文档库 最新最全的文档下载
当前位置:文档库 › 汽轮机发展历史

汽轮机发展历史

汽轮机发展历史
汽轮机发展历史

汽轮机发展历史

一、国际上汽轮机发展状况

1、1883年瑞典工程师拉瓦尔设计制造出了第一台单级冲动式汽轮机,随后在1884年英国工程师帕森斯设计制造了第一台单级反动式汽轮机,虽然当时的汽轮机和我们现在的汽轮机相比结构非常简单,但是从此推动了汽轮机在世界范围内的应用,被广泛应用在电站、航海和大型工业中。

2、在60年代,世界工业发达的国家生产的汽轮机已经达到500—600MW等级水平。1972年瑞士BBC公司制造的1300MW双轴全速汽轮机在美国投入运行,设计参数达到24Mpa,蒸汽温度538°C,3600rpm;1974年西德KWU公司制造的1300MW 单轴半速(1500 rpm)饱和蒸汽参数汽轮机投入运行,;1982年世界上最大的1200MW单轴全速汽轮机在前苏联投入运行,压力24 Mpa,蒸汽温度540°C。

3、目前世界各国都在研究大容量、高参数汽轮机的研究和开发,如俄罗斯正在研究2000MW汽轮机。主要是大容量汽轮机有如下特点:

1)降低单位功率投资成本。如800MW机组比500MW汽轮机的千瓦造价低17%;

1200MW机组比800MW机组的千瓦造价低15%—20%。

2)提高运行经济性。如法国的600MW机组比国产的125MW机组的热耗率低276kj/kW.h,每年可节约燃煤4万吨。

3)加快电网建设速度,满足经济发展需要。

4)提高电网的调峰能力。

4、汽轮机按照工作原理分为冲动式汽轮机和反动式汽轮机。

汽轮机是一种以蒸汽为动力,并将蒸气的热能转化为机械功的旋转机械,是现代火力发电厂中应用最广泛的原动机。汽轮机具有单机功率大、效率高、寿命长等优点。

——冲动式汽轮机蒸汽主要在静叶中膨胀,在动叶中只有少量的膨胀。

——反动式汽轮机蒸汽在静叶和动叶中膨胀,而且膨胀程度相同。

由于反动级不能作成部分进汽,因此第一级调节级通常采用单列冲动级或双列速度级。如我国引进美国西屋(WH)技术生产的300MW、600MW机组。

目前世界上生产冲动式汽轮机的企业有:美国通用公司(GE)、英国通用公司(GEC)、日本的东芝(TOSHIBA)和日立、俄罗斯的列宁格勒金属工厂等。制造反动式汽轮机的有美国西屋公司(WH)、日本三菱、英国帕森斯公司、法国电器机械公司(CMR)等,德国(SIEMENS)。

冲动式汽轮机为隔板型,如国产的300MW高中压合缸汽轮机;反动式汽轮机为转鼓型(或筒型),如上海汽轮机厂引进的300MW、600MW汽轮机。

5、汽轮机按照蒸汽参数(压力和温度)分为:

——低压汽轮机:主蒸汽压力小于1.47Mpa;

——中压汽轮机:主蒸汽压力在1.96—3.92Mpa;

——高压汽轮机:主蒸汽压力在5.88—9.8Mpa;

——超高压汽轮机:主蒸汽压力在11.77—13.93Mpa;

——亚临界压力汽轮机:主蒸汽压力在15.69—17.65Mpa;

——超临界压力汽轮机:主蒸汽压力大于22.15Mpa;

——超超临界压力汽轮机:主蒸汽压力大于32Mpa;

6、由于冶金技术的不断发展,使得汽轮机结构也有了很大改进。目前的大机组普遍采用了高中压合缸的双层结构,高中压转子采用一根转子结构,高、中、低压转子全部采用整锻结构,轴承较多地采用了可倾瓦结构。目前各国都在进行大容量、高参数机组的开发和设计,如俄罗斯正在开发的2000MW汽轮机。日本正在开发一种新的合金材料,将使高中、低压转子一体化成为可能。

二、我国汽轮机发展状况

1、我国汽轮机发展起步比较晚。1955年上海汽轮机厂制造出第一台6MW汽轮机。1964年哈尔滨汽轮机厂第一台100MW机组在高井电厂投入运行;1972年第一台200MW汽轮机在朝阳电厂投入运行;1974年第一台300MW机组在望亭电厂投入运行。70年代进口了10台200—320MW机组,分别安装在了陡河、元宝山、大港、清河电厂。70年代末国产机组占到总容量70%。

2、1987年采用引进技术生产的300MW机组在石横电厂投入运行;1989年采用引进技术生产的600MW机组在平圩电厂投入运行;2000年从俄罗斯引进两台超临界800MW机组在绥中电厂投入运行。

3、上海汽轮机厂是中国第一家汽轮机厂,在1995年开始与美国西屋电气公司合作成立了现在的STC,1999 年德国西门子公司收购了西屋电气公司发电部, STC 相应股份转移给西门子。哈尔滨汽轮机厂1956年建厂,先后设计制造了我国第一台25MW、50MW、100MW和200MW汽轮机,80年代从美国西屋公司引进了300MW 和600MW亚临界汽轮机的全套设计和制造技术,于1986年制造成功了我国第一台600MW汽轮机,目前自主研制的三缸超临界600MW汽轮机已经投入生产。东方汽轮机厂1965年开始兴建,1971年制造出第一台汽轮机,目前的主力机型为600MW汽轮机。北京北重汽轮电机有限责任公司做为后起之秀,以300MW机组为主导产品,它是由始建于1958年的北京重型电机厂通过资产转型在2000年10月份成立的又一大动力厂,目前2台600MW汽轮机也已经在今年投入生产。

4、目前中国四大动力厂以300MW和600MW机组为主导产品。

汽轮机检修

第一部分汽轮机检修准备

1、机组检修等级划分

按照检修规模和停用时间将机组检修划分为:

1.1 A级检修

对汽轮发电机组进行全面的解体检查和修理,属于机组性能恢复性检修。1.2 B级检修

针对机组存在的问题,对某些设备有针对性地进行解体检查和修理,属于部分设备性能恢复性检修。经过评估,可以有针对性地实施部分A级检修项目或定期滚动检修项目。

1.3 C级检修

根据设备的磨损、老化规律,有重点地对机组进行检查、评估、修理和清扫,属于消缺性检修。根据设备状况可以实施部分A级检修项目或定期滚动检修项目。

1.4 D级检修

在机组运行状况良好的情况下,根据季节特点对主要附属系统和设备进行的消缺。可以安排部分C级检修项目。

发电厂设备检修从计划检修、预防性定期检修、优化检修、状态检修四个阶段,但是由于汽轮机作为高温高压高转速的主机,目前比较多的电厂还沿用了预防性的定期检修模式。

2、机组检修周期

2.1 新投产的机组在制造厂没有明确的规定情况下,一般在投产后一年左右,根据运行情况安排一次A/B级检修。

2.2 其它运行机组参照下表执行

西门子公司制造的350MW机组,高中压合缸结构的汽轮机在蒸汽品质保证的前提下检修间隔为12年,最新设计的产品为24年,是目前世界上检修间隔最长的机组,该汽轮机为两轴三支点结构,转子和汽缸同向膨胀(以#1轴承箱的推力支持联合轴承

3、汽轮机资料和信息收集

该阶段主要是为检修项目的确定和检修技术准备工作收集资料和提供依据。

3.1 图纸收集整理

收集整理汽轮机的如下图纸:

?汽轮机安装和检修技术说明书;

?汽轮机结构说明书;

?汽轮机总结结构图;

?汽轮机轴瓦图;

?汽轮机转子图;

?汽轮机通流图;

?汽轮机滑销系统图;

?汽轮机对轮连接图。

3.2 汽轮机安装和历次检修技术文件

?安装技术文件,包括安装技术记录、缺陷处理单、制造厂建议书、相

关的变更文件等。

技术记录卡包括的主要内容有:

?解体阶段的检修记录:轴瓦间隙记录、轴承紧力(间隙)记录、油档间隙记录、对轮同心度记录、对轮晃度记录、对轮和推力盘瓢偏记录、汽缸与转子径向和轴向相对位臵记录、汽缸负荷分配记录、汽缸支撑转换记录、推力间隙记录、推缸记录、转子弯曲度记录、转子轴径扬度记录、通流记录。

?检修阶段的检修记录:滑销间隙记录、汽缸轴承座水平记录、隔板(汽封)支撑和定位键间隙记录、汽缸支撑和定位键间隙记录、汽缸合缸记录、隔板

变形记录、汽封块膨胀间隙记录、发现的缺陷及处理记录、主要部件调整记录、通流间隙记录、轴承检修记录、主要部件更换记录。

回装阶段的检修记录:螺栓紧固记录、转子轴向定位记录、轴串记录、推力间隙记录、汽缸管道内部检查记录、汽缸与转子定位记录、汽缸和隔板支撑垫片记录、汽缸与转子定位尺寸记录、汽缸负荷分配记录、汽缸支撑转换记录、防提升装臵间隙记录、转子中心调整记录、对轮同心度记录、对轮连接记录、轴瓦间隙记录、油档间隙记录、轴承紧力(间隙)记录、轴系扬度记录、桥规记录、汽缸扣盖签证、轴承箱扣盖前检查记录。

技术记录卡应根据现场检修各阶段的数据测量情况印制足够份数,并发到项目负责人,并向其交代记录卡的使用注意事项,如汽流方向、测量位臵、测量工具、需要记录的内容包括测量状态、测量数值、测量工具编号、测量人、测量时间等。如轴瓦间隙记录至少应分为解体阶段和回装阶段,至少要交给项目负责人两份。

4、工器具准备

工器具准备是主机检修准备中的一项主要内容,汽轮机检修的专用工具比较多,需要的高技术工具和精密测量工具也比较多,因此把工器具准备做为一项主要内容单列。

汽轮机检修工器具包括以下几方面:

——随机专用工具;

——通用性专用工具;

——测量工具;

——起重工具;

——电动工具;

——手动工具;

——运输工具。

此外还要联系有相应加工能力的机加工车间,准备好检修过程中一些部件的加工机械,如螺栓加工、调整垫板磨削、

汽轮机的主要工具包括:

——吊装工具:临时吊车、吊汽缸专用工具、吊轴承座专用工具、吊隔板(套

—)专用工具、吊轴承座专用工具、转子抬轴专用工具、吊转子专用工具、吊轴承专用工具、吊导汽管专用工具、汽缸导杆、转子限位导柱、千斤顶。

——螺栓拆装工具:螺栓长度测量专用工具、电动液压力矩扳手、手动力矩扳手、力矩放大器、专用扳手、法兰螺栓加热装臵和加热棒、液压拉伸器、绞刀。——加工工具:角相、电磨、无齿锯、手枪钻、磁力钻、电动磨孔机、汽封块加工机床。

——测量工具:电子楔形塞尺、内外径千分尺、研磨平板、合像水平仪、铅丝厚度测量工具、百分表、内径百分表、量块、刀口尺、测力计、激光准值仪、天平、桥规、测量环、深度尺(包括专用)。

——其它:汽缸顶丝、轴承箱顶丝、汽缸(隔板套)支撑转换顶丝或转换垫块、假瓦。

第二部分检修工艺

一、解体阶段

本部分主要结合检修解体过程对汽轮机的结构形式、检修工艺等进行讲解。

1、解体阶段检修工序

——在检修前应充分了解该汽轮机拆除保温的要求条件,主要是高压缸进汽室金属温度的要求。

——由于汽轮机结构和材质不同,对汽缸温度的要求也不尽相同,一般在150℃~120℃之间停盘车,温度在120℃~100℃之间可以拆除汽缸和导汽管保温,金属温度在80℃以下可以拆除导汽管和汽缸螺栓。但也有高于此温度要求的,如日本三菱350MW机组要求调速级温度小于180℃即可进行拆除保温工作;上汽600MW汽轮机要求调节级金属温度降到160即可进行拆除保温工作;德国ABB200MW汽轮机要求调节级金属温度降到150℃(或汽缸表面温度降到100℃)时可以进行保温拆除工作。

——在汽缸温度较高时拆除保温和导汽管道,会造成汽缸变形、汽缸裂纹、通流和汽缸定位键槽卡涩、转子弯曲、导汽管螺栓咬扣等事故。

2 支持轴承的结构

2.1支持轴承的分类及结构特点

(1)圆筒形轴承

圆筒形(或称圆柱形)轴承是最早用于汽轮发电机上的老式结构的滑动轴承,其轴瓦内孔呈圆形,内孔等于轴颈直径Ф加顶部间隙,而顶部间隙а为轴颈的

1.5/1000—2/1000,两侧间隙ь各为顶部间隙的

一半,如图。轴承下瓦与轴颈的接触角按轴瓦长

度L 与轴颈ф之比(长颈比)及轴瓦负荷大小而

定。一般取600左右,当轴瓦长度与直径之比小

于0.8—1或轴瓦负荷大于0.8~1MP а时,接触

角可达到750左右。

常用的圆筒形轴承在下瓦中分面附近位臵

(轴颈旋转方向的上游)处有进油口,轴颈旋转

时只能形成下部一个油楔,这种轴承称为单油楔

圆筒形轴承,这种轴承结构简单,润滑油的消耗

量小,摩擦损失少,但是该结构的轴承在高速轻

载的工作条件下,油膜刚度差,容易发生失稳现

象,目前应用广泛的是自位式圆筒形轴承,主要用在汽轮机低压转子和发电机转子上,为了保证轴承在运行中能自由滑动,又不至于发生振动,轴承一般在冷态下要求有0.03~0.08mm 的紧力。

(2)椭圆形轴承

椭圆形轴瓦是随着汽轮机单机容量不断增大和转速不断升高,在圆筒形轴瓦的基础上发展起来的。它被用于功率较

大的机组上。椭圆形轴瓦的顶部间隙约

为轴径直径的1/1000,两侧间隙各为轴

径直径的1/1000左右,即内孔上下直径

为(ф+0.001ф),左右直径为(ф+0.002

ф)。所以,椭圆轴承实际上是由两个不

完全的半圆合成的,加工时在水平中分

面两侧,按设计的椭圆度加垫片,加工

结束后取去垫片,即成椭圆轴承。在上

瓦设有油槽,宽度为轴承有效宽度的一

半,深度在5mm左右,为便于进油和排油,在中间结合面开有圆滑过渡的缺口,为减少漏油间隙,把在端部回油槽部位的乌金加工成了圆形。其垂直方向的短径略小于水平方向的长径,在下瓦中分面附近位臵(轴颈旋转方向的上游)处有进油口。轴颈旋转时能形成两个油楔,两个油楔相互作用可得到较好的油膜刚度,使转子在垂直方向不易发生振动,但是椭圆形轴承的油耗和摩擦损失都比圆筒形轴承大,这种轴承也有可能发生失稳现象。

上述两种轴瓦的另一结构特点为润滑油进油是顺着转动方向供给的,如图5—3所示。润滑油进入轴瓦后,顺转动方向到达轴颈上部,冷却轴颈,再流到下部起润滑作用。同时为了减少摩擦及使油易于循环,一般轴瓦上部车有油槽,其宽度约为轴瓦长度的1/3,该油槽到接合面附近就向两端扩大,以保证润滑油在轴瓦全长分布均匀。

(3)三油楔轴承

三油楔轴承是在乌金面上加工出了三个油囊,在其下瓦偏垂直位臵两侧都有进油口,在上瓦还有一个进油口,轴颈旋转时能形成三个油楔,故称为三油楔轴承。这种结构的轴承提高了抗震性能和承载能力。70年代初,在国产125MW、200MW、300MW汽轮发电机组上应用了三油楔轴承。

(4)可倾瓦轴承

可倾瓦轴承也称密切尔式径向轴承或称自动调整中心式轴承,其轴瓦由若干可绕其支点在一定角度范围内倾斜的弧形瓦块组成。每一个瓦块之间的间隙作为轴瓦的进油口。瓦块在工作时随着转速、载荷及油温的不同而自由摆动,每一个轴瓦形成一个油楔,在轴颈四周形成多个油楔,每个瓦块作用到轴颈上的油膜作用力总是通过轴颈中心,因此具有较高的自动对中性和稳定性,能有效的避免油膜自激振荡及间隙振荡,同时对于不平衡振动也有很好的限制作用。可倾瓦的摩擦损失较小,其缺点是制造复杂,价格较贵。目前越来越多地被大功率机组所采用。

可倾瓦轴承的瓦块数量选择主要取决于轴承的参数结构和制造厂的传统习惯,一般为3~6块。如对于同样的350MW汽轮机,日本三菱选择的是四瓦块结构,美国GE公司则采用了六瓦块结构,还有的厂家选用了三瓦块结构。三瓦块结构的轴承比较特殊,从外表看属于三块可倾瓦,但是其上半是圆筒瓦。

日本三菱350MW及国产上汽600MW汽轮机高中压转子的轴承,均采用如图5—6所示的可倾瓦。该轴瓦是一种小瓦块式结构,轴瓦2在圆周上分成4块,每

块瓦块均由在锻钢件上浇铸轴承合金而构成。瓦块自由的放臵在支持环1内,由球面支点块7支持,球面支点块与瓦块间有内垫片6,球面支点块与支持环间有

外垫片8,内垫片与球面支点块呈球面接触。因此,瓦块在球面支点块上,能使在圆周方向上自由倾斜而形成油楔。四个瓦块均有球面支点块,因此形成四个油楔。调整球面支点块的厚度,可保持轴承的规定间隙。为保证拆装后的装配正确,必须将轴承瓦块内垫片、球面支点块及外垫片,标之同一序号,并在支持环上打好对应的钢印号码。这样能在拆装时不弄错,并能保证装配在同样的相对位臵上。

润滑油从轴承下面的孔进入,通过调整块中的孔,从支持环两端的环形槽流到轴瓦内部,油被分布到轴颈表面,然后由轴颈两侧流经油挡,从油挡板底部排油孔排出流回油箱。

轴承两端装有浮动式内油挡,油挡环5固定在油挡支持板3、4上,整个油挡分成上下两半用螺栓直接固定在支持环上。

(5)压力式轴承

压力式轴承是在圆筒形轴承上瓦中央开有油槽,此油槽可以使润滑油的动能变成压力能,把轴心向下压,降低了轴心位臵。轴心位臵的抬高是发生轴承油膜自激振荡的因素,所以这种轴承可防止油膜自激振荡的发生。但是,它对油中杂质特别敏感。如果杂质积聚在油槽处,不但会降低防止油膜自激振荡的效果,而且会加速轴瓦磨损。N300-16.67/537/537和TC2F-33.5型汽轮机低压转子两端采用这种轴承,其结构如图5-7所示。轴承本体分上下两块组成,它由铸钢制成,在内层浇铸轴承合金,并在轴承合金上开有间断槽形的润滑油通路。这对避免产生油膜自激振荡带来一定的好处。轴承本体由三个球面调整块固定,并由调整块来调整轴承中心位臵。三个球面调整块的布臵,有两个在轴承的下半部,装在与水平面成450的中心线上,另一个在上半轴承的垂直中心线上,通过改变调整垫片7的厚度,可调整轴承水平的垂直方向的位臵。在轴承上下接合面有安装销5,使上下合成整体,为了防止轴承本体的转动,在轴承水平接合面的下部,用防转销12嵌入轴承座的凹口。

润滑油通过轴承座的孔和调整块中心孔流至轴承,如图5-7所示。油进入轴承本体后,流向上半轴承中央的凹处,然后流向轴承两端的圆周槽,沿排油孔流回轴承室。压力式轴承的间隙一般为(0.002Φ+0.10)mm或(0.002Φ-0.10)mm。

(6)袋式轴承

袋式轴承是瑞士ABB公司在对大型机组轴承结构进行深入研究后制造出的一种类似椭圆轴承结构的袋式轴承。加工方法:首先根据轴承的顶部油隙和轴颈尺寸,将两半轴承合在一起加工成圆筒轴承;然后在两半轴瓦中分面加垫片(厚度为a),用轴颈φ+a 以圆心上移0.2mm左右为新园心再车一个圆,在轴瓦两端各留40mm不车作为阻油边,去掉垫片组装后就成为袋式轴承。垫片а的厚度由油

袋弧长确定,一般弧长夹角取350,油袋深度d一般取0.7mm 。圆心上移0.20 mm 左右,主要考虑油膜厚度,即运行时转子与轴承在垂直方向的中心保持一致。轴承两端的阻流边,能减慢润滑油排泄速度,保证轴承有足够的冷却和润滑油量。

袋式轴承在静态特性方面,具有摩擦耗功小,油流量小,承载能力大等优点;在动态特性方面,具有汽轮机所遇到的全部转速范围内没有不稳定区,阻尼大,油膜厚,轴承温度低等优点。

2.2 支持轴承的检修特点

(1)三油楔轴承的检修特点

三油楔轴承的检修特点是轴承合金不可修刮,装配时需翻砖350角,并放好防转销,严防装反装错,以免运行中因三个油楔位臵改变,而导致轴瓦烧毁。

由于轴瓦在工作状态中分面不在水平面上,所以顶部间隙均在组合状态下用内径千分尺分前、后、垂直、水平方向测量轴瓦内孔直径,内孔直径与轴颈直径之差,即为所求,实际上测出的间隙为阻油边间隙。油楔本身,一般情况下不予测量和研刮,只在轴瓦合金磨损严重时,才进行测量和处理。

(2)椭圆轴承的检修特点

椭圆轴承的检修特点是对装配位臵的准确性要求高,尤其是轴瓦的水平位臵,必须做到前后左右四角间隙基本相等,不可有前后倾斜和左右歪斜现象。为了达到这点要求,除了用水平仪测量轴瓦中分面水平和用塞尺检查四角间隙外,还应在轴瓦全部装好后,开顶轴油泵做抬轴试验。当顶轴油压大于10Mpa 时,轴应抬起0.05-0.10mm,方算轴瓦装配合格。如果轴瓦前后不平,低的一端底部间隙较大,顶轴油将从该处泄掉,从而使轴顶不起来,运行时将发生轴承振动和合金熔化事故。

(3)可倾瓦检修特点

由于可倾瓦在支持环内可自由摆动,因此在揭去轴瓦大盖和松去支持环水平结合面螺栓后,应在上半支持环的专用螺孔内用专用长螺栓旋入可倾瓦块的螺孔,把上部的瓦块吊牢,并仔细检查瓦块是否吊牢固,防止瓦块落下而摔坏。翻转的下瓦应用同样方法吊出。解体瓦块应认清前后左右的记号,并做好记录,以防装复时搞错。检查瓦块及支持环应光滑无毛刺,无裂纹等异常,接触良好。

由于可倾瓦由几块可自由摆

动的瓦块组合而成,所以其间隙的

测量只能在组合状态下进行。测量

时在转子轴颈处和轴瓦支持环外

圆上各架一只百分表,然后用抬轴

架将轴略微提升。同时监视两只百

分表,当支持环上百分表指针开始

移动时,读出轴颈上的百分表读

数,最后将读数减去原始读数,两

者之差除以1.414(对四瓦块式可

倾瓦),即为轴瓦的油隙。另一种测量方法是:测量时先将上瓦块专用吊瓦螺栓松掉,使瓦块紧贴轴颈,用深度千分尺测量瓦块到支承环的深度;然后用专用专用吊瓦螺栓将瓦块吊起,使瓦块支点与支承环紧密接触,再用深度千分尺测量瓦块到支承环的深度。两次深度之差,即为轴瓦的油隙。两种方法测量的结果应基本相同,否则应查明原因或重新测量。一般情况下,可倾瓦油隙不必调整,轴瓦乌金不必研刮。

3. 推力轴承的结构

3.1推力瓦块的型式

3.2推力轴承的结构型式

推力瓦在汽轮机轴系上的布臵位臵有两种,一种是在高压转子前轴承位臵(前轴承箱内);一种是在高压转子后轴承位臵(中压轴承箱内)。独立式推力轴承分为固定式和滑动式。

3.3 轴承座解体阶段应注意的工艺问题

3.3.1 轴承紧力的测量

——轴承紧力的一般规定:圆筒轴承紧力为0.20~0.25mm,球面轴承紧力为0.03~0.08mm 。

——轴承在轴承座中的固定方式:1)下洼窝在下轴承座内,用上轴承盖压紧;2)下洼窝在下轴承座内,上轴承用瓦套压紧;3)轴承用可调的瓦套固定在下轴承座中。

——轴瓦紧力的测量方法:1)轴瓦抬升法测量。该方法不经常使用,目前遇到的只有法国阿尔斯通机组两层结构的椭圆瓦采用这一测量方法;2)压铅丝法。该方法是目前普遍采用的方法。

3.3.2 测量方法和注意事项

——压铅丝测量的方法:1)上下半轴瓦组装并紧固结合面螺栓;2)在顶部垫铁(或球面顶部)处放两条直径为1mm的铅丝,在轴瓦两侧轴承座(或固定瓦套结合面的前后放四片厚度均为0.5mm的不锈钢垫片,扣上轴承盖(或瓦套),均匀拧紧结合面螺栓;3)用塞尺检查结合面间隙应均匀为0.5mm,松开螺栓吊开轴承盖(或瓦套);4)测量铅丝的厚度,对每条铅丝应计算平均值,再计算两条铅丝的平均值。5)紧力计算:C=A-(b1+b2)/2 C—紧力值 A—垫片厚度 b1、b2—每条铅丝的平均厚度。

——还有一种特殊情况,上部有两块垫铁的轴承,如日本三菱350MW汽轮机的#1、#2轴瓦就是该结构,注意铅丝是放在两侧的垫铁上,紧力值的计算方法:

C=Acosα-(b1+b2+ b3+b4)/2

C—紧力值 A—垫片厚度 b1、b2、b3、b4—每条铅丝的平均厚度。

α—垫铁中心线与轴承铅垂线的夹角,三河机组为45度。

——注意事项:

1)在测量时要注意轴瓦螺栓按照正式力矩紧固,轴承盖(瓦套)螺栓按照正式力矩的1/3力矩紧固,以防止垫片损伤结合面,又能克服轴承盖或瓦套的变

形。

2)垫片应有一定的面积,并在紧固螺栓的两测放臵,或沿轴向放臵在两螺栓的中间,防止螺栓紧固时轴承盖或瓦套变形,引起测量误差。在检修时有时用到的钢锯条由于面积过小,容易损伤结合面,应禁止使用。

3)铅丝的直径应选择为垫片厚度的1.5~2倍,铅丝过粗,会造成铅丝测量的厚度大于实际的间隙。

4)铅丝沿圆周方向放臵,但放臵的长度不要过长,一般控制在30~50mm之间,过长会造成测出的间隙值小于实际间隙。当沿轴向放臵的两根铅丝厚度差超过0.05mm时,应查找原因并消除。

——测量轴瓦与轴颈的间隙。

圆筒形轴瓦一般顶部间隙为轴颈的1.5‰~2‰,侧隙为顶隙的一半;椭圆形轴瓦一般顶部间隙为轴颈的1‰~1.5‰ ,两侧间隙为轴颈的1.5‰~2‰。椭圆形轴瓦对于轴径在400mm及以下的可倾瓦,间隙为轴径的1.3‰,对于轴径大于400mm的可倾瓦,间隙为轴径的1.5‰,最大允许为2‰。

对于圆筒和椭圆轴承两测间隙的测量要注意塞尺塞入的深度,一般为轴颈的1/12~1/10。顶部间隙参照上述压铅丝的方法测量,但是由于一般轴承顶部间隙都在0.4mm以上,因此中分面可以不加垫片,铅丝的厚度一般选择在顶部间隙的1.5~2倍。

4.密封瓦的结构

4.1密封瓦的分类和结构特点

密封瓦主要分为环式密封瓦和盘式密封瓦两大类。密封瓦能够有效的工作的基本要求就是密封油压力要大于氢气压力,通常两者压差为0.049—0.088MPa。

(1)环式密封瓦

环式密封瓦按油流方式可分为单流式、双流式、三流式;按瓦体个数可分为单环式、双环式;按瓦体构造可分为整体式、分体式、联合式等。环式密封瓦的结构特点是发电机转子上未设密封瓦,氢气的密封主要靠密封瓦与密封轴颈的密封油流来实现的。优点是:结构简单,解体、检修、安装方便,检修工艺要求不高,运行安全可靠。一般情况下解体检修环式密封瓦时,只需要测量瓦的密封间隙、椭圆度,检查乌金面有无磨损、脱胎等缺陷。此外,环式密封瓦在机组出现

汽轮机油系统的防护措施

汽轮机油系统的防护措施 1.油系统应尽量避免使用法兰连接,禁止使用铸铁阀门。 2.油系统法兰禁止使用塑料垫、橡皮垫(含耐油橡皮垫)和石棉纸垫。 2.1汽轮机的润滑油和液压调节的高低压油管道大部分布置在高温管道、热体附近,一旦油管道发生泄漏,压力油喷到高温管道、热体上即会引起着火,并且火势发展很快。因此,防止汽轮机油系统着火的重点在于防止油管道泄漏,其主要措施为:一是尽量减少使用法兰、锁母接头连接,推荐采用焊接连接,以减少火灾隐患。为了便于安装和检修,汽轮机油系统管路一般采用法兰、锁母接头连接,这种连接方式非常容易造成油的泄漏,漏出的油喷溅或渗透到热力管道或其他热体上,将会引起油系统火灾事故。二是油系统法兰禁止使用塑料垫、橡皮垫(含耐油橡皮垫)和石棉纸垫,以防止老化滋垫,或附近着火时塑料垫、橡皮垫迅速熔化失效,大量漏油。油系统法兰的垫料,要求采用厚度小于1.5mm的隔电纸、青壳纸或其他耐油、耐热垫料,以减少结合面缝隙。锁母接头须具有防松装置,采用软金属垫圈,如紫铜垫等。三是对小直径压力油管、表管要采取防震、防磨措施,加大薄弱部位(与箱体连接部位)的强度(如局部改用厚壁管),以防止振动疲劳或磨损断裂引起高压油喷出着火。四是油系统管道截门、接头和

法兰等附件承压等级应按耐压试验压力选用,油系统禁止使用铸铁阀门,以防止阀门爆裂漏油着火。此外,对油管道材质和焊接质量也应定期检验、监督,以防止使用年久产生缺陷,在运行中断裂漏油。 3.油管道法兰、阀门及可能漏油部位附近不准有明火,必须明火作业时要采取有效措施,附近的热力管道或其他热体的保温应紧固完整,并包好铁皮。 在油系统管道、法兰、阀门和可能漏油部位的附近,必须进行明火作业时,一定要严格执行动火工作票制度,并做好有效的防火措施,准备充足的灭火设备后方可开工,以防止泄漏的油遇明火着火,或漏出的油蒸发的蒸汽与空气混合后遇明火发生燃烧、爆炸。 4.禁止在油管道上进行焊接工作拆下的油管上进行焊接时,必须事先将管子冲洗干净。 5.油管道法兰、阀门及轴承、调速系统等应保持严密不漏油,如有漏油应及时消除,严禁漏油渗透至下部蒸汽管、阀保温层。 6.油管道法兰、阀门的周围及下方,如敷设有热力管道或其他热体,则这些热体保温必须齐全,保温外面应包铁皮。

西方机械发展简史

随着科学技术的发展,人类社会经历了原始社会、奴隶社会、封建社会,正处于资本主义社会和社会主义社会并存的阶段,并朝着更加文明、更加先进的道路前进;回顾历史,人类机械的发展经历了简单机械、第一次工业革命、第二次工业革命、两次世界大战等阶段,目前正处于以原子能、电子计算机、空间技术和生物工程的发明和应用为主要标志,涉及信息技术、新能源技术、新材料技术、生物技术、空间技术和海洋技术等诸多领域的高技术革命浪潮之中。对机械发展史的研究,可以帮助人类理解机械给社会和人类带来了怎样的影响、技术进步和发展的含义以及机械文明的内涵。

最原始的简单机械,可以追溯到埃及金字塔的建造时期,工人利用“滚子木”,滑轮,杠杆,斜面等简单机械将一块块巨石搬运到高处,建造出了令世界瞩目的建筑奇观。

指南车,又称司南车,是中国古代用来 指示方向的一种机械装置。它利用差速齿轮原理,它与指南针利用地磁效应不同,它是利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。不论车子转向何方,木人的手始终指向南方,“车虽回运而手 常指南”。

风车 2000多年前,中国、巴比伦、波斯等国就已利用古老的风车提水灌溉、碾磨谷物。12世纪以后,风车在欧洲迅速发展,通过风车(风力发动机)利用风能提水、供暖、制冷、航运、发电等。 风车是一种利用风力驱动的带有可调节的叶片或梯级横木的轮子所产生的能量来运转的机械装置。简单的风车由带有风蓬的风轮、支架及传动装置等构成;风轮的转速和功率,可以根据风力的大小,适当改变风蓬的数目或受风面积来调整;在风向改变时,必须搬动前支架使风轮面向风;完备的风车带有自动调速和迎风装置等。具备发电用途的风车又称为风力发电机。

汽轮机各设备作用及内部结构图

汽轮机各设备的作用收藏 01.凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。 任务:⑴在汽轮机排汽口建立并保持高度真空。 ⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。此 外,还有一定的真空除氧作用。 02.凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。 03.加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。 04.轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。 05.低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。 06.加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。 07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。 08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。同时, 又能加热给水提高给水温度。 09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。防止除氧器超压。 10. 除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。 11. 除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。正常运行中对提咼除氧效果有益处。

12. 液压止回阀的作用:用于防止管道中的液体倒流。 13. 安全阀的作用:一种保证设备安全的阀门。 14. 管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。 15. 给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。 16. 循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。 17. 凝结水泵空气管的作用:将泵内聚集的空气排出。 18. 减温减压器的作用:作为补偿热化供热调峰之用(本厂)。 19. 减温减压装置的作用:⑴对外供热系统中,用以补充汽轮机抽汽的不足,还可做备用汽源。⑵当机组启停机或发生故障时,可起调节和保护的作用。⑶可做厂用低压用汽的汽源。 ⑷用于回收锅炉点火的排汽。 20. 汽轮机的作用:一种以具有一定温度和压力的水蒸气为介质,将热能转变为机械能的回转式原动机。 21. 汽缸的作用:将汽轮机的通流部分与大气隔开,以形成蒸汽热能转换为机械能的封闭汽室。 22. 汽封的作用:减少汽缸内的蒸汽向外漏泄和防止外界空气漏入汽缸。 23. 排汽缸的作用:将汽轮机末级动叶排出的蒸汽倒入凝汽器。 24. 排汽缸喷水装置的作用:为了防止排汽温度过高而引起汽缸变形,破坏汽轮机动静部分中心线的一致性,引起机组振动或其他事故。 25. 低压缸上部排汽门的作用:在事故情况下,如果低压缸内压力超过大气压力,自动打开向空排汽,以防止低压缸、凝汽器、低压段转子等因超压而损坏。 26. 叶轮的作用:用来装置叶片,并将汽流力在叶栅上产生的扭矩传递给主轴。 27. 叶轮上平衡孔的作用:为了减小叶轮两侧蒸汽压差,减小转子产生过大的轴向力 28. 叶根的作用:紧固动叶,使其在经受汽流的推力和旋转离心力作用下,不至于从轮缘沟

汽轮机设备及系统

汽机专业设备稳定运行安全技术措施 为了实现汽机设备长周期稳定运行,保证汽机专业各项工作有序进行,防止出现由于管理不到位和人员因素的责任造成事故,针对目前设备运行状况和迎峰度夏的,特制定如下安全技术措施。 一、具体目标 1.确保机组安全稳定运行,不发生人为责任的不安全事件。 2.设备巡检到位,缺陷处理及时,确保机组各控制系统安全稳定运行。 3.夜间值班人员工作到位,按照工作标准处理缺陷、及时消缺,不发生不安全现象。 4.加强节假日期间值班人员工作到位,按照公司规定值班期间的各项制度进行值班和交接班。 二、加强主机设备的巡检力度 1. 汽轮机瓦轴系异常 1.1 每日观察CRT各轴瓦油温数值和变化情况;每周一次测量润滑油回油温度。 1.2 关注CRT轴振显示值及曲线,根据峰值变化规律判定是否存在严重异常,必要时调整蒸汽参数或负荷。 1.3 观察CRT各轴瓦瓦振变化;每周不少于两次测量各轴系

瓦振; 1.4 监视观察主机润滑油排烟风机运行是否正常,如果负压变化大,需对风机入口管进行排污;检查各轴承座回油视窗法兰螺栓是否松动,避免引起负压变化。 2.及时观察调速系统是否异常 2.1 针对以往容易出现的渗漏点重点巡检,如:程序阀各油管连接口、冷油器各法兰、油动机各连接口等。 2.2 根据压差及使用情况及时更换油泵出口滤芯;根据在线装置各滤芯压差情况,及时更换在线滤芯,控制油质颗粒度合格。 2.3 每周一次检查液压系统管道各连接部位是否松动,支吊架是否完好。 2.4根据抗燃油酸值等主要指标情况,及时组织准备脱酸滤芯,连续进行再生脱酸处理;根据季节变化情况,加大对液压油水份的控制,及时投运真空滤油机。 3. 严密监视主机润滑油系统状态及油品的各项指标 3.1润滑油出口滤网压差大,及时更换出口滤芯,更换后试压确定是否回装完好。 3.2润滑油油质不合格,根据油质化验情况,可将在线净油机切换至主机润滑油过滤,降低水份等指标的升高。 3.3润滑油泄漏,每日巡检记录油位变化情况;冷油器定期查漏,避免冷油器泄漏;巡检中在油箱上部进行检查,避免

汽轮机的数学模型

汽轮机的数学模型 一.汽轮机的定义、发展历史与分类 1.1定义 汽轮机是将蒸汽的热能转换为机械能的叶轮式旋转原动机。 汽轮机是能将蒸汽热能转化为机械功的外燃回转式机械,来自锅炉的蒸汽进入汽轮机后,依次经过一系列环形配置的喷嘴和动叶,将蒸汽的热能转化为汽轮机转子旋转的机械能。其主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要。汽轮机具有单机功率大、效率高、寿命长等优点. 1.2 汽轮机的发展历史 公元一世纪时,亚历山大的希罗记述了利用蒸汽反作用力而旋转的汽转球,又称为风神轮,这是最早的反动式汽轮机的雏形;1629年意大利的布兰卡提出由一股蒸汽冲击叶片而旋转的转轮。 19世纪末,瑞典拉瓦尔和英国帕森斯分别创制了实用的汽轮机。拉瓦尔于1882年制成了第一台5马力(3.67千瓦)的单级冲动式汽轮机,并解决了有关的喷嘴设计和强度设计问题。单级冲动式汽轮机功率很小,现在已很少采用。 20世纪初,法国拉托和瑞士佐莱分别制造了多级冲动式汽轮机。多级结构为增大汽轮机功率开拓了道路,已被广泛采用,机组功率不断增大。帕森斯在1884年取得英国专利,制成了第一台10马力的多级反动式汽轮机,这台汽轮机的功率和效率在当时都占领先地位。 20世纪初,美国的柯蒂斯制成多个速度级的汽轮机,每个速度级一般有两列动叶,在第一列动叶后在汽缸上装有导向叶片,将汽流导向第二列动叶。现在速度级的汽轮机只用于小型的汽轮机上,主要驱动泵、鼓风机等,也常用作中小型多级汽轮机的第一级。 与往复式蒸汽机相比,汽轮机中的蒸汽流动是连续的、高速的,单位面积中能通过的流量大,因而能发出较大的功率。大功率汽轮机可以采用较高的蒸汽压力和温度,故热效率较高。19世纪以来,汽轮机的发展就是在不断提高安全可靠性、耐用性和保证运行方便的基础上,增大单机功率和提高装置的热经济性。 汽轮机的出现推动了电力工业的发展,到20世纪初,电站汽轮机单机功率已达10兆瓦。随着电力应用的日益广泛,美国纽约等大城市的电站尖峰负荷在20年代已接近1000兆瓦,如果单机功率只有10兆瓦,则需要装机近百台,因此20年代时单机功率就已增大到60兆瓦,30年代初又出现了165兆瓦和208

我国汽轮机行业的发展与展望

我国汽轮机行业的发展与展望 张素心1,杨其国2,王为民3 (1.上海汽轮机有限公司,上海200240;2.哈尔滨汽轮机厂责任有限公司,哈尔滨150046; 3.东方汽轮机厂,四川德阳618201) 摘要:介绍了我国汽轮机制造业50年的发展历史以及世界汽轮机业产品和技术的发展状况,论述了我国汽轮机行业的发展方向和进入/WTO0后的对策。 关键词:汽轮机;产品发展;设计 中图分类号:TK261文献标识码:A文章编号:1671-0851(2003)01-0001-05 Development and Prospects of Steam Turbine in China Z HANG Shu-xing,Y ANG Qi-guo,WANG Wei-ming (1.Sh an gh ai Turb ine Co.Ltd.,Sh an ghai200240,Chin a;2.H arbin Turbine Co.Ltd.,Harb in150046,China; 3.Dongfang Steam Turb ine Works,Deyang S ichuan618201,Ch ina) Abstract:This paper describes the development history of China.s turbine manufacture industry about50years and introduces the status and progress of the products and technology in the world.s turbine industry,and also states the developmen t orientation in the future and the countermeasure after entering/WTO0for China.s turbine industry. Key words:turbine;p roduct development;design 0前言 电力工业是整个国民经济的基础和支柱产业。到2001年底为止,我国发电设备的总装机容量已达到3.366亿千瓦,总发电量为14780亿度,其中火电2.46亿千瓦,占总容量的74.5%。我国制造业为电力工业的发展做出了重大贡献,目前在火电设备中国产机组占80%左右。从1996年起我国的总装机及总发电量均已列居世界第二位,但人均装机及电量水平仍相当落后,仅为国际最低标准的75%,世界平均的40%,欧美发达国家的1/15。即使今后每年按至少5%的增长速度,预计到2010年,我国的总装机容量达到5亿千瓦后,也才达到国际人年均1500kW#h的最低标准。这种状况表明:我国电力工业还有巨大的市场需求,我国发电设备制造业将继续为电力工业的发展做出应有的贡献。 作为生产发电设备主机之一的汽轮机制造业,自1953年中国第一家汽轮机制造厂成立,1955年研制我国首台单机容量6MW的中压机组以来,经历了自力更生,改革开放,引进技术,国际合作的不同发展阶段,先后开发了较为完整的各种参数,各种功率等级的火电、核电、工业汽轮机产品系列。我国汽轮机产品的技术性能,成套能力,整体质量已达到和接近国际同类产品的先进水平。目前汽轮机产量占世界的1/4,年生产能力超过1500万千瓦,基本能满足国民经济和电力工业的需求。 随着国民经济的进一步高速增长及西部大开发、西电东送政策的实施给我国汽轮机制造业带来了巨大的市场和发展机遇,与此同时,中国入世,关税壁垒的解除,将使中国汽轮机制造业直接面临国际市场的挑战。我们在总结回顾过去的同时,要认清国内外本行业的现状和发展趋势,展望未来,找出差距,制定对策,为开创我国动力工业新的历史篇章做出更大的努力。 1我国汽轮机制造业的发展状况 1.1我国汽轮机制造业发展历史的回顾 作为一个与高新技术紧密相关的重大装备制造业,汽轮机行业的发展是国家技术进步和经济发展的写照,回顾我国汽轮机制造业的发展历程,可概括为几个不同特点的发展阶段: (1)1953年至1980年的创业,自力更生发展阶段 这个阶段是我国汽轮机制造业创业发展的阶段:1953年在上海成立了我国第一家汽轮机制造厂后,作为50年代及60年代五年计划的国家重点项目,又分别建立了哈尔滨汽轮机厂,北京重型电机厂及东方汽轮机厂,与此同时还先后在 收稿日期:2002-08-20 作者简介:张素心(1964-),男,上海汽轮机有限公司总工程师,现担任总裁。杨其国,男,哈尔滨汽轮机厂责任有限公司总工程师。王为民,男,东方汽轮机厂总工程师,副厂长。 本文为第十二届汽轮机行业总工程师工作研讨会暨透平专委会交流论文。

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势 近年来,燃气轮机的技术发展非常迅速,性能日益完善,大型燃气轮机联合循环电厂的功率等级已与汽轮机电厂相当,发电效率普遍超过了50%,最高已达58%,远远超过汽轮机电厂的效率,加之还有初始投资省、占地面积少、耗水少、环境污染少、运行维护方便等优点,使燃气轮机联合循环电厂在世界范围内获得了迅速的推广应用,因而,各主要燃气轮机制造厂都已成套供应燃气一蒸汽联合循环发电机组,安装和使用都很方便。据统计,目前全世界新增发电设备中,燃气轮机及联合循环发电机组约占40%,已与汽轮发电机组平分秋色,而美、日等发达国家,燃气轮机已经超过了汽轮机。据美国电力研究所的专题报告预测,美国1993一2001年内新增发电设备的2/3将是燃气轮机发电机组,到2015年,世界新增发电设备中燃气轮发电机组约占63%。美好的应用前景进一步刺激了燃气轮机的研究和发展,下面将对近期的研究和发展情况分别进行介绍。 由于工业化国家对环境保护的要求越来越严格,促使燃气轮机制造厂将较多的精力放在努力减少排气污染方面,其经费已占燃气轮机研究经费的最大份朽。燃气轮机一般燃用天然气或蒸馏油等清洁燃料,其含硫和含尘量极低,因而,排气中烟尘和502含量极低。所以燃气轮机考虑的排气污染物主要有未燃烧的碳氢化合物(UHC)、一氧化碳(CO)和氮氧化物(NOx)3种,由于燃烧技术的成熟和燃烧室结构的完善,目前先进燃气轮机的燃烧效率几近100%,排气中的UHC和CO极其微少,可以满足工业化国家严格的环保要求。但是,由于燃气轮机燃烧室中的火焰温度比较高,在高温下产生了一定数量的NO、,一般可达200又10一6左右,超过了许多工业化国家的环保规定。因此,减少燃气轮机排气污染的努力,近年来主要是集中在减少NO二产生方面。向燃烧室的燃烧区按照一定比例注入水或蒸汽,可以降低最高燃烧温度,有效地抑制Ox的产生量,这是目前一种比较成熟而能有效减少燃气轮机NO、排放的方法,已获得了较广泛的应用。一般注水与燃料之比约为0.95左右。在燃气轮机的排气通道应用选择催化还原S(CR)技术,即布置催化床并注入氨气,使NOx还原成NZ和水蒸气,这也可有效地减少NOx的排放。但上述两种方法成本比较高,而且对环境又会造成另外的有害影响,如氨气泄漏等,所以,目前的研究重点已转向干式低NO、(DLN)燃烧室的研制,即不向燃烧室中注入水或蒸汽,而通过优化燃烧室结构和合理组织燃烧来减少NOx的产生。目前,GE、西屋、ABB、西门子、索拉等主要燃气轮机制造厂都已研制成各自的DLN燃烧室,具体措施大致有以下几种: 1预混稀相燃烧(或称预混贫燃料燃烧) 该方法通过燃料与空气预先混合成稀相,再组织燃烧,使燃烧更为完全,而且可降低燃烧室内的最高燃烧温度。例如,在大多数范围内,可使火焰温度低于1400’C。因而有效地抑制了NO二的产生量。该方法的缺点是运行范围比较窄,低工况时容易熄火。目前,大多数DLN燃烧室都是应用这种方法,但都采取了一些稳定燃烧的措施,如应用值班喷嘴、控制燃料的分配等。例如,爱利松公司的501型燃气轮机采用预混锥使燃料与空气产生稀相预混,再配合旋流器、值班喷嘴和空气掺混系统来控制燃料/空气比和火焰分布,实现了低NOx排放,同时在低负荷时无熄火和不稳定现象。索拉公司1993年以后应用该方法,使其燃气轮机在50%一100%负荷范围内NOx产生量少于42x10一6。西门子公司应用该技术,使其燃气轮机的NOx排放量低达9火10一6CO排放量少于5火106,而成本仅增加不到10%。GE公司应用该技术,计划要使NOx排放量降低至9又10一6。EGT公司在其

试论汽轮机的发展历史及不断改进的过程(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 试论汽轮机的发展历史及不断改进的过程(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

试论汽轮机的发展历史及不断改进的过程 (标准版) 汽轮机的发现与发展是历史的进步,开启新的一页。本文主要介绍了我国汽轮机行业在过去几十年间,由汽轮机的引入和汽轮机在产品上的不断应用,分析了我国汽轮机的发展历程和世界汽轮机业产品的发展状况对我国汽轮机行业的进一步发展做出了相应的预测和分析。 汽轮机概述 在我国国民经济中占据着基础和支柱的产业就是我国的电力工业,到目前为止,我国的发电设备已经有了很大的突破。而总发电中主要是来自火力发电,大概占到发电总容量的3/4左右。同时我国制造业在电力工业的发展中占据着重要的作用,我国的发电设备能够不断的为电力行业提供设备的制造,对其发展有着很大的推动

作用。 汽轮机制造业是我国用来生产发电设备的主机之一。我国的第一家汽轮机制造厂在1953年成立,并在1955年首次研制成功了单机容量6MW的中压机组,我国的汽轮机在改革开放的潮流中,不断进行自我完善和创新,并且引进国外先进的生产技术,结合生产出各种参数和功率的火电、核电、工业汽轮机等系列产品。我国的汽轮机发展水平在不断提高,其机器性能和整体质量都得带了与国际同类商品的相近的生产水平。 目前,国民经济不断发展,科学技术不断发展,我国对汽轮机的需求也很大,给我国汽轮机行业带来了巨大的市场和机遇。同时我国汽轮机业还面临着对国际市场的机遇和挑战。总结过去我国汽轮机发展的进程和国内外汽轮机行业的现状和发展趋势,找出我国与国际水平的差距,做出相应的改进对策,为我国汽轮机行业的进一步发展做出更大的努力。 我国汽轮机行业的发展状况 2.1.回顾我国汽轮机行业的发展历史

谈工业汽轮机技术特点及发展趋势-工业设计论文-工业论文

谈工业汽轮机技术特点及发展趋势-工业设计论文-工业论文 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— 摘要:介绍了工业汽轮机的技术特点及相关分类方式,并详尽阐述了其在工业领域中的实际应用,同时对其未来发展趋势进行了研究。与内燃机及电机等动力机械相比,工业汽轮机的可靠性更高,且有着更宽广的转速及功率范围,由此具有不可替代的优势,从而在工业生产领域中得以广泛应用。 关键词:汽轮机;工业汽轮机;可靠性;内燃机;电机 引言

近几十年来,随着行业的不断发展,工业汽轮机的应用正日益广泛,同时使其在类型、品种及总装机容量等方面均得到了长足发展,并在国民经济中起着不可忽视的作用[1]。工业汽轮机广泛应用于石油、化工、冶金、电力和轻纺工业等领域,以驱动压缩机、风机、泵和工艺流程设备。 1工业汽轮机的技术特点 工业汽轮机在现代工业中得到了广泛应用,其技术优势主要如下[2-3]。(1)较高的转速。工业汽轮机在实际应用过程中,其转速可达20000r/min,单级的可达33000r/min。虽然体积较小,但其单机功率可达十几万千瓦,这是内燃机、电机等其他动力机械所无法比拟的[4]。同时,工业汽轮机可与被驱动机械直接联接,无需采用齿轮增速机构。不仅如此,汽轮机还可以平稳、灵敏地与这些被驱动机械(如压缩机、鼓风机和泵等)以相互协调地实现变速运行,同时适应生产流程工况条件变化的需要[5-6]。(2)就经济性方面而言,工业汽轮机提供了热电联产及废热综合利用的方式,从而达到了充分节能的目的。因为工业汽轮机在生产流程中得到了合理配置[7],不仅可充分利用余热,而

且可以在向生产流程系统提供蒸汽的同时,降低蒸汽中的汽化潜热损失,从而以较高的热转换效率对蒸汽进行充分利用。(3)所具有的其他特性。工业汽轮机的起动扭矩较大,起动升速平稳,磨损量小,连续运行时间长,有完善的自动调节和保护系统。此外,汽轮机更易满足防爆、防火的要求,在电源发生事故时,因为有一定的蒸汽储备不会像电机一样突然停止运行,使系统运行的安全性得到了进一步保障。工业汽轮机的类型可分别按驱动对象、驱动方式和热力系统原理等进行划分。工业汽轮机按驱动对象可分为:(1)机械驱动用,即驱动压缩机、风机和泵等工作机械用的工业汽轮机。(2)自备电站用,即在工企业内部驱动发电机的工业汽轮机。工业汽轮机按驱动方式可分为:(1)直接驱动式。用于中等以上功率的发电机、高速离心泵、离心式和轴流式鼓风机或压缩机。(2)间接驱动式。即通过变速器驱动,用于小功率发电机、低速泵、鼓风机、压缩机和压榨机等。工业汽轮机按热力系统原理可分为:(1)凝汽式。由于工业用凝汽式汽轮机的蒸汽参数一般较低、功率较小,机组的热经济性明显低于中心电站的大型汽轮机组,所以只有在特定的情况下使用。例如,工作蒸汽利用流程中的余热,或不易从电网中获得电力,或就地可获得廉价能源时才加以利用。(2)背压式。为满足生产流程用汽和节能需要,往往在系统设计时设置两级或三级不同压力的蒸汽管路系统。此时,通常在每两级管路之间装备背压式汽轮机,其进汽取自较高压力的管路,排汽进入较低压力的管路。(3)抽汽式。蒸汽在汽轮机内部作功过程中,从汽轮机中抽出一股或数股蒸汽进入压力较低的管路,其余蒸汽继续

ABB公司的汽轮机自动控制和保护系统

ABB公司的汽轮机自动控制及保护系统 发表时间:2002-9-9作者: 摘要: 一、概述 ABB公司曾经是全球知名的汽轮机、燃汽轮机制造商,对上述控制系统的深入研究,使ABB积累了为多种机组提供不同控制系统的丰富实践经验。ABB公司又是当今世界上最大的DCS 分散控制系统供应商,其Symphony 产品在许多工业控制领域得到广泛应用。近二十年来,ABB旋转机械控制部 (前美国ETSI公司) 就用Symphony (Infi-90) 分散系统为世界上各大公司配套生产了近700套汽轮机、燃汽轮机控制系统,中国内地约占10%。 为适应我国电力工业迅速发展的需要,2001年初,ABB 中国旋转机械控制部组建,它是ABB公司在中国从事汽轮机、燃汽轮机控制保护系统销售、设计、总成和现场服务的专业部门。它以ABB贝利的第四代分散控制系统Symphony 为平台,以ABB多年设计、生产汽轮机、燃汽轮机及其控制系统为依托,以与国内主机制造厂长期技术合作为经验借鉴,竭诚为国内外用户提供先进可靠的汽轮机、燃汽轮机控制保护设备,与ABB之DCS 一道来实现整个电站的一体化自动控制。 十年前,我国东方汽轮机厂率先从ABB贝利引进了大型汽轮机电液控制系统,技术合作逐年发展和加强。近来,尤其是ABB中国旋转机械部成立以后,我们又与哈尔滨、上海、北重、杭州和南京等主机厂广泛接触,普遍建立了良好的伙伴合作关系,ABB 的Symphony产品开始用于各厂的汽轮机控制。今后,我们将一如既往,与国内各主机厂紧密携手,共同为用户提供更好的服务。 二、原理及组成 90年代末问世的ABB贝利第四代Symphony 分散控制系统不仅具有其物理位置分散、控制功能分散的优点,更在决策过程管理和企业管理方面实现了集中统一,达到了当代世界分散控制的最高水平。采用Symphony 组成的汽轮机控制保护系统,将以子站的形式融入电站的DCS系统,实现信息和资源的共享,具体结构见图1。 不同用途的汽轮机其控制保护系统各不相同。冷凝机组为转速和负荷的闭环控制系统;供热机组和背压机组还将增加抽汽压力和背压的闭环控制,发电和供热需实现"自治";空冷机组更加关注排汽压力的保护和限制等等。下面以冷凝机组为例进行说明。(见图2) 液压部分有两种形式: 高压抗燃油系统:包括伺服机构、高低压遮断模块和高压油源三部分。 低压透平油系统:包括DDV直接驱动阀、执行机构及低压遮断模块,有的系统还要求提供单独的低压油源。 高压系统一般用于大型机组,低压系统用在中、小机组上居多。 TSI电气监视仪表可方便的用Symphony专用的CMM11状态监视模件构

内燃机发展简史

·1· 第1章 绪论 教学提示:绪论主要使学生概括地认识内燃机。 教学要求:本章主要了解常见的动力装置种类、内燃机的发展简史和应用领域。 1.1 热机 当今,机械设备运行的动力绝大多数来源于热机,热机全称热力发动机,是将热源的部分热能转化为机械能的机器。热源可以是烧煤的蒸汽炉,汽车发动机的燃烧室,也可以是太阳能的蒸汽炉,地热和核反应堆。 根据燃烧器位置的不同,热机分为内燃机和外燃机两类: (1)外燃机是燃料在发动机外部燃烧产生热,热能通过工质带入机内,再转变为机械能,如蒸汽机和汽轮机等,蒸汽机已淘汰,汽轮机用于火电厂与核电站驱动发电机; (2)内燃机是燃料在发动机内部燃烧,工质被加热并膨胀作功,热能转变为机械能,它是移动机械和小型电站的最主要动力。广义上的内燃机包括往复活塞式内燃机、旋转活塞式发动机、自由活塞式发动机和旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指往复活塞式内燃机,又以其中的汽油机、柴油机应用最为广泛,其保有量大大超过了任何其它种类热机,本书主要介绍汽油机、柴油机的构造。 与其它热机相比,内燃机有如下优点:内燃机的工质在循环中的平均吸热温度高,热效率一般达到30-46%,是热机中效率最高的一种;功率覆盖0.59kW ~4×104kW ,转速范围90r/min ~10000r/min ,故适用范围宽广;结构紧凑,比重量(内燃机重量与其标定功率的 (a )蒸汽机 (b)蒸汽轮机 锅炉(外热源) 飞轮 滑动阀 汽缸 活塞 水 蒸汽 A B 图1.1 外燃机

·2· ·2· 比值)较小,便于移动;起动迅速,操作简便,机动性强;运行维护比较简便。 但也存在缺点:对燃料要求高,主要燃用汽油或轻柴油,且品质要求高,不能直接燃用劣质燃料和固体燃料;由于间歇换气以及制造上的困难,单机功率的提高受到限制;低速运转时输出转矩较小,往往不能适应被带负荷的转矩特性;不能反转,故在许多场合下需设置离合器和变速机构;一般热力发动机都存在 “公害”,而内燃机的噪声和排气中的有害成分对环境污染尤其突出。 另外,相对于热机中燃料的燃烧,燃料还可直接转换为电能,即燃料电池,再用电动机驱动机械运转,这种方式高效、无污染,但成本很高。 1.2 内燃机发展简史 人类先是利用人力、蓄力、风车、水车等自然力,18世纪后热力发动机才逐步得到大规模工业应用。 1673年,荷兰的惠更斯设计出如图1.3所示的内燃机草图,少量的火药在气缸里燃烧,图1.2 内燃机 (b)三角转子发动机 (a )柴油机 (c)燃气轮机 燃烧室 (d) 喷气式发动机

汽轮机行业

关于汽轮机行业的报告 电力工业是整个国民经济的基础和支柱产业。截止2014年,我国发电设备总容量站上13亿千瓦台阶,达13.6亿千瓦。其中,非化石能源发电装机4.45亿千瓦,占总装机容量的33%左右;火电装机突破9亿千瓦,达9.16亿千瓦,占比降至67%左右。 我国制造业为电力工业的发展做出了重大贡献, 目前在火电设备中国产机组占80% 左右。从 1996 年起我国的总装机及总发电量均已列居世界第二位, 但人均装机及电量水平仍相当落后, 仅为国际最低标准的 75% , 世界平均的40% , 欧美发达国家的 1/15。即使今后每年按至少 5% 的增长速度, 预计到2010 年, 我国的总装机容量达到 5亿千瓦后, 也才达到国际人年均 1500kW#h 的最低标准。这种状况表明: 我国电力工业还有巨大的市场需求, 我国发电设备业将继续为电力工业的发展做出应有的贡献。作为生产发电设备主机之一的汽轮机制造业, 自 1953 年中国第一家汽轮机制造厂成立, 1955 年研制我国首台单机容量6MW 的中压机组以来, 经历了自力更生, 改革开放, 引进技术, 国际合作的不同发展阶段, 先后开发了较为完整的各种参数, 各种功率等级 的火电、核电、工业汽轮机产品系列。我国汽轮机产品的技术性能, 成套能力, 整体质量已达到和接近国际同类产品的先进水平。目前汽轮机产量占世界的 1/4, 年生产能力超过 1500 万千瓦, 基本能满足国民经济和电力工业的需求。 随着国民经济的进一步高速增长及西部大开发、西电东送政策的实施给我国汽轮机制造业带来了巨大的市场和发展机遇, 与此同时, 中国入世, 关税 壁垒的解除, 将使中国汽轮机制造业直接面临国际市场的挑战。我们在总结回顾过去的同时, 要认清国内外本行业的现状和发展趋势, 展望未来, 找出差距, 制定对策, 为开创我国动力工业新的历史篇章做出更大的努力。 我国汽轮机制造业的发展状况 1、我国汽轮机制造业发展历史的回顾 作为一个与高新技术紧密相关的重大装备制造业, 汽轮机行业的发展是 国家技术进步和经济发展的写照, 回顾我国汽轮机制造业的发展历程,可概括为几个不同特点的发展阶段: (1) 1953年至 1980 年的创业, 自力更生发展阶

汽轮机设备及系统知识题库

汽轮机设备及系统知识题库 一、判断题 1)主蒸汽管道保温后,可以防止热传递过程的发生。(×) 2)热力除氧器、喷水减温器等是混合式换热器。(√) 3)在密闭容器内不准同时进行电焊及气焊工作。(√) 4)采用再热器可降低汽轮机末级叶片的蒸汽湿度,并提高循环热效率。(√) 5)多级汽机的各级叶轮轮面上一般都有5-7个平衡孔,用来平衡两侧压差,以减少轴向推力。(×) 6)发电机护环的组织是马氏体。(×) 7)" 8) 9)汽轮机找中心的目的就是为使汽轮机机组各转子的中心线连成一条线。(×) 10)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 11)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 12)汽缸冷却过快比加热过快更危险。(√) 13)盘车装置的主要作用是减少冲转子时的启动力矩。(×) 14)安装叶片时,对叶片组的轴向偏差要求较高,而对径向偏差可不作要求。(×)15)引起叶片振动的激振力主要是由于汽轮机工作过程中汽流的不均匀造成的。(√) 16): 17)转子叶轮松动的原因之一是汽轮机发生超速,也有可能是原有过盈不够或运行时间过长产生材料疲劳。(√)

18) 19)对于汽轮机叶片应选用振动衰减率低的材料。(×) 20)大螺栓热紧法的顺序和冷紧时相反。(×) 21)末级叶片的高度是限制汽轮机提高单机功率的主要因素。(√) 22)猫爪横销的作用仅是承载缸体重量的。(×) 23)轴向振动是汽轮机叶片振动中最容易发生,同时也是最危险的一种振动。(×)24)发电机转子热不稳定性会造成转子的弹性弯曲,形状改变,这将影响转子的质量平衡,从而也造成机组轴承振动的不稳定变化。(√) 25); 26)蒸汽对动叶片的作用力分解为轴向力和圆周力,这两者都推动叶轮旋转做功。(×)27)为提高动叶片的抗冲蚀能力,可在检修时将因冲蚀而形成的粗糙面打磨光滑。(×) 28) 29)除氧器的水压试验在全部检修工作结束,保温装复后进行。(√) 30)造成火力发电厂效率低的主要原因是汽轮机机械损失。(×) 31)发电机护环发生应力腐蚀开裂一般是从护环外壁开始。(×) 32)每次大修都应当对发电机风冷叶片进行表面检验。(√) 二、选择题 1): 2)火电机组启动有滑参启动和定参数两种方式,对高参数、大容量机组而言,主要是(a)方式。 3) a. 滑参数; b. 定参数; c. 任意; d. 定温。 4)在允许范围内,尽可能保持较高的蒸汽温度和压力,则使(c)。

汽轮机发展史漫谈

汽轮机发展史漫谈 一、汽轮机早期发展 汽轮机是一种以蒸汽为动力,并将蒸汽的热能转化为机械功的旋转机械,是现代火力发电厂中应用最广泛的原动机。1883年瑞典工程师拉瓦尔设计制造出了第一台单级冲动式汽轮机,随后在1884年英国工程师帕森斯设计制造了第一台单级反动式汽轮机,被广泛应用在电站、航海和大型工业中[1]。 随着资本主义工商业的迅速发展,在欧洲和美国许多公司着手制造汽轮机。由于大型电厂开始了发展而汽轮机的特点又适应这种发展的要求,于是汽轮机存在着大量的市场需求;同时不可避免地要求汽轮机能有更大的机组功率。1900~1905年,汽轮机功率在200~3000千瓦之间,以1000~1500转/ 分的转速运行。 且无一例外地为轴流式汽轮机。发展到1916年,汽轮机功率达到50000千瓦(A E G公司造)其转速为1000转/分。当时,转速为1500转/ 分的汽轮机功率大约为20000千瓦,转速为3000转/ 分的汽轮机其功率大约为10000千瓦。 二、一次世界大战后汽轮机的发展情况 汽轮机的蒸汽参数的不断提高,促进了汽轮机的继续发展。除了汽机、锅炉效率及热循环效率的改善之外,还有热降的增大,都使热耗减小了。所有这些,都依赖于新汽轮参数的提高。到1925 /26年间,汽压力值提高到了大约25巴的平均水平,而温度提325~375℃。1930年后,汽轮机向更高参数的迅猛发展进入了暂时的停滞状态。参数为100~110巴、480~500℃的前置式机组多数由Leuna、Schkopau公司建造。蒸汽压力参数停滞在经实践证明是可靠的100巴的水平上。当时所用的材料承受不了较高的蒸汽参数,特别是温度。 19世纪以来,汽轮机的发展就是在不断提高安全可靠性、耐用性和保证运行方便的基础上,增大单机功率和提高装置的热经济性。 到1937年汽轮机的总功率足达4000000千瓦,这些机组共生产了140亿千瓦?小时的电能。60 %的汽轮机功率在10~20000千瓦之间;其中绝大部分的新汽轮的压力达到25atu(计示大气压)(65%);蒸汽的高温、高压等级情况发生了变化;特别是冲动式汽轮机轴流式,占绝大多数,汽轮机的利用率和运行时间不断提高[2]。 三、二次世界大战后汽轮机的发展 经济衰退和第二次世界大战期间,使汽轮机单机功率的增大处于停顿状态。50年代,随着战后经济发展,电力需求突飞猛进,单机功率又开始不断增大,陆续出现了325~600兆瓦的大型汽轮机;60年代制成了1000兆瓦汽轮机;70年代,制成了1300兆瓦汽轮机。现在许多国家常用的单机功率为300~600兆瓦。1982年苏联首台120万千瓦单轴汽轮机正式于科斯罗马国营区域发电站投运,它不但是苏联、而且也是世界上到目前为止的最大功率单轴机组[3]。 自七十年代中期以后对以二次再热超临界参数为特点的大功率机组的发展出现了争议,发展的重点回归到现存各类典型机组的完善化工作上去了,即致为于提高汽轮机的可用率和运行灵活性。到目前为止,76年以后世界上投运的汽轮机组(不包括苏联的120万千瓦单轴机组),从机组的功率等级和典型性上看,都已成为76年前历史资料所记载的各类机组的基本代表。 四、各国汽轮机发展的一般情况及各公司的典型产品 二次大战后汽轮机功率提高所达到的数值,远远超过了“汽轮机单机功率每

试论汽轮机的发展历史及不断改进的过程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.试论汽轮机的发展历史及不断改进的过程正式版

试论汽轮机的发展历史及不断改进的 过程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 汽轮机的发现与发展是历史的进步,开启新的一页。本文主要介绍了我国汽轮机行业在过去几十年间,由汽轮机的引入和汽轮机在产品上的不断应用,分析了我国汽轮机的发展历程和世界汽轮机业产品的发展状况对我国汽轮机行业的进一步发展做出了相应的预测和分析。 汽轮机概述 在我国国民经济中占据着基础和支柱的产业就是我国的电力工业,到目前为止,我国的发电设备已经有了很大的突破。而总发电中主要是来自火力发电,大

概占到发电总容量的3/4左右。同时我国制造业在电力工业的发展中占据着重要的作用,我国的发电设备能够不断的为电力行业提供设备的制造,对其发展有着很大的推动作用。 汽轮机制造业是我国用来生产发电设备的主机之一。我国的第一家汽轮机制造厂在1953年成立,并在1955年首次研制成功了单机容量6MW的中压机组,我国的汽轮机在改革开放的潮流中,不断进行自我完善和创新,并且引进国外先进的生产技术,结合生产出各种参数和功率的火电、核电、工业汽轮机等系列产品。我国的汽轮机发展水平在不断提高,其机器性能和整体质量都得带了与国际同类商品的

电气发展史

电力电子器件发展简史 各种产品设备对电源的不同要求,催生了电力电子技术;电力电子器件的不断涌现,又发展了电力电子技术。早在1900年,美国纽约地铁为了从交流电网中获取直流电源给地铁列车供电,就开始采用机械整流器的方法。由于机械整流器是旋转的,且整流用的电接触部分是相对运动的,因而存在高损耗、大维修量等诸多问题,促使人们研究其他更好的技术来实现电源的变换,特别是以1948年发明晶体管为代表的半导体技术。 1957年美国通用电气公司(General Electric, GE)发明了可控硅(Silicon Controlled Rectifier, SCR),后被国际电工学会正式命名为晶闸管(Thyristor)。可控硅于1960年正式供应市场。由于可控硅是PNPN结构,具有更低的导通压降,又是可控的器件,因此它的发明被称为电子学的第二次革命。从现代角度来理解电力电子技术的内涵,晶闸管可以说是第一种电力电子半导体器件,它开启了电力电子技术的新纪元。 1981年,IGBT诞生了。由于其驱动损耗小、通态压降低、开通和关断时不必采取额外的措施来限制电流电压变化率,因此IGBT自投放市场以来,比起先前的各种可关断器件,更受到使用者的青睐。通过不断改进结构和工艺,现在容量已经达到6500V/2400A。混合型器件不断得到开发,1987年开发出了静电感应晶体管(Static Induction Transistor, SIT)和静电感应晶闸管(Static Induction Thyristor, SITH),1988年开发出MOS控制晶闸管(Mos Controlled Thyristor, MCT),1991以后年开发出不同的发射极开关的晶闸管(Emitter Switched Thysistor, EST),1996年开发出集成门极换向晶闸管(Integrated Gate Commutated Thyristor, IGCT),1998年开发出注入增强门极晶体管(Injection Enhancement Gate Transistor, IEGT),等等。 1990年,把IGBT半导体电子开关的驱动电路、过流保护电路、过热保护电路、短路保护电路等集成起来,与电子开关一起封装在一个模块中的“智能化”器件开发成功,称为智能功率模块(Intelligent Power Module, IPM)。这是一种全新的器件理念。在这种理念引导下,此后各种各样的集成电力电子模块(Integrated Power Electronics Module, IPEM),如电力电子搭积木(PEBB)组件、灵巧(SMART)器件、专用功率集成(ASPIC)器件等得到进一步开发。 随着技术的发展,电力电子器件在不断进步。在控制方面,从单门控制器件(Single Gate Device)向双门控制器件(Double Gate Device)变化,如双沟道(Trench Double)IGBT;在材料方面,从硅(Silicon)材料向碳化硅(4H-SiC)材料变化,甚至今后可能采用金刚石材料,如碳化硅功率二极管;在PN结方面,从一维结器件(One-dimensional junction device)向三维超结器件(Three-dimensional super junction device)变化,如酷(Cool)MOS器件。西门子公司开发的耐压为600V的Cool MOS,其通态电阻只有普通功率MOS管的五分之一。2001年戴姆勒-克莱斯勒(Daimler Chrysler Research and Technology)用1700V的碳化硅二极管替代IGBT模块中的硅反并二极管后,所构成逆变器的开通损耗只有原来的三分之一,关断损耗只有原来的五分之一。到2001年,全碳化硅器件已经开发出19kV的二极管,1.8kV的双极晶体管,3.1kV/3A 的GTO,也开发出了功率MOS管和IGBT模块。

相关文档
相关文档 最新文档