文档库 最新最全的文档下载
当前位置:文档库 › 第1章 随机事件及其概率

第1章 随机事件及其概率

第1章 随机事件及其概率
第1章 随机事件及其概率

第1章 随机变量及其概率

1,写出下列试验的样本空间:

(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录

投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,

记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰

子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;

(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___

___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P ,

375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___

--=AB P AB P ,

5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P

3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为

72.0900

648=

4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为

48.0100

48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

48.0100

48=

5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412

131425=C C C C ;

(2) 所求概率为16567495201412

4418342824==++C C C C C C ; (3)所求概率为。165

74953541247==C C 《165改成99》

6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。

解:根据题意,)(M n n <张提货单分发给M 个销售点的总的可能分法

有n M 种,某一特定的销售点得到)(n k k ≤张提货单的可能分法有k n k n M C --)1(种,

所以某一特定的销售点得到)(n k k ≤张提货单的概率为n k n k n M

M C --)1(。

7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。若一只球装入与球同号的盒子,称为一个配对。

(1)求3只球至少有1只配对的概率。

(2)求没有配对的概率。

解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。至少有1只配对的放法当然就有6-2=4种。所以

(2)没有配对的概率为3162=;

(1)至少有1只配对的概率为3

2311=-。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ?, )|(),|(AB A P B A AB P ?.

(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。 解:(1)由题意可得7.0)()()()(=-+=?AB P B P A P B A P ,所以

313.01.0)()()|(===B P AB P B A P , 5

15.01.0)()()|(===A P AB P A B P , 7

5)()()()]([)|(=?=??=?B A P A P B A P B A A P B A A P , 71)()()()]([)|(=?=??=

?B A P AB P B A P B A AB P B A AB P , 1)

()()()]([)|(===AB P AB P AB P AB A P AB A P 。 (2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可以用它的补来表示。那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式)

)|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =

0408.020592

840124135127116==???=

。 9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。

解:设“得到的两只球中至少有一只是红球”记为事件A ,“另一只

也是红球”记为事件B 。则事件A 的概率为

6

5314232422)(=?+??=A P (先红后白,先白后红,先红后红) 所求概率为

5

16

53142)()()|(=?==A P AB P A B P

10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。

(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。 解:(1)根据题意可得

%50%45%5)()()(=+=+=B A P AB P A P ;

%15%10%5)()()(=+=+=A B P BA P B P ;

(2)根据条件概率公式:1.0%50%5)()()|(===

A P A

B P A B P ; (3)2.0%501%10)()()|(=-==

A P A

B P A B P ; (4)179%151%45)()()|(=-==

B P B A P B A P ; (5)3

1%15%5)()()|(===B P AB P B A P 。

11,在11张卡片上分别写上engineering 这11个字母,从中任意连抽6张,求依次排列结果为ginger 的概率。

解:根据题意,这11个字母中共有2个g ,2个i ,3个n ,3个e ,1个r 。从中任意连抽6张,由独立性,第一次必须从这11张中抽出2个g 中的任意一张来,概率为2/11;第二次必须从剩余的10张中抽出2个i 中的任意一张来,概率为2/10;类似地,可以得到6次抽取的概率。最后要求的概率为

924013326403661738193102112==?????;或者92401611

111311131212=A C C C C C C 。

12,据统计,对于某一种疾病的两种症状:症状A 、症状B ,有20%的人只有症状A ,有30%的人只有症状B ,有10%的人两种症状都有,其他的人两种症状都没有。在患这种病的人群中随机地选一人,求

(1)该人两种症状都没有的概率;

(2)该人至少有一种症状的概率;

(3)已知该人有症状B ,求该人有两种症状的概率。

解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201=---;

(2)至少有一种症状的概率为%60%401=-;

(3)已知该人有症状B ,表明该人属于由只有症状B 的30%人群或者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B 的条件下该人有两种症状的概率为

4

1%10%30%10=+。

13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。

通讯线

通讯量的份额 无误差的讯息的份额 1

0.4 0.9998 2

0.3 0.9999 3

0.1 0.9997 4 0.2 0.9996

解:设“讯号通过通讯线i 进入计算机系统”记为事件)4,3,2,1(=i A i ,“进入讯号被无误差地接受”记为事件B 。则根据全概率公式有 9996.02.09997.01.09999.03.09998.04.0)|()()(4

1?+?+?+?==∑=i i i A B P A P B P

=0.99978

14,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。 解:设“一名被检验者经检验认为患有关节炎”记为事件A ,“一名被检验者确实患有关节炎”记为事件B 。根据全概率公式有

%1.12%4%90%85%10)|()()|()()(=?+?=+=B A P B P B A P B P A P , 所以,根据条件概率得到所要求的概率为

%06.17%

1.121%)851%(10)(1)|()()()()|(=--=-==A P B A P B P A P A B P A B P 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%.

15,计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C 上打字的概率分别为多少?

解:设“程序因打字机发生故障而被破坏”记为事件M ,“程序在A,B,C 三台打字机上打字”分别记为事件321,,N N N 。则根据全概率公式有

025.004.01.005.03.001.06.0)|()()(3

1=?+?+?==∑=i i i N M P N P M P ,

根据Bayes 公式,该程序是在A,B,C 上打字的概率分别为

24.0025

.001.06.0)()|()()|(111=?==M P N M P N P M N P , 60.0025

.005.03.0)()|()()|(222=?==M P N M P N P M N P , 16.0025.004.01.0)()|()()|(333=?==

M P N M P N P M N P 。

16,在通讯网络中装有密码钥匙,设全部收到的讯息中有95%是可信的。又设全部不可信的讯息中只有0.1%是使用密码钥匙传送的,而全部可信讯息是使用密码钥匙传送的。求由密码钥匙传送的一讯息是可信讯息的概率。

解:设“一讯息是由密码钥匙传送的”记为事件A ,“一讯息是可信的”记为事件B 。根据Bayes 公式,所要求的概率为

%9947.99%

1.0%51%951%95)|()()|()()|()()()()|(=?+??=+==B A P B P B A P B P B A P B P A P AB P A B P

17,将一枚硬币抛两次,以A,B,C 分别记事件“第一次得H ”,“第二次得H ”,“两次得同一面”。试验证A 和B ,B 和C ,C 和A 分别相互独立(两两独立),但A,B,C 不是相互独立。

解:根据题意,求出以下概率为

21)()(==B P A P , 2

121212121)(=?+?=C P ; 412121)(=?=AB P , 412121)()(=?==CA P BC P ,4

12121)(=?=ABC P 。 所以有

)()()(B P A P AB P =,)()()(C P A P AC P =,)()()(C P B P BC P =。

即表明A 和B ,B 和C ,C 和A 两两独立。但是

)()()()(C P B P A P ABC P ≠

所以A,B,C 不是相互独立。

18,设A,B,C 三个运动员自离球门25码处踢进球的概率依次为0.5, 0.7, 0.6,设A,B,C 各在离球门25码处踢一球,设各人进球与否相互独立,求(1)恰有一人进球的概率;(2)恰有二人进球的概率;(3)至少有一人进球的概率。

解:设“A,B,C 进球”分别记为事件)3,2,1(=i N i 。

(1)设恰有一人进球的概率为1p ,则

}{}{}{3213213211N N N P N N N P N N N P p ++=

)()()()()()()()()(321321321N P N P N P N P N P N P N P N P N P ++= (由独立性) 6.03.05.04.07.05.04.03.05.0??+??+??=

29.0=

(2)设恰有二人进球的概率为2p ,则

}{}{}{3213213212N N N P N N N P N N N P p ++=

)()()()()()()()()(321321321N P N P N P N P N P N P N P N P N P ++= (由独立性) 6.03.05.06.07.05.04.07.05.0??+??+??=

44.0=

(3)设至少有一人进球的概率为3p ,则

}{13213N N N P p -=)()()(1321N P N P N P -=4.03.05.01??-=94.0=。

19,有一危重病人,仅当在10分钟之内能有一供血者供给足量的A-RH +血才能得救。设化验一位供血者的血型需要2分钟,将所需的血全部输入病人体内需要2分钟,医院只有一套验血型的设备,且供血者仅有40%的人具有该型血,各人具有什么血型相互独立。求病人能得救的概率。

解:根据题意,医院最多可以验血型4次,也就是说最迟可以第4个人才验出是A-RH +型血。问题转化为最迟第4个人才验出是A-RH +型血的概率是多少?因为

第一次就检验出该型血的概率为0.4;

第二次才检验出该型血的概率为0.6?0.4=0.24;

第三次才检验出该型血的概率为0.62?0.4=0.144;

第四次才检验出该型血的概率为0.63?0.4=0.0864;

所以病人得救的概率为0.4+0.24+0.144+0.0864=0.8704

20,一元件(或系统)能正常工作的概率称为元件(或系统)的可靠性。如图设有5个独立工作的元件1,2,3,4,5按先串联再并联的方式连接,设元件的可靠性均为p ,试求系统的可靠性。

解:设“元件i 能够正常工作”记为事件)5,4,3,2,1(=i A i 那么系统的可靠性为

)()()()}()(){(5432154321A A P A P A A P A A A A A P ++=??

)()()()(543215435421321A A A A A P A A A P A A A A P A A A P +--- )()()()()()()()()()()()(542132154321A P A P A P A P A P A P A P A P A P A P A P A P --++= )()()()()()()()(54321543A P A P A P A P A P A P A P A P +-

534322p p p p p p p +---++=

543222p p p p p +--+=

21,用一种检验法检测产品中是否含有某种杂质的效果如下。若真含有杂质检验结果为含有的概率为0.8;若真不含有杂质检验结果为不含有的概率为0.9,据以往的资料知一产品真含有杂质或真不含有杂质的概率分别为0.4,0.6。今独立地对一产品进行了3次检验,结果是2次检验认为含有杂质,而一次检验认为不含有杂质,求此产品真含有杂质的概率。(注:本题较难,灵活应用全概率公式和Bayes 公式)

解:设“一产品真含有杂质”记为事件A ,“对一产品进行3次检验,结果是2次检验认为含有杂质,而1次检验认为不含有杂质”记为事件B 。则要求的概率为)|(B A P ,根据Bayes 公式可得

)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=

又设“产品被检出含有杂质”记为事件C ,根据题意有4.0)(=A P ,而且8.0)|(=A C P ,9.0)|(=A C P ,所以

384.0)8.01(8.0)|(223=-??=C A B P ;027.09.0)9.01()|(223=?-?=C A B P

故,

9046.01698

.01536.0027.06.0384.04.0384.04.0)|()()|()()|()()|(==?+??=+=A B P A P A B P A P A B P A P B A P

(第1章习题解答完毕)

随机事件的概率第一课时频率与概率

§3.1.1频率与概率 (韦文月陕西师范大学 710062) 【教材版本】北师大版 【教材分析】 本节课的教学内容是《数学必修3》第三章§1.1节互斥事件,教学课时为1课时.《标准》要求学生在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.本节课主要是通过具体实例,理解概率与频率的联系与区别,进一步辨别随机试验结果的随机性与规律性的关系. 概率研究随机事件发生的可能性大小问题,这里既有随机性,又有随机中表现出的规律性,这是学生理解的难点.突破难点的最好办法是给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知.通过试验,观察随机事件发生的频率,可以发现随着试验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、归纳和总结的思想方法.对随机事件的概率教学可以分为下面几个层次: 第一,由学生实际动手操作投掷硬币试验 第二,计算机模拟,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动. 第三,展示历史上一些掷硬币的试验,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动. 第四,解释这个常数代表的意义:这个常数越接近1,表明事件发生的频率越大,也就是它发生的可能性越大;这个常数越接近0,表明事件发生的频率越小,也就是发生的可能性越小.所以可以用这个常数度量事件发生的可能性的大小. 第五,引导学生对概率与频率的关系进行比较.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.频率是随机的,在试验前不能确定,但概率是一个确定的数,与每次试验无关. 【学情分析】

随机事件及其概率检测试题(有参考答案与点拨)

随机事件及其概率检测试题(有参考答案与点拨) 随机事件及其概率同步练习学力测评双基复习巩固 1.下列事件属于不可能事件的为() A.连续投掷骰子两次,掷得的点数和为4 B.连续投掷骰子两次,掷得的点数和为8 C.连续投掷骰子两次,掷得的点数和为12 D.连续投掷骰子两次,掷得的点数和为16 2.下列事件属于必然事件的为() A.没有水分,种子发芽 B.电话在响一声时就被接到 C.实数的平方为正数 D.全等三角形面积相等3.给出下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A、B、C,满足,,则;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥7月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有() A.4个 B.4个 C.5个 D.6个 4.在10件同类产品中,其中8件为正品,2件为次品.从中任意抽出3件的必然事件是() A.3件都是正品 B.至少有1件是次品 C.3件都是次品 D.至少有1件是正品 5.事件A的概率 P(A)必须满足() A.0<P(A)<1 B.P(A)=1 C.0≤P(A)≤1 D.P(A)=0或1 6.下列说法正确的为() A.概率就是频率 B.概率为1的事件可以不发生 C.概率为0的事件一定不会发生 D.概率不可以是一个无理数7.在第1、3、6、8、16路公共汽车都要依靠的一个站(假设这个站只能停靠一辆汽车),有一位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性都是相等,则首先到站正好是这位乘客所需求的汽车的概率等于() A. B. C. D. 8.每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是,我每题都选择第一个选择支,则一定有3题选择结果正确” .对该人的话进行判断,其结论是() A.正确的 B.错误的 C.模棱两可的 D.有歧义的 9.在天气预报中,有“降水概率预报”,例如预报“明天降水概率为78%”,这是指() A.明天该地区有78%的地区降水,其他22%的地区不降水 B.明天该地区约有78%的时间降水,其他时

北师大版高中数学必修三第二课时随机事件的频率与概率教案(精品教学设计)

第二课时随机事件的频率与概率 一、教学目标:1.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;2.掌握概率的统计定义及概率的性质. 二、教学重点:随机事件的概念及其概率.教学难点:随机事件的概念及其概率. 三、探究讨论法 四、教学过程 (一)、新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (3)“某电话机在1分钟内收到2次呼叫”;

(4)“没有水份,种子能发芽”; 分析结果:(略) 3.男女出生率 一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21. 4.π中数字出现的稳定性(法格逊猜想) 在π的数值式中,各个数码出现的概率应当均为1/10.随着计算机的发展,人们对π的前一百万位小数中各数码出现的频率进行了统计,得到的结果与法格逊猜想非常吻合.

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

第一章 随机事件及其概率课后习题参考答案

第一章 随机事件及其概率 1. 1) {}01001,,,.n n n n Ω=L 2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L 3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。 , ,,,,,,,, ,,,,,,,,,,,,,,,. , ,,,S ++--++-++++-+++++---+--++-+-+-++?? =? ?-+---+-+-++--+++-------+--+---++??++--++-++++-+++++--+-+-+-++?? Ω=? ?-+---+-+-++--+++--?? 4) {}22(,)1.x y x y Ω=+< 2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC , 5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++. 3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道 ()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。 (2)当()1P A B +=时,()P AB 取到最小值0.3。 4. 解:依题意所求为()P A B C ++,所以 ()()()()()()()() 1111 000(0()()0)44485.8 P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意, ()()() () ()()()() ()()()() ()()0.70.5 0.25. ()()()0.70.60.5 P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++= = ++=+=+---= ==+-+-Q 6. 解:由条件概率公式得到111()1()()(),(),34 12()2 P AB P AB P A P B A P B P A B ==?=== 所以1 111 ()()()().4 6123 P A B P A P B P AB +=+-=+-= 7. 解:

随机事件的频率与概率

随机事件的频率与概率 1.随机事件的频率 随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率 一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A). 3.频率与概率的区别和联系 (1) 频率本身是随机的,在试验前不能确定.做同样次数的重复试验得到事件的频率会不同. (2) 概率是一个确定的数,与每次试验无关.是用来度量事件发生可能性大小的量. (3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率. 例1.某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这名运动员射击一次,击中10环的概率是多少? 分析:(1)分清m ,n 的值,用公式n m 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动. 解:(1)

(2)从上表可以看出,这名运动员击中10环的频率在0.9附近波动,且射击次数越多,频率越接近0.9,故可以估计,这名运动员射击一次,击中10环的概率约为0.9. 点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率 n m 作为事件A 发生的概率的近似值,即P(A)≈n m . 例2.为了估计水库中的鱼的尾数,可以使用以下方法: 先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数. 分析:用样本估计总体. 解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值 记作n ?. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n 2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈ A P . 所以500 402000≈n .

辽宁省人教新课标A版高中数学必修3第三章概率3.1.1随机事件的概率同步测试

辽宁省人教新课标A版高中数学必修3 第三章概率 3.1.1随机事件的概率同步测试姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共30分) 1. (2分) 12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是() A . 3个都是正品 B . 至少有一个是次品 C . 3个都是次品 D . 至少有一个是正品 2. (2分)下列说法正确的是() A . 任何事件的概率总是在(0,1]之间 B . 频率是客观存在的,与试验次数无关 C . 随着试验次数的增加,事件发生的频率一般会稳定于概率 D . 概率是随机的,在试验前不能确定 3. (2分)投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是() A . B . C . D . 4. (2分)已知事件A与事件B发生的概率分别为、,有下列命题:

①若A为必然事件,则;②若A与B互斥,则; ③若A与B互斥,则. 其中真命题有()个 A . 0 B . 1 C . 2 D . 3 5. (2分)下列试验能构成事件的是() A . 掷一次硬币 B . 标准大气压下,水烧至100℃ C . 从100件产品中任取3件 D . 某人投篮5次,恰有3次投中 6. (2分) (2016高一下·会宁期中) 一个家庭有两个小孩,则所有可能的基本事件有() A . (男,女),(男,男),(女,女) B . (男,女),(女,男) C . (男,男),(男,女),(女,男),(女,女) D . (男,男),(女,女) 7. (2分) (2018高二上·孝昌期中) 下列说法正确的是() A . 天气预报说明天下雨的概率为,则明天一定会下雨 B . 不可能事件不是确定事件 C . 统计中用相关系数来衡量两个变量的线性关系的强弱,若则两个变量正相关很强

随机事件与概率 考研试题

第一章 随机事件与概率 一、填空题 1.(1990年数学一)设随机事件A ,B 及其和事件A B 的概率分别是0.4,0.3和0.6若B 表示B 的对立事件,那么积事件AB 的概率P AB () =_________. 【解题分析】要求P AB ()时,一般应想到AB A B A AB =-=-,这是事件的差与事件的积之间常见的转化关系,AB A ?而,所以有, () ()()P AB P A P AB =-,这时只需要求出 ()P AB 即可. 解: ()()()()P A B P A P B P AB =+- , 又 () ()()P AB P AB P A +=, 所以 () ()()0.60.30.3P AB P A B P B =-=-= . 本题用文氏图考虑求解思路更为直观,见图10-1. 图10-1 注:本题()0.4P A =是多余的. 2.(1991年数学四)设A ,B 为随机事件,()0.7,P A =()0.3P A B -=,则 () P AB =________. 【解题分析】 要求() P AB ,由于AB AB 与是对立事件,只要求出()P AB 即可.利用关系A B A AB -=-,()()()P A B P A P AB -=-,可得()P AB . 解:由题设()()() 0.7,0.3P A P A B P AB =-==, 利用公式 AB AB A +=,知 ()()()0.70.30.4P AB P A P AB =-=-=, 故 () ()110.40.6P AB P AB =-=-=. 本题也可利用图10-1考虑求解思路. 3.(2000年数学一)设两个相互独立的事件A 和B 都不发生的概率为1 9 ,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =________.

概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算) 一.填空题 1. 设A ,B ,C 是三个随机事件,用字母表示下列事件: 事件A 发生,事件B ,C 不都发生为 ; 事件A ,B ,C 都不发生为 ; 事件A ,B ,C 至少一个发生为 ; 事件A ,B ,C 至多一个发生为 . 2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是: 1A 表示 ; 321A A A 表示 ; 321321321A A A A A A A A A ++表示 ; 321A A A 表示 . 3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。则式子ABC=C 成立的条件是 . 二.选择题 1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ). ① A BC A = ; ② A BC A = ; ③ Φ=BC A ; ④ Ω=BC A . 2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ). ① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”. 3. 若概率0)(=AB P ,则必有( ). ① Φ=AB ; ② 事件A 与B 互斥; ③ 事件A 与B 对立; ④ )()()(B P A P B A P += .

三.解答题 1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}. 2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}. 3. 某城市发行日报和晚报两种报纸。有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}. 4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P

高中数学随机事件的频率与概率

《随机事件的频率与概率》教案 一、[教学目标] 1、知识与技能:理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;掌握概率的统计定义及概率的性质。 2、过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。 3、情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。 二、[教学重点] 随机事件的概念及其概率. 三、[教学难点] 随机事件的概念及其概率. 四、[教学方法] 探究讨论法。 五、[教学过程] (一)新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(3)“某电话机在1分钟内收到2次呼叫”; (4)“没有水份,种子能发芽”;

分析结果:(略) (二)探究新课 1.事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件. 说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化. 2.随机事件的概率: (1)实验:随机事件在一次试验中是否发生是不确定,但在大量重复的试验情况下,它的发生呈现出一定的规律性. 实验一:抛掷硬币试验结果表: m n) 抛掷次数(n)正面朝上次数(m)频率(/ 2048 1061 0.5181 4040 2048 0.5069 12000 6019 0.5016 24000 12012 0.5005 30000 14984 0.4996 72088 36124 0.5011 当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动. 实验二:某批乒乓球产品质量检查结果表: 抽取球数n50 100 200 500 1000 2000 优等品数m45 92 194 470 954 1902 m n0.9 0.92 0.97 0.94 0.954 0.951 频率/ 当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动

初中数学教案随机事件与概率

第二十五章概率初步 25.1随机事件与概率 学习目标: 1.了解随机事件、必然事件、不可能事件的概念。 2.理解概率的概念和意义。 学习重点与难点:对概率定义的初步理解。 学习过程:自学指导1:看课本125页到127页问题3上面的内容。 自学检测(1): 1、在一定条件下,有些事件____________________, 这样的事件称为必然事件。 2、在一定条件下,有些事件____________________, 这样的事件称为不可能事件。___________和____________统称为确定事件。 3、在一定条件下,有些事件__________________________________的事件,称为随机事件。 4.必然事件发生的可能性是,不可能事件发生的可能性是________,随机事件发生的可能性. 学习过程:自学指导2:看课本127页到131页问题3上面的内容 自学检测(2): 1、对于一个随机事件A,我们把刻画其发生可能性大小的_________,称为随机事 件A发生的概率。 2、一般地,如果在一次试验中,有______种可能的结果,并且它们发生的可能 性都相等,事件A包含其中的种结果,那么事件A发生的概率 P(A)= 。 达标测试 1.(梅州)下列事件中,必然事件是() A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 2.(台州市)下列事件是随机事件的是()

A .台州今年国庆节当天的最高气温是35℃ B .在一个装着白球和黑球的袋中摸球,摸出红球 C .抛掷一石头,石头终将落地 D .有一名运动员奔跑的速度是20米/秒 3.(甘肃省白银市)如图,小红和小丽在操场上做游戏,她们先在地上画出一个 圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件) D .不确定事件(随机事件) 4.(湘潭) 将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎 迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( ) A. 1 2 B. 13 C. 14 D. 15 5、(宜宾市)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A. 9 4 B. 92 C. 3 1 D. 3 2 6.(广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是 12 ,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 7.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 8. ( 宁夏回族自治区)从-1,1,2三个数中任取一个,作为一次函数y=kx+3的

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

随机事件的概率测试题(好)

随机事件的概率测试题 一、单项选择题(每小题3分,共30分) 1、下列事件中,是不可能事件的是( ) A 、买一张电影票,座位号是奇数 B 、射击运动员射击一次,命中9环 C 、明天会下雨 D 、度量三角形的内角和,结果是360度 2.在100张奖券中,有4张中奖,某人从中任抽1张,则他中奖的概率是 ( ) A. 251 B. 41 C. 1001 D.20 1 3. 现有2008年奥运会福娃卡片20张,其中贝贝6张,晶晶5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均 匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到晶晶的概率是 ( ) A .101 B .103 C .41 D .51 4.下列说法正确的是( ) (A )一颗质地均匀的骰子已连续掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点 (B )某种彩票中奖的概率是1%,因此买100张该彩票一定会中奖 (C )天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨 (D )抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.从一个不透明的口袋中,摸出红球的概率为0.2,已知袋中红球有3个,则袋中共有球的个数为 ( )A .5 B .8 C .10 D .15 6、某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有 10盒,配芸豆炒肉片的有15盒,每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是( ) A .87 B .76 C .81 D .71 7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是 ( ) A .15 B .29 C .14 D .518 8.小强、小亮、小文三位同学玩投硬币游戏。三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则 小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢。下面说法正确的 是 ( )A .小强赢的概率最小 B .小文赢的概率最小 C .小亮赢的概率最小 D .三人赢的概率都相等 9.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是 ( )A .12 B .9 C .4 D .3 10.下列说法错误的是 ( ) A .必然发生的事件发生的概率为1 B .不可能发生的事件发生的概率为0 C .随机事件发生的概率大于0且小于1 D .不确定事件发生的概率为0 二、填空题(每小题3分,共30分) 11.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是 . 12、英文“概率”是这样写的“Probability ”,若从中任意抽出一个字母,则(1)抽到字母b 的概率为___(2)抽到字母w 的概率为____ 13.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是 . 14.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率是__________. 15.某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这 批零件中有 件不合格. 16.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 . 17.袋中装有2个红球,2个白球,它们除了颜色以外没有其他区别,闭上眼睛随机摸出2个,全是红球的概率是____ . 18、要在一个口袋中装入若干个大小、质量都完全相同的球,使得从袋中摸出一个球是红球的概率为 5 1 ,可以怎样放球 . 19.从数字1,2,3中任取两个不同数字组成一个两位数,则这个两位数大于21的概率是________. 20. 现有50张大小、质地及背面图案均相同的北京奥运会吉祥物福娃卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,不断重复上述过程,最后记录抽到欢欢的频率为20℅,则这些卡片中欢欢约为_______张. 三、(每小题分,共60分) 21.从一副没有大小王的扑克牌中随机抽出1张牌是“红桃“的概率是多少?从中抽出1张牌是“5“的概率是多少?从中 抽出1张牌是“红桃5”的概率是多少?(6分) 22.某商场举行“庆元旦,送惊喜” 抽奖活动,10000个奖券中设有中奖奖券200个.(6分) (1)小红第一个参与抽奖且抽取一张奖券,她中奖的概率有多大? (2)元旦当天在商场购物的人中,估计有2000人次参与抽奖,商场当天准备多少个奖品较合适? 23.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为1 2 .(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用 画树状图或列表格法,求两次摸到都是白球的概率.(8分) 24、某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率(8分).

概率论第一章随机事件及其概率答案2

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A AB - (B )()A B B ?- (C )AB (D )AB 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

随机事件及其概率(知识点总结)

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示

随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一. (2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S下进行了n次试验,观察某一事件A是否出现,则称在n次试验中

冀教版数学九下31章随机事件的概率测试题

1 冀教版九年级数学下册31章随机事件的概率测试题 (满分100分,考试时间90分钟) 学校____________ 班级__________ 姓名___________ 一、精心选一选(每小题4分,共24分) 1.下列说法错误的是( ). A.“买一张彩票中大奖”是随机事件. B.不可能事件和必然事件都是确定事件. C.“穿十条马路连遇十次红灯”是不可能事件. D.“太阳东升西落”是必然事件. 2.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ). A.101 B.109 C.51 D.5 4 3.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外 完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为3 1,则随机摸出一个红球的概率为( ). A.41 B.31 C.125 D.2 1 4.在一个暗箱里放有m 个除颜色外完全相同的球,这m 个球中红球只有3个.每次将球充分摇匀后,随机从中摸出一球,记下颜色后放回.通过大量的重复试验后发现,摸到红球的频率在20%,由此可推算出m 约为( ). A.3 B.6 C.9 D.15 算出m 约为 5.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ). A.32 B.21 C.31 D.6 1 6.从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,则关于x 的一元二次方程ax 2+4x+c=0有实数解的概率为( ). A.41 B.31 C.21 D.3 2

2 二、耐心填一填(每小题4分,共24分) 7.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是________事件(填“必然”、“随机”或“不可能”). 8.如图1,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( ). 9.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100 次后,发现有30次摸到红球,请你估计这个袋中红求约有_______个. 10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________. 11.有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整 数的概率是________. 12.小明有两双不同的运动鞋,上学时,小明从中任意拿出两只,恰好能配成一双的概率是______. 三、用心做一做(共52分) 13.(6分)均匀的正四面体的各面依次标有:1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下: (1)计算上述试验中“4朝下”的频率是多少? (2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是3 1”的说法正确吗?为什么?

相关文档
相关文档 最新文档