统技术的日益发展成熟,实时软件被分离成为实时操作系统和实时多任务软件两部分,实时操作系统实现对硬件的管理,使得实时多任务应用软件与底层硬件无关。这种分层的实时计算机体系结构为提出新的实时计算机容错体系结构提供了契机。

一双机容错实时系统的体系结构

双机容错实时系统体系结构是在考虑双机比较系统的基础上,结合松耦合多处理机体系结构,在实现系统隔离的同时,在不同的处理机间通过通道互连实现通信,为在硬件容错中结合软件容错提供可能。

双机系统的运行状态定义为:(1)如果A机与B机均正常运行,则将A机作为主系统,B机作

为备份使用,A机的运行结果作为系统输出,A机运行到检测点,向B机发送日志,B机更新日志列表。(2)如果A机正常而B机故障,亦将A机的运行结果作为系统输出,同时将B机的运行故障状态报告A机,并向B机进行复位控制操作。(3) 如果A机故障,B机正常,则进行开关切换操作,B机进行系统备份任务重调度,B机运行结果作为系统输出,向A机进行复位控制操作,并在检测点更新A机日志,保持需要备份的任务的状态一致。

双机容错实时系统体系结构结合嵌入式实时系统的体系结构,采用层次结构和模块结构相结合的思想,无缝整合计算机硬件、操作系统、应用软件等三级容错设计,克服了软、硬件分离和脱节的问题,可提高系统的灵活性和可移植性。

二双机容错实时系统的设计

双机容错实时系统体系结构的每一层均可看作是一个相对独立的子系统,层中包含不同的功能模块,结构如图1所示。图中分别加入了容错通信模块(Multiprocessor Communication for Fault-Tolerance,MCFT)、实时系统(Real-Time Operating System,RTOS)系统级容错组件、任务级大动态冗余组件。

图1 双机容错实时系统体系结构

第一层中加入MCFT模块,作为板级支持包(Board Support Package,BSP)的一部分,也是硬平台的抽象层,可为操作系统提供统一的界面,提高系统的可移植性。有容错需求的任务,通过MCFT所提供的功能传递日志,保持主系统和备份系统关键任务的状态和数据一致。MCFT屏蔽了底层通信的具体实现细节,使系统的实现与连接介质无关。

为保证实时系统从硬件故障和永久软件故障恢复,采用系统切换方法,在第二层中加入RTOS

系统级容错组件,包括系统内核级容错支持组件、主/备用机切换支持组件和系统自诊断组件。

任务级动态冗余模块被用于嵌入式实时系统,可使实时系统从暂时软件故障恢复。这也是软件发生错误时保证系统实时性的重要措施。

(一)故障检测

系统容错以故障检测技术为基础,以各种冗余技术为手段。对于实时系统来说,为提高故障判别的成功率,故障检测应该及时准确地定位故障并尽量减小系统开销。

在系统中,故障检测按层次模型进行,其目的是实现信息隐藏,避免故障跨层次传播。采用自诊断的方法诊断系统级的故障,用任务级的检测诊断应用级的故障。

1 系统自诊断

系统自诊断划分为系统启动自检测阶段和周期自检测阶段。自动启动诊断的因素有主/备用机定时切换和主用机发生故障。周期自检测阶段根据系统需求,周期性检测外设和通信口。每个阶段对应设备的几种功能块,包括CPU的自诊断、中断响应自诊断、串口自诊断、定时器自诊断、离散量自诊断和RAM自诊断等。

由于结果比较是实时系统中任何事务处理都需要经历的步骤,因此把任务级的故障检测放到结果判别部分进行。

2 任务级动态冗余

任务级动态冗余方法是实时系统中瞬间故障的恢复方法之一。在实时多任务的环境下,充分利用操作系统提供的功能,为各个基本任务建立后备任务作为冗余,对后备任务进行容错调度,从而起到类似于重试或回溯的作用,并利用检查点技术和传递日志法保持主系统和备份系统状态的一致性,实现错误恢复。根据应用程序的要求,结合任务实时性,采用以下的模型定义。

(1) 把应用程序P分解成多个任务T,P={T1,T2,…,Tn},任务以过程的形式出现。

(2) 当i >j时,任务优先级PTi>PTj ,任务可以根据要求及时占有处理器,实现实时处理。在每个任务的最后设置检查点,传递日志。

(3) 为各基本任务准备一个后备任务P′={T1′,T2′, …, Tn′}存放在内存中。一般情况下,后备任务不建立,不占有系统资源,仅在需要时才激活使用。后备任务的优先级比相应的优先级要高。一旦建立就抢占执行,是某种意义上的重试或程序卷回。

(4) 为实现恢复功能的后备任务,可以与原有任务完全一样,也可以是替换算法。以下任务级动态冗余替换算法,能为各个任务产生容错调度,从而实现任务冗余。

Step1:建立任务T1,T2,…,Tn;

Step2: while N=1;N <=Nmax;

N=N+1;

运行任务Ti;

检测Ti的结果;

IF 结果通过 THEN 输出结果,删除任务Ti;

ELSE 激活任务Ti′;break;

END

Step3: N>Nmax 系统报警

当后备任务执行了Nmax次之后还通不过检测,就认为系统出现永久故障,系统报警。Nmax 是个阀门值,是由实时要求所决定的。

(二)主/备份切换

仲裁检测电路中为主/备用机设置了“看门狗”监视器。当主/备用机处于正常工作状态,运行于CPU上的某一任务周期性地对“看门狗”施加复位信号,“看门狗”计数器就不可能产生溢出触发信号;当CPU出现故障时,“看门狗”会输出一个离散触发信号并发出报警,此时系统进行自动切换,让备用系统机工作。

三利用马尔科夫状态图进行的可靠性分析

(一)错误模型

双机容错实时系统的错误模型定义如下:

(1)系统错误的到达过程是一个泊松流(Poisson Process),相继错误到达时间间隔服从负指数分布Tf=e-λt.。根据泊松分布的平稳增量性质,可知P{N(Δt)>2}0(Δt) ,即在间隔时间Δt充分小时,系统连续发生多次错误的可能性为Δt的高阶无穷小。

(2)错误可分为硬件错误和软件错误,软件错误包括操作系统和任务发生的错误。另外,硬件错误可分为暂态硬件错误和永久硬件错误;软件错误可分为本机可恢复的错误和需要备份系统恢复块恢复的错误。

(3) 故障的发生是不相关的,部件的失效率,和维修率μ是常数。

(4) 故障不传播。

(二)利用马尔科夫状态图法评估可靠性

可靠性是指一个系统在一定的环境下和给定的时间内能按预定的要求完成一定功能的概率。

图2 采用双机容错方式下的马尔科夫状态转移图

图2是利用上述假设构造出的双机容错实时嵌入式系统的马尔科夫状态。系统运行过程中的6个状态定义为:

状态P0:双机都正常。

状态P1:系统处于软件容错状态。

状态P2:系统处于硬件容错状态。

状态P3:硬件系统发生永久失效,系统运行在单机系统中。

状态P4:系统处于单机软件容错状态。

状态P5:整个系统失效。

由图2可以得到马尔科夫状态微分方程:

式中P为状态转移概率矩阵,矩阵方程(方程组)称为查普曼-柯尔莫戈罗夫

(Chapman-Kolmoqorov)方程,由此可以解出系统处于任意状态的概率。

状态P66表示系统失效,所以系统的可靠度为:

R(t)=1?P66(t) (3)

在计算该系统的可靠度时,将状态5作为吸收状态。对式(3)求该微分方程的数值解,不同参数下,系统的可靠度值(精度为10 -10)如表1所示。

(三)可靠性对比

用马尔科夫状态图法对采用双机热备份方式和采用恢复块方式的单机容错系统进行可靠性分析。在系统软件失效率λs =0.005,以及硬件失效率λh =0.001和维修率 0.9μ=的相同条件下,在区间[0,1 000]上进行可靠性对比,结果如图3所示。

图3 三种容错方式下可靠度随时间变化曲线

双机热备份系统由两个能完成相同功能的计算机模块并行执行相同的计算,双机不能通信,根据A机和B机周期向仲裁检测电路发送的自检信号判断A机系统和B机系统的运行状况。

单机备份块容错系统中主模块的运行结构由验收测试检验,若结果通过测试结果,则输出;否则运行备份模块。恢复块在无错和出错情况下的响应时间差异很大。应用于实时系统时,恢复块必须与时间冗余相结合。结果显示,本文提出的双机容错实时系统比采用单纯硬件容错的双机热备份系统和采用单纯软件容错的单机备份块容错系统的可靠性都有很大的提高,而且随着时间的增长,可靠性更为明显。

四小结

随着实时系统在安全领域内越来越多的应用,可靠性已经成为衡量系统优劣的关键因素之一。传统的双机热备份容错系统只能满足系统某一方面的容错需求。为了在硬件(或软件)出现暂时或(永久)故障的情况下,系统仍能在规定的时限范围内完成运算,并输出正确的结果,本文提出了一个软、硬件结合的完整的解决方案,该方案在满足系统实时性的同时,从整体上提高系统的可靠性。数值模拟结果表明该系统具有极高的可靠性。

参考文献

[1] TAL O, MOCOLLIN C, BENDELL A. Reliability

demonstration for safety-critical systems[J]. IEEE Trans. on

Reliability, 2001, 50(2): 194-203.

[2] 陈宇. 实时异常处理技术的探讨[J]. 计算机工程, 2004,

30(21): 61-63.

[3] 吕勇, 谢长生, 高三红. 实时测控计算机应用谢的可靠

性保障技术[J]. 计算机应用, 2003, 23(6): 101-106.

[4]韩建军, 李庆华. 基于软件容错的动态实时调度算法[J].

计算机研究与发展, 2005, 42(2): 315-321.

[5] KIM K. The distrubuted recovery block scheme in software fault tolerance[M]. [S. l. ]: Wiley, 1995.

[6] 陈宇. 高可靠容错实时系统的支撑技术研究[D]. 成都:

电子科技大学, 2004.

[7] 金士尧, 胡华平, 李宏亮. 具有容错结构的高可用计算机

双系统研究[J]. 中国工程科学, 1999, 1(3): 46-50.

[8] 吴娟, 马永强, 刘影. 一种基于主备机快速切换的双

机容错系统[J]. 计算机应用, 2005, 25(8): 1948-1951.

[9] KRISHNA C S K. On scheduling tasks with a quick

recovery from failure[J]. IEEE Trans. Computer, 1986, C-35: 448-454.

[10] 李宏亮, 金士尧, 胡华平. 短事物、强实时双机容错系统

的研究[J]. 计算机学报, 2003,26(2): 243-249.

计算机体系结构试题及答案版本

计算机体系结构试题及答案 1、计算机高性能发展受益于:(1) 电路技术的发展;(2) 计算机体系结构技术的发展。 2、层次结构:计算机系统可以按语言的功能划分为多级层次结构,每一层以不同的语言为特征。第六级:应用语言虚拟机-> 第五级:高级语言虚拟机-> 第四级:汇编语言虚拟机-> 第三级:操作系统虚拟机->第二级:机器语言(传统机器级) -> 第一级:微程序机器级。 3、计算机体系结构:程序员所看到的计算机的属性,即概括性结构与功能特性。 4、透明性:在计算机技术中,对本来存在的事物或属性,从某一角度来看又好像不存在的概念称为透明性。 5、Amdahl 提出的体系结构是指机器语言级程序员所看见的计算机属性。 6、经典计算机体系结构概念的实质3是计算机系统中软、硬件界面的确定,也就是指令集的设计,该界面之上由软件的功能实现,界面之下由硬件和固件的功能来实现。 7、计算机组织是计算机系统的逻辑实现;计算机实现是计算机系统的物理实现。

8、计算机体系结构、计算机组织、计算机实现的区别和联系? 答:一种体系结构可以有多种组成,一种组成可以有多种物理实现,体系结构包括对组织与实现的研究。 9、系列机:是指具有相同的体系结构但具有不同组织和实现的一系列不同型号的机器。 10、软件兼容:即同一个软件可以不加修改地运行于系统结构相同的 各机器,而且它们所获得的结果一样,差别只在于运行时间的不同。 11、兼容机:不同厂家生产的、具有相同体系结构的计算机。 12、向后兼容是软件兼容的根本特征,也是系列机的根本特征。 13、当今计算机领域市场可划分为:服务器、桌面系统、嵌入式计算三大领域。 14、摩尔定律:集成电路密度大约每两年翻一番。 15、定量分析技术基础(1)性能的评测:(a)响应时间:从事件开始到结束之间的时间;计算机完成某一任务所花费的全部时间。(b)流量:单位时间内所完成的工作量。(c )假定两台计算机x 、y;x 比y 快意思为:对于给定任务,x 的响应时间比y少。x的性能是y的几倍是指:响应时间x / 响应时间y = n ,响应时间与性能成反比。

计算机体系结构论文

计算机体系结构论文 论文题目:计算机系统结构中多处理机技术姓名:XXX 班级:XXX 学号:XXXX

摘要:多处理机是指能同时执行多个进程的计算机系统.多处理机通过共享的主存或输入/输出子系统或高速通信网络进行通信。利用多台处理机进行多任务处理,协同求解一个大而复杂的问题来提高速度,或者依靠冗余的处理机及其重组能力来提高系统的可靠性、适应性和可用行。该文介绍了微处理器的发展、多处理机的总线以及处理机系统中通信和存储技术的发展和两种特殊的多处理机系统结构,以及现今几种典型的并行计算机体系结构及处理机分配与调度策略。而本篇论文主要根据所阅读的文章进行扩展延伸,主要介绍了多处理机技术,它的总线以及分配调度方面。 关键字:多处理机;体系结构;总线;调度 引言: 微电子技术和封装技术的进步,使得高性能的VLSI微处理器得以大批量生产,性能价格比不断合理,这为并行多处理机的发展奠定了重要的物质基础。计算机系统性能增长的根本因素有两个:一个是微电子技术,另一个是计算机体系结构技术。五十年代以来,人们先后采用了先行控制技术、流水线技术、增加功能部件甚至多机技术、存储寻址和管理能力的扩充、功能分布的强化、各种互联网络的拓扑结构以及支持多道、多任务的软件技术等_系列并行处理技术,提高计算机处理速度,增强系统性能。多处理机体系结构是计算机体系结构发展中的一个重要内容,已成为并行计算机发展中人们最关注的结构。 多处理机的介绍: 多处理机是指能同时执行多个进程的计算机系统。 由于超大规模集成电路(VLSI)技术迅速发展的结果,多处理技术能够充分地发挥高性能的32位微处理机的有效性,用大量低价格的部件配置高性能的计算机结构系统.以典型的

计算机体系结构解

计算机体系结构解

————————————————————————————————作者:————————————————————————————————日期:

第一章计算机组成原理 本部分要求掌握计算机方面的基础知识,包括计算机的发展、计算的系统组成、基本组成和工作原理、计算机的数制数据表示以及运算校验、指令系统以及计算机系统的安全等基础性的知识。内容多而且复杂,尤其是有关计算机硬件方面的内容,很细而且灵活性不高,知识量相当大,掌握这部分一定要多下功夫,学会取舍、把握重点、抓住要害。 1.1 考试大纲及历年考题知识点 1.1.1 大纲要求 考试要求: 1 掌握数据表示、算术和逻辑运算; 2 掌握计算机体系结构以及各主要部件的性能和基本工作原理考试范围 1 计算机科学基础 1.1 数制及其转换二进制、十进制和十六进制等常用制数制及其相互转换 1.2 数据的表示 ?数的表示(原码、反码、补码、移码表示,整数和实数的机内表示,精度和溢出)?非数值表示(字符和汉字表示、声音表示、图像表示) ?校验方法和校验码(奇偶校验码、海明校验码、循环冗余校验码) 1.3 算术运算和逻辑运算 ?计算机中的二进制数运算方法 ?逻辑代数的基本运算和逻辑表达式的化简 2.计算机系统知识 2.1 计算机系统的组成、体系结构分类及特性 ?CPU 和存储器的组成、性能和基本工作原理 ?常用I/O 设备、通信设备的性能,以及基本工作原理 ?I/O 接口的功能、类型和特性 ?I/O 控制方式(中断系统、DMA、I/O 处理机方式) ?CISC/RISC,流水线操作,多处理机,并行处理 2.2 存储系统 ?主存-Cache 存储系统的工作原理 ?虚拟存储器基本工作原理,多级存储体系的性能价格 ?RAID 类型和特性 2.3 安全性、可靠性与系统性能评测基础知识 ?诊断与容错 ?系统可靠性分析评价 ?计算机系统性能评测方式 1.2 计算机科学基础 1.2.1 数制及其转换 1、R 进制转换成十进制的方法按权展开法:先写成多项式,然后计算十进制结果. 举例: (1101.01)2=1×2^3+1×2^2+0×2^1+1×2^0+ 0×2^-1+1×2^-2 =8+4+1+0.25=13.25 (237)8=2×8^2+3×8^1+7×8^0 =128+24+7=159 (10D)16=1×16^2+13×16^0=256+13=269

计算机系统结构三四章作业及答案

3.1 简述流水线技术的特点。(1) 流水线把一个处理过程分解为若干个子过程,每个子过程由一个专门的功能部件来实现。因此,流水线实际上是把一个大的处理功能部件分解为多个独立的功能部件,并依靠它们的并行工作来提高吞吐率。(2) 流水线中各段的时间应尽可能相等,否则将引起流水线堵塞和断流。(3) 流水线每一个功能部件的前面都要有一个缓冲寄存器,称为流水寄存器。(4) 流水技术适合于大量重复的时序过程,只有在输入端不断地提供任务,才能充分发挥流水线的效率。(5) 流水线需要有通过时间和排空时间。在这两个时间段中,流水线都不是满负荷工作。 3.2 解决流水线瓶颈问题有哪两种常用方法?答:细分瓶颈段与重复设置瓶颈段 3.3 有一条指令流水线如下所示: (1 用两给出条指 (1) (24? 变八级流水线(细分) ? 重复设置部件 )(ns 85 1 T n TP 1pipeline -== 3.4 有一个流水线由4段组成,其中每当流过第三段时,总要在该段循环一次,然后才能流到第4段。如果每段经过一次所需的时间都是△t ,问: (1)当在流水线的输入端连续地每△t 时间输入一个任务时,该流水线会发生什么情况? (2)此流水线的最大吞吐率为多少?如果每2△t 输入一个任务,连续处理10个任务时,其实际吞吐率和效率是多少? (3)当每段时间不变时,如何提高流水线的吞吐率?人连续处理10个任务时,其吞吐率提高多少? 解:(1)会发生流水线阻塞情况。

(2) (3)重复设置部件 吞吐率提高倍数= t t ??2310 75 =1.64 3.5 有一条动态多功能流水线由5段组成,加法用1、3、4、5段,乘法用1、2、5段,第2段的时间为2△t ,其余各段的时间均为△t ,而且流水线的输出可以直接返回输入端或暂存于相应的流水线寄存器中。现在该流水线上计算 ∏=+4 1 )(i i i B A ,画出时空图,并计算其吞吐率、加速比和效率。 +B 4;再计算由图可见,它在18个△t 时间中,给出了7个结果。所以吞吐率为: 如果不用流水线,由于一次求积需3△t ,一次求和需5△t ,则产生上述7个结果共需(4×5+3×3)△t =29△t 。所以加速比为: 该流水线的效率可由阴影区的面积和5个段总时空区的面积的比值求得: 3.6 在一个5段流水线处理机上,各段执行时间均为△t,需经9△t 才能完成一个任务,其预约表如下所示。 段23 时间 入 A 1 B 1 A 2 B 2 A 3 B 3 A 4 B 4 A B C D A × B C ×D

计算机系统结构有详细答案

(仅供参考,不作为考试标准), 选择题分,每题分)2(30计算机系统结构设计者所关心的是________所看到的的计算机结构。 A)硬件设计人员B)逻辑设计人员 D)高级语言程序员C)机器语言或汇编语言程序员 。意________,应当注提系在计算机统设计时,为了高系统性能度的令执行速快A)加经常性使用指大的指令特B)要别精心设计少量功能强数的占减少在数量上很小比例的指令条C)要度D)要加快少量指令的速 。的问题统中因________而导致系主重叠寄存器技术要用于解决在RISC 流水线影A)JMP指令响保护令B)CALL指的现场问存储器不便来只C)有LOAD和STORE指令带的访度速器访问D)存储 ________ 效率高计为使流水算机运行要A)各过程段时间不同B)连续处理的任务类型应该不同 D)连续处理的任务数尽可能少C)连续处理的任务类型应该相同 栈型替是的________。换算法堆不属于B)近期最少A)近期最使用法久未用法 D)页面失效频率法出进C)先先法 象联组,相映的优点。是________象联全与相映相比B)块冲突概率低C)命中率高D)主存利用率小录A)目表高 是方好关相指除中叠次一重消令最的法________。B)设相关专用令指改准A)不修通路 令指条下析分后推C) 令指条下行执后推D) 流的用采,时关据数到,中作水操遇相________。有法办解决器译编化优A)用办的排新重令指过通,测检序法据数B)向定重技术 C)延迟转移技术 D)加快和提前形成条件码 经多级网络串联来实现全排列网络,只能用________。 A)多级立方体网络B)多级PM2I网络 D)上述多级混洗交换网络任何网络C) 序传送的________。是以虫蚀寻径流水方式在各寻径器是顺B)包A)消息C)片节D)字 ________ 处理机超标量作指条令部件个B) 只有一操期A)在一个时钟周内分时发射多多钟C)在一个时周期内同时发射条指令件有只一个取指部D)

计算机系统结构网上作业

计算机系统结构作业参考答案 一、 1、试述现代计算机系统的多级层次结构。 计算机系统具有层次性,它由多级层次结构组成。从功能上计算机系统可分为五个层次级别:第一级是设计级。这是一个硬件级,它由机器硬件直接执行。 第二级是一般机器级,也称为机器语言级。它由微程序解释系统.这一级是硬件级。 第三级是操作系统级,它由操作系统程序实现。这些操作系统由机器指令和广义指令组成,这些广义指令是操作系统定义和解释的软件指令。这一级也称混合级。 第四级是汇编语言级。它给程序人员提供一种符号形式的语言,以减少程序编写的复杂性。这一级由汇编程序支持执行。 第五级是高级语言级。这是面向用户为编写应用程序而设置的。这一级由各种高级语言支持。 2、试述RISC设计的基本原则和采用的技术。 答:一般原则: (1)确定指令系统时,只选择使用频度很高的指令及少量有效支持操作系统,高级语言及其它功能 的指令,大大减少指令条数,一般使之不超过100条; (2)减少寻址方式种类,一般不超过两种; (3)让所有指令在一个机器周期内完成; (4)扩大通用寄存器个数,一般不少于32个,尽量减少访存次数; (5)大多数指令用硬联实现,少数用微程序实现; (6)优化编译程序,简单有效地支持高级语言实现。

基本技术: (1)按RISC一般原则设计,即确定指令系统时,选最常用基本指令,附以少数对操作系统等支持最有用的指令,使指令精简。编码规整,寻址方式种类减少到1、2种。 (2)逻辑实现用硬联和微程序相结合。即大多数简单指令用硬联方式实现,功能复杂的指令用微程序实现。 (3)用重叠寄存器窗口。即:为了减少访存,减化寻址方式和指令格式,简有效地支持高级语言中的过程调用,在RISC机器中设有大量寄存嚣,井让各过程的寄存器窗口部分重叠。 (4)用流水和延迟转移实现指令,即可让本条指令执行与下条指令预取在时间上重叠。另外,将转移指令与其前面的一条指令对换位置,让成功转移总是在紧跟的指令执行之后发生,使预取指令不作废,节省一个机器周期。 (5)优化设计编译系统。即尽力优化寄存器分配,减少访存次数。不仅要利用常规手段优化编译,还可调整指令执行顺序,以尽量减少机器周期等。 3、试述全相联映像与直接映像的含义及区别 (1)全相连映像 主存中任何一个块均可以映像装入到Cache中的任何一个块的位置上。主存地址分为块号和块内地址两部分,Cache地址也分为块号和块内地址。Cache的块内地址部分直接取自主存地址的块内地址段。主存块号和Cache块号不相同,Cache块号根据主存块号从块表中查找。Cache保存的各数据块互不相关,Cache必须对每个块和块自身的地址加以存储。当请求数据时,Cache控制器要把请求地址同所有的地址加以比较,进行确认。 (2)直接映像 把主存分成若干区,每区与Cache大小相同。区内分块,主存每个区中块的大小和Cache 中块的大小相等,主存中每个区包含的块的个数与Cache中块的个数相等。任意一个主存块只能映像到Cache中唯一指定的块中,即相同块号的位置。主存地址分为三部分:区号、块号和块内地址,Cache地址分为:块号和块内地址。直接映像方式下,数据块只能映像到Cache中唯一指定的位置,故不存在替换算法的问题。它不同于全相连Cache,地址仅需比较一次。 (3)区别: 全相连映像比较灵活,块冲突率低,只有在Cache中的块全部装满后才会出现冲突,Cache 利用率高。但地址变换机构复杂,地址变换速度慢,成本高。 直接映像的地址变换简单、速度快,可直接由主存地址提取出Cache地址。但不灵活,块冲突率较高,Cache空间得不到充分利用。 4. 画出冯?诺依曼机的结构组成?

计算机体系结构知识点

目录 第一章计算机系统结构基本概念 (2) (一) 概念 (2) (二) 定量分析技术 (3) (三) 计算机系统结构发展 (4) (四) 计算机的并行性 (5) 第二章计算机指令集结构 (7) 一. 指令集结构的分类 (7) 二. 寻址方式 (7) 三. 指令集结构的功能设计 (8) 四. 指令格式的设计 (10) 五. MIPS指令集结构 (10) 第三章流水线技术 (14) 一. 流水线的基本概念 (14) 二. 流水线的性能指标 (14) 三. 流水线的相关与冲突 (16) 四. 流水线的实现 (18) 第四章指令集并行 (18) 付志强

第一章计算机系统结构基本概念 (一)概念 什么是计算机系统结构:程序员所看到的计算机属性,即概念性结构与功能特性. 透明性:在计算机技术中,把本来存在的事物或属性,但从某种角度看又好像不存在的概念成为透明性. 常见计算机系统结构分类法 冯氏分类法(冯泽云):按最大并行度对计算机进行分类. Flynn分类法:按指令流和数据流多倍性进行分类 ①单指令流单数据流 ②单指令流多数据流 ③多指令流单数据流(不存在) ④多指令流多数据流 付志强

(二)定量分析技术 Amdahl定律:加快某部件执行速度所能获得的系统性能加速比,受限于该部件的执行时间占系统中总执行时间的百分比. 加速比=系统性能 改进后 系统性能 改进前 = 总执行时间 改进前 总执行时间 改进后 加速比依赖于以下两个因素 ①可改进比例 ②部件加速比 CPU性能公式 CPU时间 CPU时间=执行程序所需时间的时钟周期数x时钟周期时间(系统频率倒数) CPI(Cycles Per Instruction) CPI =执行程序所需时钟周期数/所执行指令条数 ∴CPU时间= IC x CPI x 时钟周期时间 可知CPU性能取决于一下三个方面 ①时钟周期时间:取决于硬件实现技术和计算机组成 付志强

计算机系统结构论文

计算机系统结构论文 计算机系统结构中多处理机技术 摘要:多处理机通过共享的主存或输入/输出子系统或高速通信网络进行通信。利用多台处理机进行多任务处理,协同求解一个大而复杂的问题来提高速度,或者依靠冗余的处理机及其重组能力来提高系统的可靠性、适应性和可用行。该文介绍了微处理器的发展、多处理机的总线以及处理机系统中通信和存储技术的发展和两种特殊的多处理机系统结构。 关键词:多处理机;体系结构;总线 微电子技术和封装技术的进步,使得高性能的VLSI 微处理器得以大批量生产,性能价格比不断合理,这为并行多处理机的发展奠定了重要的物质基础。 计算机系统性能增长的根本因素有两个:一是微电子技术,另一个是计算机体系结构技术。五十年代以来,人们先后采用了先行控制技术、流水线技术、增加功能部件甚至多机技术、存储寻址和管理能力的扩充、功能分布的强化、各种互联网络的拓扑结构以及支持多道、多任务的软件技术等一系列并行处理技术,提高计算机处理速度,增强系统性能。多处理机体系结构是计算机体系结构发展中的一个重要内容,已成为并行计算机发展中人们最关注的结构。

1 微处理器的发展 20 世纪80 年代中期,RISC 精简指令集计算机,用20%指令的组合实现了CISC 计算机指令系统不常用的80%指令的功能。在提高性能方面,RISC 采用了超级流水线、超级标量、超长指令字并行处理结构;多级指令Cache;编译优化等技术,充分利用RISC 的内部资源,发挥其内部操作的并行性,从而提高流水线的执行效率。20 世纪80 年代后期,RISC 处理机的性能指标几乎以每年翻一番的速度发展,它对于提高计算机系统的性能和应用水平起着巨大的作用。 目前,由Intel 和HP 两家公司联合开发的基于IA—64 架构的Merced 芯片,并由其共同定义的显式并行指令计算技术EPIC(Explicitly Parallel Instruction Computing ),将为微处理器技术的发展带来突破性进展。EPIC 技术主要指编译器在微处理器执行指令之前就对整个程序的代码作出优化安排,编译器分析指令间的依赖关系,将没有依赖关系的指令(最多3 个)组成一“组”,由Merced内置的执行单元读入被分成组的指令群并执行。从理论上讲,EPIC 可以并行执行3 倍于执行单元数的指令。64 位体系结构的Merced 芯片还采用了指令预测、数据预装等技术,可以显著地减少实际执行程序的长度,同时增强语句执行的并行性,经过代码的重组,程序的执行时间比基于传统体系结构

计算机体系结构参考1

第一题选择题 1.SIMD是指(B) A、单指令流单数据流 B、单指令流多数据流 C、多指令流单数据流 D、多指令流多数据流 2.下列那种存储设备不需要编址?D A. 通用寄存器 B. 主存储器 C. 输入输出设备 D. 堆栈 3.按照计算机系统层次结构,算术运算、逻辑运算和移位等指令应属于(A)级机器语言。 A、传统机器语言机器 B、操作系统机器 C、汇编语言机器 D、高级语言机器 4.早期的计算机系统只有定点数据表示,因此硬件结构可以很简单。但是这样的系统有明显的缺点,下面哪一个不是它的缺点:B A.数据表示范围小 B.单个需要的计算时钟周期多 C.编程困难 D.存储单元的利用率很低 7.下面哪个页面替换算法实际上是不能够实现的?D A)随机页面替换算法 B)先进先出替换算法 C)最久没有使用算法 D)最优替换算法

9.指令优化编码方法,就编码的效率来讲,那种方法最好?C A. 固定长度编码 B. 扩展编码法 C. huffman编码法 D. 以上编码都不是 10.在早期冯·诺依曼计算机特征中,机器以(C)为中心。 A、存储器 B、输入输出设备 C、运算器 D、控制器 1.RISC 计算机的指令系统集类型是( C ) 。 A. 堆栈型 B. 累加器型 C. 寄存器—寄存器型 D. 寄存器- 存储器型 2、相联存储器的访问方式是( D )。 A.先进先出顺序访问 B.按地址访问 C.无地址访问 D.按内容访问 3、假设—条指令的执行过程可以分为“取指令”、“分析”和“执行”三段,每—段分别只有—个部件可供使用,并且执行时间分别为Δt、2Δt和3Δt,连续执行n条指令所需要花费的最短时间约为( C )。 (假设“取指令”、“分析”和“执行”可重叠,并假设n足够大) A.6 nΔt B.2 nΔt C.3 nΔt D.nΔt 6、下列计算机不属于RISC计算机的是(C )。 A.SUN:Ultra SPARC

高级计算机体系结构作业汇总(非标准答案)

1.Explain the Concepts Computer Architecture 系统结构 由程序设计者所看到的一个计算机系统的属性。即计算机系统的软硬件界面。 Advanced CA 高级系统结构 新型计算机系统结构。基于串行计算机结构,研究多指令多数据计算机系统,具有并发、可扩展和可编程性。为非冯式系统结构。 Amdahl law Amdahl定律 系统中某部件由于采用某种方式时系统性能改进后,整个系统性能的提高与该方式的使用频率或占的执行时间的比例有关。 SCALAR PROCESSING 标量处理机 在同一时间内只处理一条数据。 LOOK-AHEAD 先行技术 通过缓冲技术和预处理技术,解决存储器冲突,使运算器能够专心与数据的运算,从而大幅提高程序的执行速度。 PVP 向量型并行计算处理机 以流水线结构为主的并行处理器。 SMP 对称多处理机系统 任意处理器可直接访问任意内存地址,使用共享存储器,访问延迟、带宽、机率都是等价的。MPP 大规模并行计算机系统 物理和逻辑上均是分布内存,能扩展至成百上千处理器,采用专门设计和定制的高通信带宽和低延迟的互联网络。 DSM 分布式共享存储系统 内存模块物理上局部于各个处理器内部,但逻辑上是共享存储的。 COW 机群系统 每个节点都是一个完整的计算机,各个节点通过高性能网络相互连接,网络接口和I/O总线松耦合连接,每个节点有完整的操作系统。 GCE 网格计算环境 利用互联网上的计算机的处理器闲置处理能力来解决大型计算问题的一种科学计算。 CISC 复杂指令集计算机

通过设置一些复杂的指令,把一些原来由软件实现的常用功能改用硬件实现的指令系统实现,以此来提高计算机的执行速度。 RISC 精简指令集计算机 尽量简化计算机指令功能,只保留那些功能简单,能在一个节拍内执行完的指令,而把复杂指令用段子程序来实现。 VMM 虚拟机监视器 作为软硬件的中间层,在应用和操作系统所见的执行环境之间。 SUPERCOMPUTER 超级计算机 数百数千甚至更多的处理器组成的能计算普通计算机不能完成的大型复杂问题的计算机。SVM 共享虚拟存储器 存储器虚拟化为一个共享的存储器,并提供单一的地址空间。 MAINFRAME 大型计算机 作为大型商业服务器,一般用于大型事务处理系统,特别是过去完成的且不值得重新编写的数据库应用系统方面。 COMPUTER SYSTEM ON CHIP 片上计算机系统 在单个芯片上集成的一个完整系统。 PARALLEL ARCHITECTURE INTO SINGLE CHIP 单片并行结构 在单个芯片上采用的并行体系结构 MOORE law Moore定律 当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。 UMA 一致存储访问 采用集中式存储的模式,提供均匀的存储访问。 NUMA 非一致存储访问 内存模块局部在各个结点内部,所有局部内存模块构成并行机的全局内存模块。 COMA 全高速缓存存储访问 采用分布式存储模式,通过高速缓存提供快速存储访问。 CC-NUMA 全高速缓存非一致性均匀访问 存在专用硬件设备保证在任意时刻,各结点Cache中数据与全局内存数据的一致性。NORMA 非远程存储访问

完整版计算机体系结构课后习题原版答案_张晨曦著

第1章计算机系统结构的基本概念 (1) 第2章指令集结构的分类 (10) 第3章流水线技术 (15) 第4章指令级并行 (37) 第5章存储层次 (55) 第6章输入输出系统 (70) 第7章互连网络 (41) 第8章多处理机 (45) 第9章机群 (45) 第1章计算机系统结构的基本概念 1.1 解释下列术语 层次机构:按照计算机语言从低级到高级的次序,把计算机系统按功能划分成多级层次结构,每一层以一种不同的语言为特征。这些层次依次为:微程序机器级,传统机器语言机器级,汇编语言机器级,高级语言机器级,应用语言机器级等。 虚拟机:用软件实现的机器。 翻译:先用转换程序把高一级机器上的程序转换为低一级机器上等效的程序,然后再在这低一级机器上运行,实现程序的功能。

解释:对于高一级机器上的程序中的每一条语句或指令,都是转去执行低一级机器上的一段等效程序。执行完后,再去高一级机器取下一条语句或指令,再进行解释执行,如此反复,直到解释执行完整个程序。 计算机系统结构:传统机器程序员所看到的计算机属性,即概念性结构与功能特性。 在计算机技术中,把这种本来存在的事物或属性,但从某种角度看又好像不存在的概念称为透明性。 计算机组成:计算机系统结构的逻辑实现,包含物理机器级中的数据流和控制流的组成以及逻辑设计等。 计算机实现:计算机组成的物理实现,包括处理机、主存等部件的物理结构,器件的集成度和速度,模块、插件、底板的划分与连接,信号传输,电源、冷却及整机装配技术等。 系统加速比:对系统中某部分进行改进时,改进后系统性能提高的倍数。 Amdahl定律:当对一个系统中的某个部件进行改进后,所能获得的整个系统性能的提高,受限于该部件的执行时间占总执行时间的百分比。 程序的局部性原理:程序执行时所访问的存储器地址不是随机分布的,而是相对地簇聚。包括时间局部性和空间局部性。

计算机体系结构习题答案解析

第1章计算机系统结构的基本概念 1.1 解释下列术语 层次机构:按照计算机语言从低级到高级的次序,把计算机系统按功能划分成多级层次结构,每一层以一种不同的语言为特征。这些层次依次为:微程序机器级,传统机器语言机器级,汇编语言机器级,高级语言机器级,应用语言机器级等。 虚拟机:用软件实现的机器。 翻译:先用转换程序把高一级机器上的程序转换为低一级机器上等效的程序,然后再在这低一级机器上运行,实现程序的功能。 解释:对于高一级机器上的程序中的每一条语句或指令,都是转去执行低一级机器上的一段等效程序。执行完后,再去高一级机器取下一条语句或指令,再进行解释执行,如此反复,直到解释执行完整个程序。 计算机系统结构:传统机器程序员所看到的计算机属性,即概念性结构与功能特性。 透明性:在计算机技术中,把这种本来存在的事物或属性,但从某种角度看又好像不存在的概念称为透明性。 计算机组成:计算机系统结构的逻辑实现,包含物理机器级中的数据流和控制流的组成以及逻辑设计等。 计算机实现:计算机组成的物理实现,包括处理机、主存等部件的物理结构,器件的集成度和速度,模块、插件、底板的划分与连接,信号传输,电源、冷却及整机装配技术等。 系统加速比:对系统中某部分进行改进时,改进后系统性能提高的倍数。 Amdahl定律:当对一个系统中的某个部件进行改进后,所能获得的整个系统性能的提高,受限于该部件的执行时间占总执行时间的百分比。 程序的局部性原理:程序执行时所访问的存储器地址不是随机分布的,而是相对地簇聚。包括时间局部性和空间局部性。 CPI:每条指令执行的平均时钟周期数。 测试程序套件:由各种不同的真实应用程序构成的一组测试程序,用来测试计算机在各个方面的处理性能。 存储程序计算机:冯·诺依曼结构计算机。其基本点是指令驱动。程序预先存放在计算机存储器中,机器一旦启动,就能按照程序指定的逻辑顺序执行这些程序,自动完成由程序所描述的处理工作。 系列机:由同一厂家生产的具有相同系统结构、但具有不同组成和实现的一系列不同型号的计算机。 软件兼容:一个软件可以不经修改或者只需少量修改就可以由一台计算机移植到另一台计算机上运行。差别只是执行时间的不同。 向上(下)兼容:按某档计算机编制的程序,不加修改就能运行于比它高(低)档的计算机。 向后(前)兼容:按某个时期投入市场的某种型号计算机编制的程序,不加修改地就能

计算机网络体系结构论文

计算机网络体系结构 摘要:计算机冈络体系结构描述了计算机网络功能实体的划分原则及其相互之间协同工作的方法和规则。本文主要介绍的是现在应用比较广泛的层次型网络体系结构,OSI基本参考模型,计算机网络的七层通信协议的主要功能及其之间的关系,并简单介绍了TCP/IP四层通信模型。 关键字:计算机网络,层次型网络体系结构,OSI,TCP/IP 上世纪60年代末期,早期的网络都是各公司根据用户的要求而设计的。虽然用户的应用要求千变万化,但对网络(通信)的要求相对一致。为使公司的产品可以适应千变万化的应用要求,尤其是适应用户扩充应用的要求,同时也是为了满足市场的要求,保证新老产品的兼容性和可操作性,各公司提出了基于本公司产品的计算机网络体系结构。 随着计算机技术和通信技术的发展,通用的计算机网络体系结构逐渐浮出水面。现在应用比较广泛的网络体系结构为层次型网络体系结构。层次型网络体系结构是计算机网络出现以后第一个被提出并实际使用的网络体系结构。直到目前,其产生和发展的过程始终与计算机网络产生和发展的过程保持协调一致。为了简化网络设计与实现的复杂性,层次型网络体系结构将复杂的网络问题分解为若干个不同的小问题,每个层次专注于解决特定的同题,这样就比较容易对所解决本层次涉及的同题实现模块化和标准化,标准化的层次间的通信规则被称为协议。层次型网络体系结构是层和协议的集合。典型的层次型网络体系结构通信模型如下图所示 层次型网络体系结构首先提出了模块化的设计实现思想:将复杂的网络问题分解为较为单纯易于解决的小问题;用不同的模块解决不同的问题。不同的模块之间接口简单明确,因此可以各自独立地制定标准和进行开发。这一思路即使在后来出现的其他网络体系结构中仍然得到了遵循。 国际标准化组织ISO为层次型网络体系结构设计了OSI参考模型。该模型将网络自底向上划分为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层七个层次,每

计算机体系结构试题汇总

计算机系统结构 姓名:学号: 一、简答题(每小题10分,共20分) 1.简述使用物理地址进行DMA存在的问题,及其解决办法。 2.从目的、技术途径、组成、分工方式、工作方式等5个方面对同构型多处理机和异构型多处理机做一比较(列表)。 二、(60分)现有如下表达式: Y=a ×X 其中:X和Y是两个有64个元素的32位的整数的向量,a为32位的整数。假设在存储器中,X和Y的起始地址分别为1000和5000,a的起始地址为6000。 1.请写出实现该表达式的MIPS代码。 2.假设指令的平均执行时钟周期数为5,计算机的主频为500 MHz,请计算上述MIPS 代码(非流水化实现)的执行时间。 3.将上述MIPS代码在MIPS流水线上(有正常的定向路径、分支指令在译码段被解析出来)执行,请以最快执行方式调度该MIPS指令序列。注意:可以改变操作数,但不能改变操作码和指令条数。画出调度前和调度后的MIPS代码序列执行的流水线时空图,计算调度前和调度后的MIPS代码序列执行所需的时钟周期数,以及调度前后的MIPS流水线执行的加速比。 4.根据3的结果说明流水线相关对CPU性能的影响。 三、(20分)请分析I/O对于性能的影响有多大?假设: 1.I/O操作按照页面方式进行,每页大小为16 KB,Cache块大小为64 B;且对应新页的地址不在Cache中;而CPU不访问新调入页面中的任何数据。 2.Cache中95%被替换的块将再次被读取,并引起一次失效;Cache使用写回方法,平均50%的块被修改过;I/O系统缓冲能够存储一个完整的Cache块。 3.访问或失效在所有Cache块中均匀分布;在CPU和I/O之间,没有其他访问Cache 的干扰;无I/O时,每1百万个时钟周期中,有15,000次失效;失效开销是30个时钟周期。如果替换块被修改过,则再加上30个周期用于写回主存。计算机平均每1百万个周期处理一页。

计算机体系结构_第一次作业

计算机体系结构 第一章 1.11 Availability is the most important consideration for designing servers, followed closely by scalability and throughput. a. We have a single processor with a failures in time(FIT) of 100. What is the mean time to failure (MTTF) for this system? b. If it takes 1 day to get the system running again, what is the availability of the system? c. Imagine that the government, to cut costs, is going to build a supercomputer out of inexpensive computers rather than expensive, reliable computers. What is the MTTF for a system with 1000 processors? Assume that if one fails, they all fail. 答: a. 平均故障时间(MTTF)是一个可靠性度量方法,MTTF的倒数是故 障率,一般以每10亿小时运行中的故障时间计算(FIT)。因此由该定义可知1/MTTF=FIT/10^9,所以MTTF=10^9/100=10^7。b. 系统可用性=MTTF/(MTTF+MTTR),其中MTTR为平均修复时间, 在该题目中表示为系统重启时间。计算10^7/(10^7+24)约等于1. c. 由于一个处理器发生故障,其他处理器也不能使用,所以故障率 为原来的1000倍,所以MTTF值为单个处理器MTTF的1/1000即10^7/1000=10^4。 1.14 In this exercise, assume that we are considering enhancing

计算机系毕业论文

计算机系毕业论文 计算机系毕业论文篇一:计算机系统结构简述 摘要:计算机系统结构是一个有多个层次组合而成的有机整体,随着科技的不断发展,未来的计算机将会朝着微型化、网络化和智能化的方向发展,为了使大家对计算机系统结构有一个大概的了解,本文主要介绍了计算机系统结构的一些基本概念、计算机系统结构的发展、计算机系统结构的分类方法和计算机系统设计的方法。 关键词:计算机系统结构;冯诺依曼结构;Flynn分类法;冯氏分类法 世界上第一台电子计算机ENIAC诞生于1946年,在问世将近70年的时间里,计算机共历经电子管计算机时代、晶体管计算机时代、中小规模集成电路计算机时代、大规模和超大规模集成电路计算机时代和巨大规模集成电路计算机时代,计算机更新换代的一个重要指标就是计算机系统结构。 1 计算机系统结构的基本概念 1.1 计算机系统层次结构的概念 现代计算机系统是由硬件和软件组合而成的一个有机整体,如果继续细分可以分成7层。L0:硬联逻辑电路;L1:微程序机器级;L2:机器语言级;L3:操作系统级;L4:汇编语言级;L5:高级语言级;L6:应用语言级。其中L0级由硬件实现;L1级的机器语言是微指令级,用固件来实现;L2级的机器语言是机器指令集,用L1级的微程序进行解释执行;L3级的机器语言由传统机器指令集和操作系统级指令组成,除了操作系统级指令由操作系统解释执行外,其余用这一级语言编写的程序由L2和L3共同执行;L4级的机器语言是汇编语言,该级语言编写的程序首先被翻译成L2或L3级语言,然后再由相应的机器执行;L5级的机器语言是高级语言,用该级语言编写的程序一般被翻译到L3或L4上,个别的高级语言用解释的方法实现;L6级的机器语言适应用语言,一般被翻译到L5级上。 1.2 计算机系统结构的定义 计算机系统结构较为经典的定义是Amdahl等人在1964年提出的:由程序设计者所看到的一个计算机系统的属性,即概念性结构和功能特性。由于计算机具有不同的层次结构,所以处在不同层次的程序设计者所看到的计算机的属性显然不同。

-计算机系统结构(有详细答案)

(仅供参考,不作为考试标准), 选择题(30分,每题2分) 计算机系统结构设计者所关心的是________所看到的的计算机结构。 A)硬件设计人员B)逻辑设计人员 C)机器语言或汇编语言程序员D)高级语言程序员 在计算机系统设计时,为了提高系统性能,应当注意________。 A)加快经常性使用指令的执行速度 B)要特别精心设计少量功能强大的指令 C)要减少在数量上占很小比例的指令的条数 D)要加快少量指令的速度 重叠寄存器技术主要用于解决在RISC系统中因________而导致的问题。 A)JMP指令影响流水线 B)CALL指令的现场保护 C)只有LOAD和STORE指令带来的访问存储器不便 D)存储器访问速度 为使流水计算机运行效率高________ A)各过程段时间要不同B)连续处理的任务类型应该不同 C)连续处理的任务类型应该相同D)连续处理的任务数尽可能少不属于堆栈型替换算法的是________。 A)近期最少使用法B)近期最久未用法 C)先进先出法D)页面失效频率法 与全相联映象相比,组相联映象的优点是________。 A)目录表小B)块冲突概率低C)命中率高D)主存利用率高"一次重叠"中消除"指令相关"最好的方法是________。 A)不准修改指令B)设相关专用通路 C)推后分析下条指令D)推后执行下条指令 流水操作中,遇到数据相关时,采用的解决办法有________。 A)用优化编译器检测,通过指令重新排序的办法 B)数据重定向技术 C)延迟转移技术 D)加快和提前形成条件码 经多级网络串联来实现全排列网络,只能用________。 A)多级立方体网络B)多级PM2I网络 C)多级混洗交换网络D)上述任何网络 虫蚀寻径以流水方式在各寻径器是顺序传送的是________。 授课:XXX

第一部分计算机系统组成及说明

第一部分:计算机系统组成及说明 一、计算机系统组成 一个完整的计算机系统通常是由硬件系统和软件系统两大部分组成的。(一)硬件(hardware) 硬件是指计算机的物理设备,包括主机及其外部设备。具体地说,硬件系统由运算器、控制器、存储器、输入设备和输出设备五大部件组成。 ①存储器。存储器是计算机用来存放程序和原始数据及运算的中间结果和最后结果的记忆部件。 ②运算器。运算器对二进制数码进行算术或逻辑运算。 ③控制器。控制器是计算机的“神经中枢”。它指挥计算机各部件按照指令功能的要求自动协调地进行所需的各种操作。 ④输入/输出设备(简称I/O设备)。计算机和外界进行联系业务要通过输入输出设备才能实现。输入设备用来接受用户输入的原始数据和程序,并将它们转换成计算机所能识别的形式(二进制)存放到内存中。输出设备的主要功能是把计算机处理的结果转变为人们能接受的形式,如数字、字母、符号或图形。 (二)软件(software) 软件是指系统中的程序以及开发、使用和维护程序所需要的所有文档的集合。包括计算机本身运行所需的系统软件和用户完成特定任务所需的应用软件(三)硬件和软件的关系

硬件是计算机的基础,软件对硬件起辅助支持作用,二者相辅相成,缺一不可,只有有了软件的支持,硬件才能充分发挥自己的作用。 二、计算机工作原理 (一)冯·诺依曼设计思想 计算机问世50年来,虽然现在的计算机系统从性能指标、运算速度、工作方式、应用领域和价格等方面与当时的计算机有很大的差别,但基本体系结构没有变,都属于冯·诺依曼计算机。 冯·诺依曼设计思想可以简要地概括为以下三点: ①计算机应包括运算器、存储器、控制器、输入和输出设备五大基本部件。 ②计算机内部应采用二进制来表示指令和数据。每条指令一般具有一个操作码和一个地址码。其中,操作码表示运算性质,地址码指出操作数在存储器的位置。 ③将编好的程序和原始数据送入内存储器中,然后启动计算机工作,计算机应在不需操作人员干预的情况下,自动逐条取出指令和执行任务。 冯·诺依曼设计思想最重要之处在于他明确地提出了“程序存储”的概念。他的全部设计思想,实际上是对“程序存储”要领的具体化。

《计算机体系结构》在线作业二

北交《计算机体系结构》在线作业二 一、单选题(共20 道试题,共60 分。) 1. 按照M ·弗林对处理机并行性定义的分类原则,阵列机ILLIAC —IV 是( )。 A. SISD B. SIMD C. MISD D. MIMD 正确答案: 2. 输入输出系统硬件的功能对( )是透明的。 A. 操作系统程序员 B. 应用程序员 C. 系统结构设计人员 D. 机器语言程序设计员 正确答案: 3. 浮点数尾数基值rm=8,尾数数值部分长6位,可表示规格化正尾数的个数是()。 A. 56个 B. 63个 C. 64个 D. 84个 正确答案: 4. 从计算机系统结构上讲,机器语言程序员所看到的机器属性是( )。 A. 计算机软件所要完成的功能 B. 计算机硬件的全部组成 C. 编程要用到的硬件组织 D. 计算机各部件的硬件实现 正确答案: 5. 对机器语言程序员透明的是( )。 A. 中断字 B. 主存地址寄存器 C. 通用寄存器 D. 条件码 正确答案: 6. 通道方式输入输出系统中,对优先级高的磁盘等高速设备,适合于连接( )。 A. 字节多路通道 B. 选择通道 C. 数组多路通道

D. 字节及数组多路通道 正确答案: 7. 设16 个处理器编号分别为0 ,1 ,2 ,…,15 ,用PM 2-0 互联函数时,第13 号处理机与第( ) 号处理机相联。 A. 12 B. 9 C. 11 D. 5 正确答案: 8. 对系统程序员不透明的应当是( )。 A. Cache存贮器 B. 系列机各档不同的数据通路宽度 C. 指令缓冲寄存器 D. 虚拟存贮器 正确答案: 9. 对应用程序员不透明的是( )。 A. 先行进位链 B. 乘法器 C. 指令缓冲器 D. 条件码寄存器 正确答案: 10. 系列机软件应做到( )。 A. 向前兼容,并向上兼容 B. 向后兼容,力争向上兼容 C. 向前兼容,并向下兼容 D. 向后兼容,力争向下兼容 正确答案: 11. 动态数据流机最突出的特点是使( )。 A. 数据流令牌无标号 B. 需要程序记数器来实现 C. 令牌带上标号 D. 同步由门(Latch)寄存器来实现 正确答案: 12. 计算机系统多级层次中,从下层到上层,各级相对顺序正确的应当是( )。 A. 汇编语言机器级――操作系统机器级――高级语言机器级 B. 微程序机器级――传统机器语言机器级――汇编语言机器级 C. 传统机器语言机器级――高级语言机器级――汇编语言机器级 D. 汇编语言机器级――应用语言机器级――高级语言机器级 正确答案: 13. 用户高级语言源程序中出现的读写(I/O) 语句,到读写操作全部完成,需要通过( )共同完成。 A. 编译系统和操作系统 B. I/O 总线、设备控制器和设备 C. 操作系统和I/O 设备硬件

相关文档
相关文档 最新文档