文档库 最新最全的文档下载
当前位置:文档库 › 基于四种并行计算模式的自然对数底并行计算方法

基于四种并行计算模式的自然对数底并行计算方法

基于四种并行计算模式的自然对数底并行计算方法
基于四种并行计算模式的自然对数底并行计算方法

基于四种并行计算模式的自然对数底并行计算方法

摘要:通过讨论自然对数底e 计算的并行结构,分别实现了window 多线程、openmp、mpi 和opencl 四种语言计算e值。其中前三种是基于cpu 的并行模式,opencl基于gpu 的并行模式。根据数值实验的结果,分析了各种并行计算模式的优缺点。

关键词:并行计算;openmp ;opencl;gpu;mpi;自然对数

中图分类号:tp312 文献标识码:a 文章编号:1009-3044(2013)14-3415-05

1 概述

e作为数学常数,是自然对数函数的底数。它就像圆周率π和虚数单位i,是数学中最重要的常数之一,也是第一个被获证为超越数的非故意构造的数。自然对数底e是数学分析中使用非常广泛的无理数之一,它在金融、数学等领域[1-2]有着重要的应用。

对于自然对数底的计算,尚晓明[3]介绍了三种在教学中的常见的计算方法,而张新仁,徐化忠[4]介绍了计算机串行计算自然对数底的方法和实现。虽然自然对数底的值已经内置在很多的计算软件中,但是对于自然对数底的并行计算方法缺少相关的介绍。对自然对数底进行并行结构分析,不仅可以了解这一重要的数学常数,还可以分析不同的并行计算模式的优缺点。

2 e值计算算法分析

对于自然对数底e的计算公式有很多,在文中只讨论一种计算公式(1)。

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

自然对数表

自然对数表 1.0 0.0000 0.0100 0.0198 0.0296 0.0392 0.0488 0.0583 0.0677 0.0770 0.0862 1.1 0.0953 0.1044 0.1133 0.1222 0.1310 0.1398 0.1484 0.1570 0.1655 0.1740 1.2 0.1823 0.1906 0.1989 0.2070 0.2151 0.2231 0.2311 0.2390 0.2469 0.2546 1.3 0.2624 0.2700 0.2776 0.2852 0.2927 0.3001 0.3075 0.3148 0.3221 0.3293 1.4 0.3365 0.3436 0.3507 0.3577 0.3646 0.3716 0.3784 0.3853 0.3920 0.3988 1.5 0.4055 0.4121 0.4187 0.4253 0.4318 0.4383 0.4447 0.4511 0.4574 0.4637 1.6 0.4700 0.4762 0.4824 0.4886 0.4947 0.5008 0.5068 0.5128 0.5188 0.5247 1.7 0.5306 0.5365 0.5423 0.5481 0.5539 0.5596 0.5653 0.5710 0.5766 0.5822 1.8 0.5878 0.5933 0.5988 0.6043 0.6098 0.6152 0.6206 0.6259 0.6313 0.6366 1.9 0.6419 0.6471 0.6523 0.6575 0.6627 0.6678 0.6729 0.6780 0.6831 0.6881 2.0 0.6931 0.6981 0.7031 0.7080 0.7129 0.7178 0.7227 0.7275 0.7324 0.7372 2.1 0.7419 0.7467 0.7514 0.7561 0.7608 0.7655 0.7701 0.7747 0.7793 0.7839 2.2 0.7885 0.7930 0.7975 0.8020 0.8065 0.8109 0.8154 0.8198 0.8242 0.8286 2.3 0.8329 0.8372 0.8416 0.8459 0.8502 0.8544 0.8587 0.8629 0.8671 0.8713 2.4 0.8755 0.8796 0.8838 0.8879 0.8920 0.8961 0.9002 0.9042 0.9083 0.9123 2.5 0.9163 0.9203 0.9243 0.9282 0.9322 0.9361 0.9400 0.9439 0.9478 0.9517 2.6 0.9555 0.9594 0.9632 0.9670 0.9708 0.9746 0.9783 0.9821 0.9858 0.9895 2.7 0.9933 0.9969 1.0006 1.0043 1.0080 1.0116 1.0152 1.0188 1.0225 1.0260 2.8 1.0296 1.0332 1.0367 1.0403 1.0438 1.0473 1.0508 1.0543 1.0578 1.0613 2.9 1.0647 1.0682 1.0716 1.0750 1.0784 1.0818 1.0852 1.0886 1.0919 1.0953 3.0 1.0986 1.1019 1.1053 1.1086 1.1119 1.1151 1.1184 1.1217 1.1249 1.1282 3.1 1.1314 1.1346 1.1378 1.1410 1.1442 1.1474 1.1506 1.1537 1.1569 1.1600 3.2 1.1632 1.1663 1.1694 1.1725 1.1756 1.1787 1.1817 1.1848 1.1878 1.1909 3.3 1.1939 1.1969 1.2000 1.2030 1.2060 1.2090 1.2119 1.2149 1.2179 1.2208 3.4 1.2238 1.2267 1.2296 1.2326 1.2355 1.2384 1.2413 1.2442 1.2470 1.2499 3.5 1.2528 1.2556 1.2585 1.2613 1.2641 1.2669 1.2698 1.2726 1.2754 1.2782 3.6 1.2809 1.2837 1.2865 1.2892 1.2920 1.2947 1.2975 1.3002 1.3029 1.3056 3.7 1.3083 1.3110 1.3137 1.3164 1.3191 1.3218 1.3244 1.3271 1.3297 1.3324 3.8 1.3350 1.3376 1.3403 1.3429 1.3455 1.3481 1.3507 1.3533 1.3558 1.3584 3.9 1.3610 1.3635 1.3661 1.3686 1.3712 1.3737 1.3762 1.3788 1.3813 1.3838 4.0 1.3863 1.3888 1.3913 1.3938 1.3962 1.3987 1.4012 1.4036 1.4061 1.4085 4.1 1.4110 1.4134 1.4159 1.4183 1.4207 1.4231 1.4255 1.4279 1.4303 1.4327 4.2 1.4351 1.4375 1.4398 1.4422 1.4446 1.4469 1.4493 1.4516 1.4540 1.4563 4.3 1.4586 1.4609 1.4633 1.4656 1.4679 1.4702 1.4725 1.4748 1.4770 1.4793 4.4 1.4816 1.4839 1.4861 1.4884 1.4907 1.4929 1.4951 1.4974 1.4996 1.5019 4.5 1.5041 1.5063 1.5085 1.5107 1.5129 1.5151 1.5173 1.5195 1.5217 1.5239 4.6 1.5261 1.5282 1.5304 1.5326 1.5347 1.5369 1.5390 1.5412 1.5433 1.5454 4.7 1.5476 1.5497 1.5518 1.5539 1.5560 1.5581 1.5602 1.5623 1.5644 1.5665 4.8 1.5686 1.5707 1.5728 1.5748 1.5769 1.5790 1.5810 1.5831 1.5851 1.5872 4.9 1.5892 1.5913 1.5933 1.5953 1.5974 1.5994 1.6014 1.6034 1.6054 1.6074 5.0 1.6094 1.6114 1.6134 1.6154 1.6174 1.6194 1.6214 1.6233 1.6253 1.6273 5.1 1.6292 1.6312 1.6332 1.6351 1.6371 1.6390 1.6409 1.6429 1.6448 1.6467

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.wendangku.net/doc/c34558873.html, Eric Haskin haskin@https://www.wendangku.net/doc/c34558873.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

指数函数和对数函数·换底公式·例题

指数函数和对数函数·换底公式·例题 例1-6-38log34·log48·log8m=log416,则m 为 [ ] 解 B 由已知有 [ ] A.b>a>1 B.1>a>b>0 C.a>b>1 D.1>b>a>0

解 A 由已知不等式得 故选A. [ ] 故选A.

[ ] A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2) 2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数, [ ] A.m>p>n>q B.n>p>m>q

C.m>n>p>q D.m>q>p>n 例1-6-43 (1)若log a c+log b c=0(c≠0),则ab+c-abc=____; (2)log89=a,log35=b,则log102=____(用a,b表示). 但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1. 例1-6-44函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是____. 由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得. 例1-6-45已知log1227=a,求log616的值.

例1-6-46比较下列各组中两个式子的大小:

例1-6-47已知常数a>0且a≠1,变数x,y满足 3log x a+log a x-log x y=3 (1)若x=a t(t≠0),试以a,t表示y; (2)若t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得 即 log a y=(log a x)2-3log a x+3 当x=a t时,log a y=t2-3t+3,所以 y=a r2-3t+3 (2)由t2-4t+3≤0,得1≤t≤3.

自然对数

自然对数 以常数e为底数的对数叫做自然对数,记作lnN(N>0)。自然对数在物理学、生物学等自然科学中有重要的意义。 1数学表示方法 自然对数的一般表示方法为 数学中也常见以 表示自然对数。若为了避免与基为10的常用对数混淆,可用“全写” 2概念 它的含义是单位时间内,持续的翻倍增长所能达到的极限值 有关概念 自然对数的底数e是由一个重要极限给出的。我们定义:当n趋于无限时, e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。对数函数 当自然对数中真数为连续自变量时,称为对数函数,记作 (x为自变量,y为因变量). e的级数展开式 易证明:函数展开为x的幂级数(Maclaurin级数)是 ; 特别地,当x=1时就得到了e的展开式

3意义 物理学意义 在热力学第二定律中,系统的宏观状态所对应的微观态的多少表现为宏观态的无序程度,同时也决定了宏观过程的方向性。看起来,一个宏观状态对应的微观状态的多少是个很重要的物理量,它标志着这个宏观态的无序程度,从中还可以推知系统将朝什么方向变化。物理学中用字母Ω表示一个宏观状态所对应的微观状态的数目。 为了研究方便,物理学家们用得更多的是一个与Ω相关的物理量,这就是今天常常听到的——熵(entropy),用字母S表示。玻尔兹曼在1877年提出了熵与微观态的数目Ω的关系,即S∝lnΩ,后来普朗克把它写成了等式S=klnΩ,式中k叫做玻尔兹曼常量。如前所述,既然微观态的数目Ω是分子运动无序性的一种量度,由于Ω越大,熵S也越大,那么熵S自然也是系统内分子运动无序性的量度。在引入熵之后,关于自然过程的方向性就可以表述为:在任何自然过程中,一个孤立系统的总熵不会减小。这就是用熵的概念表示的热力学第二定律。为此,不少人也把热力学第二定律叫做熵增加原理。 由熵的定义可以知道,熵较大的宏观状态就是无序程度较大的宏观状态,也就是出现概率较大的宏观状态。在自发过程中熵总是增加的,其原因并非因为有序是不可能的,而是因为通向无序的渠道要比通向有序的渠道多得多。把事情搞得乱糟糟的方式要比把事情做得整整齐齐的方式多得多。要让操场上的一群学生按班级、按身高,或按任何规则来站队都是比较麻烦的:每个学生都要找到自己的位置。但是要让已经站好队的学生解散,那就非常简单:每个学生随便朝一个方向跑去,队形就乱了。从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着无序,所以自发的宏观过程总是向无序度更大的方向发展。 生物学意义 在连锁交换定律中,重组率或重组值是指双杂合体测交产生的重组型配子的比例,即重组率=重组配字数/总配子数(亲组合+重组和)×100%,重组是交换的结果,所以重组率(recombination fraction)通常也称作交换率(crossing over percentage)或交换值。可是仔细推敲起来,这两个数值是不尽相同。 如果我们假定,沿染色体纵长的各点上交换的发生大体上是随机的。那么可以这样认为,如果两个基因座相距很近,由交换而分开较少,重组率就低;如果两基因座离开很远,交换发生的次数较多,重组率就高。所以可以根据重组率的大小计算有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。生物学家就是这样做的。 如果有关的两个基因座在染色体上分开较远,举例说重组率在12%-15%以上,那么进行杂交试验时,其间可能发生双交换或四交换等更高数目的偶数交换,形成的配子却仍然是非重组型的。这时如简单地把重组率看作数交换率,那么交换率就要被低估了。因为遗传图是以1%交换率作为图距单位的,所以如交换率低 估了,图距自然也随之缩小了,这就需要校正。校正的公式较多,可根据自己得出的连锁与交换试验的结果,提出单是适用于某一生物的校正公式。一般来说,

用Mathematica研究自然对数的底数e

用Mathematica 研究自然对数的底数e 作 者:陈 龙 摘要:e 是一个奇妙有趣的无理数,它取自瑞士数学家欧拉的英文字头。e 与π被认为是数学中最重要的两个超越数,e 、 π及i (i 为虚数单位)三者间存在1-=i e π的关系。本文利用Mathematica 软件研究了自然对数的底数e ,介绍了e 的 一些相关知识、e 与自然对数的关系以及e 的值的计算方法等。 关键词:Mathematica ,e ,自然对数 一、引言 远在公元前,圆周率π就被定义为“周长与直径之比”。自古以来,π的近似值一直取为 3.14或 7 22() 742851.3 =。通过许多数学家的努力,π的近似值位数不断增加。目前用电脑计算圆周率。由于电脑速度等功能不断改进,今后π的近似值位数会越来越多。 另外一个奇妙有趣的无理数是e ,它取自瑞士数学家欧拉(Euler ,1707-1783)的英文字头。欧拉首先发现此数并称之为自然数e 。但是,这种所谓的自然数与常见正整数1,2,3,……截然不同。确切地讲,e 应称为“自然对数a e log 的底数”。 e 与π被认为是数学中最重要的两个超越数(transcendental number ,若一数为()0=x f 之根,其中f 为某一至少一次的整系数多项式,则此数称为代数数(algebraic number ),否则称为超越数)。e 、 π及i (i 为虚数单位)三者间存在1-=i e π的关系。本文主要介绍e 的一些知识以及用 Mathematica 软件来计算e 。 二、欧拉数e 考虑数列{}n a ,n a = ∑=n i i 0 !1=!1!21!111n ++++ ,1≥n ,其中!n =()1231????- n n ,1≥n ,1!0=,应用下述关于级数收敛的基本定理之一可证明出其极限存在。 定理1.设数列{}n a 为单调且有界,则当∞→n 时,a a n →(a 为一有限数)。 首先,对n a = ∑=n i i 0 !1 ,显然{}n a 为单调递增数列。其次,1a =2,2a =25,而3≥n 时, n a =1+1+ n ???++??+?+ 321 432132121 <1+1+1322 1 212121-++++n = 1+2 11211-??? ??-n <3, 即数列{}a 以3为一上界。故有定理1知,数列{}a 收敛至一实数,由于此极限值与圆周率π一样在许

对数+常用公式方便搜到的人

对数 来自维基百科 各种底数的对数: 红色函数底数是e, 绿色函数底数是10,而紫色函数底数是1.7。在数轴上每个刻度是一个单位。所有底数的对数函数都通过点(1,0),因为任何数的0次幂都是1,而底数β的函数通过点(β, 1),因为任何数的1次幂都是自身1。曲线接近y轴但永不触及它,因为x=0的奇异性。 在数学中,数?x(对于底数?β)的对数是βy?的指数?y,使得?x=βy。底数?β?的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是e、?10或2。数x(对于底数β)的对数通常写为

。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。例如,因为 , 我们可以得出 , 用日常语言说,对81以3为基的对数是4。 对数函数 函数log αx依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如log αx的函数,在其中底数α是固定的而只有一个参数x。所 以对每个基的值(不得是负数、0或1)只有唯一的对数函数。从这个角度看,底数α的对数函数是指数函数y= αx的反函数。词语“对数”经常用来称呼对数函数自身和这个函数的1个特定值。 对数函数图像和指数函数图像关于直线y=x对称,互为逆函数。 对数函数的性质有:

1.都过(1,0)点; 2.定义域为|R|≠0,值域为R; 3.α>1,在(0,+∞)上是增函数;1>α>0时,在(0,+∞)上是减函数。常用公式 ?和差 ?基变换

?指系 ?还原 ?互换 ?倒数

链式 有理和无理指数 如果n是有理数,βn表示等于β的n个因子的乘积: 。 但是,如果β是不等于1的正实数,这个定义可以扩展到在一个域中的任何实数n(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数β,有一个对数函数和一个指数函数,它们互为反函数。

创优课堂秋数学人教B必修1练习:第29课时 换底公式与自然对数 含解析

第29课时 换底公式与自然对数 课时目标 1.掌握换底公式及其推导证明. 2.了解自然对数及其表示. 3.能用换底公式进行对数式的化简、求值、证明. 识记强化 1.换底公式log b N =log a N log a b ,推论(1)log a mb n =n m log a b (2)log a b =1 log b a . 2.以无理数e =2.718 28……为底的对数叫自然对数,log e N 记作ln N ;ln N 2.302 6lg N . 课时作业 (时间:45分钟,满分:90分) 一、选择题(本大题共6小题,每小题5分,共30分) 1.下列等式中错误的是( ) A .log a b ·log b a =1 B .log c d =1 log d c C .log c d ·log d f =log c f D .log a b =log b c log a c 答案:D 2.若log 513·log 36·log 6x =2,则x =( ) A .9 B.1 9 C.1 25 D .25 答案:C 解析:log 513·log 36·log 6x =2,∴-lg3lg5·lg6lg3·lg x lg6= -lg x lg5=2. 即log 5x =-2,∴x =5-2=1 25. 3.若log 37·log 29·log 49m =log 412,则m 等于( ) A.1 4 B.2 2 C. 2 D .4 答案:B 解析:左边=lg7 lg3·2lg3 lg2·lg m 2lg7=lg m lg2; 右边=-lg2 2lg2=-12,所以lg m =-1 2lg2,

e是自然对数的底数

ln和e是什么关系? 对数和底数是干嘛的? 三角函数的画图? ln就是loge lne=logee=1 lne=1 他俩没啥关系一个是运算符号一个是自然数e的ln次方等于1 e^(ln3)=3 In=loge ln(1)=loge(1)=0 e=2.71多 e是自然对数的底数,是一个无限不循环小数。e在科学技术中用得非常多,一般不使用以10为底数的对数。学习了高等数学后就会知道,许多结果和它有紧密的联系,以e为底数,许多式子都是最简的,用它是最“自然”的,所以叫“自然对数”,因而在涉及对数运算的计算中一般使用它,是一个数学符号,没有很具体的意义。其值是2.71828……,是这样定义的: 当n->∞时,(1+1/n)^n的极限。 注:x^y表示x的y次方。 你看,随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.718281828……这个无限不循环小数1+1/1!+1/2!+1 /3!+1/4!+……+1/n!,当n趋近无穷时,其极限值就为e. 对数(Logarithm 若)。则b叫做以a为底N的对数,记作。当a=10时称作常用对数,当a=e时,称作自然对数。 我们知道,一般对数的底可以为任意不等于1的正数。即对数的底如果为超越数e(e=2.718)我们就把这样的对数叫作自然对数,用符号“LN”表示。在这里“1”是对数“logarithm"的第一个字母,“N”是自然“nature"的第一个字母,把两个字母合在一起,就表示自然对数。 “lg”才表示以10为底的对数!!!! ln1=0 表示e的0次方=1 ln100=4.605170…… 表示e的4.605170次方=100

最新高教版数学教案——换底公式与自然对数

换底公式与自然对数 教学目标: 1.理解对数换底公式的意义,掌握其推导方法,并能应用公式进行恒等变形,提高解题能力. 2.通过一题多解,培养学生的发散思维. 3.通过多思、多解、多变的引导,培养学生的综合能力,全面提高学生的素质. 教学重点: 1.换底公式的证明. 2.应用公式的能力. 教学难点: 证明思路的发现. 教学方法: 启发式讲授法. 教学过程: 一、新课引入 在对数式的计算与含对数式的证明过程中,常需要把不同的对数化为同底的对数,所以我们现在引进对数的换底公式,即=(、、均为正数,≠1,≠1). 二、讲授新课 为了加深对换底公式的记忆与理解,下面我们用多种方法加以证明: 证明一:利用指数式与对数式互化(通过一题多解,达到灵活,综合应用的目的,同时,也可打开学生的证明思路). 令,=,则=,两边数以(>0,且≠1)为底的对数,得= . ∵ ≠1,∴ ≠0. ∴ =,即=. 证明二:利用对数恒等式令=,则=,由对数恒等式,得 =(>0,≠1). ∴ =()=. ∵ ≠1,∴ ≠0. 化为对数式,得=· =, 即=. 证明三:利用对数恒等式由对数恒等式知=(>0,且≠1). 两边同时取以为底的对数,得 ==·, ∵ ≠1,∴ ≠0. ∴ =. 证明四:利用对数恒等式的换元法.由对数恒等式知:=,=,=(>0,且≠1,>0,且≠1). ∵ ==()=,

∴ =·. ∴ =. 证明五:设=, ∴ =·=. ∴ =, =, 即=. 证明六:令==, ==, ∴ ()==. ∴ =·=·, 即=. 注学生还可运用更多的方法证明,这个公式也可根据情况,略讲证明一、二. 在科学技术中,常使用以=2.718 28…为底的对数,以为底的对数叫做自然数,通常记作,根据换底公式,可以得到自然对数与常用对数的关系: ≈2.30 26. 练习:利用换底公式证明(这组题均可视为换底公式的推广): (1)=; (2). 证明:(1)(变形·=1); (2). 熟悉这些由换底公式变形得来的公式,在求对数值,进行对数的恒等变换、解对数方程时,可简化计算过程. 例1 求的值. 解法一: = 解法二: 例2 已知,求.(可以先分析证明思路,后让学生以课外作业的形式完成它.) 解法一:(分析,观察已知条件,对数与幂的底均为18,因此联想换底公式,把换成以18为底的对数,沟通条件与结论的联系.) ∵ =5,∴ .

从几个无穷级数看整数、圆周率和自然对数之底的不寻常的关系公式中没有中文

从几个无穷级数看整数、圆周率和自然对数之底的不寻常的关系 数学创生之初,只是一些简单的图形与计数,经过历史的堆积,历经萌芽,常量,变量等等阶段,发展到现代,已由数千年前的懵懂初开,化而为如今的枝繁叶茂,其内部存在的一切事物必有其存在的意义,互相关联,相辅相成,它能由最基本的自然数发展成实数理论,又扩展为多维数,并能自成一体,这本身就是一个奇迹,有时候想,也许宇宙本身就是数学性的,只有数学才是先验的。 站在数学浪花之尖,不住地向往,向往那历史上似乎渐渐逝去的光辉思维,向往古希腊的几何盛世,向往18世纪崇尚数感的年代,向往20世纪初期迸发的现代数学思想……Euclid 在写《原本》时是如何敏锐地选择了那几个定义公理公设并公理化地建立起整个欧氏几何,发展出公理化方法;Archimedes 又是如何将他的杠杆原理天才的与几何相结合并直觉地推导出一个个精妙的结论,从而引出微积分最原始的思想?Newton 又是怎样敏锐觉察到微分与积分的互逆关系?Euler 是在怎样的心境下将他的三角函数与复指数联系起来?Gauss 又是如何利用他的同余思想建立起一种研究数论的方法得到一个个不可思议的结论并开创了代数数论;Riemann 又是依据怎样的直觉断言ζ函数的非无聊零点都在直线ReZ=0.5上?Cantor 又是如何想到自然数集合与实数集合的基数存在本质的差别从而提出连续统假说而且建立起现代数学的基石---集合论…… 这一切,美妙如万花筒般,却又让人产生敬畏之心,一个理论的诞生,甚至一种奇思妙想的产生,若它确实对以往的难处产生了作用,那么在其中必能感受到一种强烈的反差,这种反差往往是由于体系扩大带来的,或许这叫做:领悟。若是可能,我愿意遇见所有的那些反差……就让我们从Euler 公式,开始这一切的故事。 众所周知,1sin cos 2 2 =+x x ,由此分解因式可有 1,1)sin )(cos sin (cos -==-+i x i x x i x 它形式上暗合于f(x)f(-x)=1,而x i x x f sin cos )(+=,我们将f(x)f(y)形式地展开有: )sin cos cos (sin )sin sin cos (cos )sin )(cos sin (cos y x y x i y x y x y i y x i x ++-=++ 也就是说:)sin()cos()sin )(cos sin (cos y x i y x y i y x i x +++=++ 换句话:)()()(y x f y f x f +=,这相当于暗示:f(x)是指数函数。 反复利用上式可有:nx i nx x i x n sin cos )sin (cos ±=±,故而得到两个式子: 2)sin (cos )sin (cos cos n n x i x x i x nx -++= 和i x i x x i x nx n n 2)sin (cos )sin (cos sin --+=

蒙特卡罗方法的计算程序

关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT 等。这些程序大多经过了多年的发展,花费了几百人年的工作量。除欧洲核子研究中心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都深入到低能领域,并被广泛应用。就电子和光子输运的模拟而言,这些程序可被分为两个系列:1.EGS4、FLUKA、GRANT 2.ETRAN、ITS、MCNP 这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心算法。 ETRAN(for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和电子,能量范围可从1KeV到1GeV。 ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。TIGER研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。 NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)则引进了ETRAN,加入了对电子的模拟。 FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进行了改进。

ECLIPSE 并行运算实现方法_JiangSu

Schlumberger Private ECLIPSE 并行运算实现方法 1. 在MODEL_NAME.DATA 文件中的RUNSPEC 部分添加下列关键字: PARALLEL 4 / 2. 在并行机上自己的数据文件夹中创建一个新的文件,如名为:hosts. 若想用4个CPU 计算模型,则此模型内容可作如下设置,从而制定运算所用的节点及CPU : js031 js031 js032 js032 等。 其中js031, js032为并行机中各计算节点的名字。 3. 在此文件夹内执行并行运算,所用命令如下: @mpieclipse –hostfile hosts MODEL_NAME (黑油模型) 或 @mpie300 –hostfile hosts MODEL_NAME (组分模型) 4. 然后会出现如下状态信息,提示选择并行链接方式: [ecl@gri01 e100]$ @mpieclipse -hostfile hosts PARALLEL Specify Parallel InterConnect required ? 1 - Ethernet / Gigabit 2 - Myrinet 3 - Scali Select 1-3 [default 1 - Ethernet / Gigabit] : 1 5. 此时,选择1,出现如下信息: Running version 2006.1 Running Parallel Eclipse 100 on Machine type linux_x86_64 Local config file ECL.CFG exists, OK to use ('n' deletes local file) (Y/n)?: y 5. 选择Y ,出现如下信息,模拟运算即可正常运行: Using local config file ECL.CFG Running MPICH software from /apps/ecl/tools/linux_x86_64/mpich_x86_64 Number of processors required is = 4 Running Parallel Eclipse 100 on Machine type linux_x86_64 version 2006.1 …… 1 READING RUNSPEC 2 READING TITLE

用蒙特卡罗方法计算π值实验报告

本科生实验报告 实验课程蒙特卡罗模拟 学院名称核技术与自动化工程学院专业名称核技术及应用 学生姓名王明 学生学号2017020405 指导教师 邮箱511951451@https://www.wendangku.net/doc/c34558873.html, 实验成绩 二〇一七年九月二〇一八年一月

实验一、选择一种编程语言模拟出π的值 一、实验目的 1、理解并掌握蒙特卡罗模拟的基本原理; 2、运用蒙特卡洛思想解决实际问题; 3、分析总结蒙特卡洛解决问题的优缺点。 二、实验原理 用蒙特卡洛思想计算π的值分为如下几部: 第一步构建几何原理:构建单位圆外切正方形的几何图形。单位圆的面积为S0=π,正方形的面积S1=4; 第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。分别生产均匀随机数(x,y)二维坐标。X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。 第三步打把结构处理:根据S0/S1=M/N计算出π的值。因此π=4*M/N。 第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百

万个计数。 三、实验内容 1、用matlab编写的实验代码,总计数率为1000。zfx_x=[1,-1,-1,1,1]; zfx_y=[1,1,-1,-1,1]; plot(zfx_x,zfx_y) axis([-3 3 -3 3]); hold on; r=1; theta=0:pi/100:2*pi; x=r*cos(theta); y=r*sin(theta); rho=r*sin(theta); figure(1) plot(x,y,'-') N=1000; mcnp_x=zeros(1,N); mcnp_y=zeros(1,N); M=0; for i=1:N x=2*(rand(1,1)-0.5); y=2*(rand(1,1)-0.5); if((x^2+y^2)<1) M=M+1; mcnp_x(i)=x; mcnp_y(i)=y; end end plot(mcnp_x,mcnp_y,'.') PI1=4*M/N; 2、用matlab绘制的图形

对数函数运算公式

对数函数运算公式标准化管理部编码-[99968T-6889628-J68568-1689N]

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M 和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M)

相关文档