文档库 最新最全的文档下载
当前位置:文档库 › 主从式并行遗传算法框架应用*

主从式并行遗传算法框架应用*

主从式并行遗传算法框架应用*
主从式并行遗传算法框架应用*

遗传算法并行化的研究.doc

遗传算法并行化的研究 学号:SC02011036 姓名:黄鑫 摘要 本文是针对遗传算法并行化进行了研究,首先简要给出了基本遗传算法的形式化描述,然后做了并行性的分析,详细介绍了遗传算法的结构化并行模型:步进模型,岛屿模型,邻接模型,最后指出了进一步要研究的课题。 关键词:遗传算法,并行计算,结构化GA 1引言 遗传算法(GA)是根据达尔文进化论“优胜劣汰,适者生存”的一种启发式搜索算法。采用选择,交叉,变异等基本变化算子在解空间同时进行多点搜索,本身固有并行性。随着大规模并行机的迅速发展,将并行机的高速性与遗传算法并行性结合起来,从而促进遗传算法的发展。然而,仅仅将基本遗传算法硬件并行化伴随着大量通讯开销等问题,从而必须对标准GA的进行改进,使得并行遗传算法不单单是遗传算法硬件并行实现,更重要的是结构化的遗传算法。本文首先给出了GA形式化描述,对基本GA的可并行性做出分析,然后给出了并行GA的模型,最后指出了并行遗传算法还需要解决的问题。 2 基本遗传算法 在这里我们不对遗传算法做过多的介绍,只是给出基本遗传算法的形式化描述:begin (1)initialization (1.1)产生一个初始群体 (1.2)评估第一代整个群体的适应度值 (2)while running do (2.1)选择父代 (2.2)交叉操作 (2.3)子代变异 (2.4)评估子代的适应度 (2.5)子代取代父代,形成新的一带个体 endwhile end 3 遗传算法的并行性分析 从第一节对遗传算法的描述,我们可以看出基本遗传算法模型是一个反复迭代的进化计算过程,通过对一组表示候选解的个体进行评价、选择、交叉、变异等操作,来产生新一代的个体(候选解),这个迭代过程直到满足某种结束条件为止。对应于基本遗传算法的运行过程,为实现其并行化要求,可以从下面四种并行性方面着手对其进行改进和发展。 并行性Ⅰ:个体适应度评价的并行性。 个体适应度的评价在遗传算法中占用的运行时间比较大。通过对适应度并行计算方法的研究,可提高个体适应度评价的计算效率。 并行性Ⅱ:整个群体各个个体适应度评价的并行性。

遗传算法的优缺点

遗传算法属于进化算法( Evolutionary Algorithms) 的一种, 它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子: 选择、交叉和变异. 。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法( GA)。算法中称遗传的生物体为个体( individual ),个体对环境的适应程度用适应值( fitness )表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因 (gene)。一定数量的个体组成一个群体(population )。对所有个体进 行选择、交叉和变异等操作,生成新的群体,称为新一代( new generation )。遗传算法计算程序的流程可以表示如下[3]:第一步准备工作 (i)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m。通常用二 进制编码。 (2 )选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm (3、确定适应值函数f (x、。f (x、应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂 面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi ,同时计算群体的总适应值。 第四步选择 计算每一串的选择概率Pi=fi/F 及累计概率。选择一般通过模拟旋转滚花轮 ( roulette ,其上按Pi大小分成大小不等的扇形区、的算法进行。旋转M次即可选出M个串来。在计算机 上实现的步骤是:产生[0,1]间随机数r,若rpc ,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。 (2)对每一对,产生[1 , m]间的随机数以确定交叉的位置。 第六步变异 如变异概率为Pm则可能变异的位数的期望值为Pm x mx M,每一位以等概率变异。具体为 对每一串中的每一位产生[0 , 1]间的随机数r,若r

遗传算法与优化问题

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm —GA),就是模拟达尔文的遗传选择与自然淘汰的生物进化过程的计算模型,它就是由美国Michigan大学的J、Holla nd教授于1975 年首先提出的?遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算? 1. 遗传算法的基本原理 遗传算法的基本思想正就是基于模仿生物界遗传学的遗传过程?它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体?这个群体在问题特定的环境里生存 竞争,适者有最好的机会生存与产生后代?后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解?值得注意的一点就是,现在的遗传算法就是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身就是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法就是由进化论与遗传学机理而产生的直接搜索优化方法;故而 在这个算法中要用到各种进化与遗传学的概念? 首先给出遗传学概念、遗传算法概念与相应的数学概念三者之间的对应关系这些概念

(2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要就是:先把问题的解表示成“染色体”,在算法中也就就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则从中选 择出较适应环境的“染色体”进行复制 ,再通过交叉、变异过程产生更适 应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉与变异算子作用于群体,形成下一代群体; 第七步:判断群体性能就是否满足某一指标、或者就是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

并行遗传算法

并行遗传算法及其应用 1、遗传算法(GA)概述 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。第四:对这个新的种群进行交叉操作,变异操作。交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。经过上述运算产生的染色体称为后代。最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。 GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。种群规模是指种群中所含染色体的数目。3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。目前主要通过目标函数映射成适值度函数。4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。 GA的优点是擅长全局搜索,一般来说,对于中小规模的应用问题,能够在许可的范围内获得满意解,对于大规模或超大规模的多变量求解任务则性能较差。另外,GA本身不要求对优化问题的性质做一些深入的数学分析,从而对那些不

使用MATLAB遗传算法工具实例(详细) (1)【精品毕业设计】(完整版)

最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。 本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。 8.1 遗传算法与直接搜索工具箱概述 本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。 8.1.1 工具箱的特点 GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。 使用语句 type function_name 就可以看到这些函数的MATLAB代码。我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。 工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。 遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。 遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。 8.1.1.1 功能特点 遗传算法与直接搜索工具箱的功能特点如下: 图形用户界面和命令行函数可用来快速地描述问题、设置算法选项以及监控进程。 具有多个选项的遗传算法工具可用于问题创建、适应度计算、选择、交叉和变异。 直接搜索工具实现了一种模式搜索方法,其选项可用于定义网格尺寸、表决方法和搜索方法。 遗传算法与直接搜索工具箱函数可与MATLAB的优化工具箱或其他的MATLAB程序结合使用。 支持自动的M代码生成。 8.1.1.2 图形用户界面和命令行函数 遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置算法选项、对优化问题进行详细定义。 133

遗传算法应用论文

论文 题目:遗传应用算法 院系:计算机工程系 专业:网络工程 班级学号: 学生姓名: 2014年10月23日

摘要: 遗传算法是基于自然界生物进化基本法则而发展起来的一类新算法。本文在简要介绍遗传算法的起源与发展、算法原理的基础上,对算法在优化、拟合与校正、结构分析与图谱解析、变量选择、与其他算法的联用等方面的应用进行了综述。该算法由于无需体系的先验知识,是一种全局最优化方法,能有效地处理复杂的非线性问题,因此有着广阔的应用前景。 关键词: 遗传算法; 化学计量学; 优化 THEORY AND APPL ICATION OF GENETIC AL GORITHM ABSTRACT: Genetic Algo rithm( GA) is a kind of recursive computational procedure based on the simulation of principle principles of evaluati on of living organisms in nature1Based on brief int roduction of the principle ,the beginning and development of the algorithms ,the pape r reviewed its applications in the fields of optimization ,fitting an d calibration,structure analysis and spectra interpretation variable selection ,and it s usage in combination with othersThe application o f GA needs no initiating knowledge of the system ,and therefore is a comprehensive optimization method with extensive application in terms of processing complex nonlinear problems。 KEY WORDS : Genetic Algorithm( GA) Chemometrics Optimization 遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法,它于1962年被提出,直到1989年才最终形成基本框架。遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法, 由美国J. H. Ho llad教授提出, 其主要特点是群体搜索策略和群体中个体之间的信息交换。该算法尤其适用于处理传统搜索方法难以解决的复杂和非线性问题, 可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域。 顾名思义,遗传算法(Genetic Algorithm ,GA)是模拟自然界生物进化机制的一种算法 ,即遵循适者生存、优胜劣汰的法则 ,也就是寻优过程中有用的保留 ,无用的则去除。在科学和生产实践中表现为 ,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法 ,即找出一个最优解。这种算法是 1960 年由

遗传算法的并行实现

遗 传 算 法 (基于遗传算法求函数最大值) 指导老师:刘建丽 学号:S201007156 姓名:杨平 班级:研10级1班

遗传算法 一、 遗传算法的基本描述 遗传算法(Genetic Algorithm ,GA )是通过模拟自然界生物进化过程来求解优化问题的一类自组织、自适应的人工智能技术。它主要基于达尔文的自然进化论和孟德尔的遗传变异理论。多数遗传算法的应用是处理一个由许多个体组成的群体,其中每个个体表示问题的一个潜在解。对个体存在一个评估函数来评判其对环境的适应度。为反映适者生存的思想,算法中设计一个选择机制,使得:适应度好的个体有更多的机会生存。在种群的进化过程中,主要存在两种类型的遗传算子:杂交和变异。这些算子作用于个体对应的染色体,产生新的染色体,从而构成下一代种群中的个体。该过程不断进行,直到找到满足精度要求的解,或者达到设定的进化代数。显然,这样的思想适合于现实世界中的一大类问题,因而具有广泛的应用价值。遗传算法的每一次进化过程中的,各个体之间的操作大多可以并列进行,因此,一个非常自然的想法就是将遗传算法并行化,以提高计算速度。本报告中试图得到一个并行遗传算法的框架,并考察并行化之后的一些特性。为简单起见(本来应该考虑更复杂的问题,如TSP 。因时间有些紧张,做如TSP 等复杂问题怕时间不够,做不出来,请老师原谅),考虑的具有问题是:对给定的正整数n 、n 元函数f ,以及定义域D ,求函数f 在D 内的最大值。 二、 串行遗传算法 1. 染色体与适应度函数 对函数优化问题,一个潜在的解就是定义域D 中的一个点011(,,...,)n x x x -,因此,我们只需用一个长度为n 的实数数组来表示一个个体的染色体。由于问题中要求求函数f 的最大值,我们可以以个体所代表点011(,,...,)n x x x -在f 函数下的值来判断该个体的好坏。因此,我们直接用函数f 作为个体的适应度函数。 2. 选择机制 选择是遗传算法中最主要的机制,也是影响遗传算法性能最主要的因素。若选择过程中适应度好的个体生存的概率过大,会造成几个较好的可行解迅速占据种群,从而收敛于局部最优解;反之,若适应度对生存概率的影响过小,则会使算法呈现出纯粹的随机徘徊行为,算法无法收敛。下面我们介绍在实验中所使用的选择机制。

MapReduce求解物流配送单源最短路径研究

MapReduce求解物流配送单源最短路径研究 摘要: 针对物流配送路线优化,提出了将配送路线问题分解成若干可并行操作的子问题的云计算模式。详细论述了基于标色法的MapReduce广度优先算法并行化模型、节点数据结构、算法流程和伪代码程序,并通过将该算法应用于快递公司的实际配送,验证了该算法的可行性。关键词: 物流配送; MapReduce;并行计算;最短路径 随着电子商务的普及,人们网上购物的习惯逐渐形成。截止2012年11月30日,阿里巴巴集团旗下淘宝和天猫2012年总交易额已经突破一万亿。综合淘宝和天猫的交易数据来看,以快递员为主体的中国物流配送业对电子商务发展的促进起到了巨大作用。同时传统邮政担负的包裹配送业务比重也逐渐地倾斜于第三方物流配送公司。目前我国物流配送运输成本占整个物流成本的35%~50%左右[1]。由于网购物品用户分布在城市的不同地方,为了控制配送运输成本,改善配送秩序,需要优化配送路线。优化配送路线的求解有串行算法和并行算法。串行算法主要表现在基于算法本身以及其优化组合的方法,例如CLARK G和WRIGHT J的节约算法、GILLETT B E和MILLER L R的扫描算法、Christofides等人的k度中心树和相关算法、Gendrean的禁忌搜索方法、LAWRENCE J 的遗传算法、Dijkstra算法、Nordbeck提出的椭圆限制搜索区域改进算法[2]。随着计算数据的海量化以及摩尔定律的失效(晶体管电路已经接近了其物理改进的极限),串行算法本身的改进和组合已不能适应需求。计算机科学领域出现了另一类并行最短路径分析算法设计,目前关于并行最短路径分析算法设计有基于MPI的主从Dijkstra并行算法[3]、MPI+open-MP混合算法[4]、社区分析的最短路径LC-2q并行算法[5]等。本文针对物流及时配送和成本控制需求,提出基于标色法的MapReduce广度优先算法并行化模型,并应用于配送线路优化问题。由于MapReduce本身封装了数据分割、负载均衡、容错处理等细节,用户只需要将实际应用问题分解成若干可并行操作的子问题,有效降低了求解难度,为解决物流配送运输路径优化问题提供了技术支持。1 MapReduce算法描述信息技术和网络技术的发展为云计算的产生提供了条件。MapReduce并行编程模型是云计算的核心技术之一。MapReduce是Google 实验室提出的一个分布式并行编程模型或框架, 主要用来处理和产生海量数据的并行编程模式,2004 年DEAN J和GHEMAWAT S第一次发表了这一新型分布式并行编程模型[6]。用户不必关注MapReduce 如何进行数据分割、负载均衡、容错处理等细节,只需要将实际应用问题分解成若干可并行操作的子问题,这种分解思路遵守主从架构模型。Mapreduce框架的主要程序分为Master、Map和Reduce。在Hadoop 中,MapReduce由一个主节点(Jobtracker,属于Master)和从节点(Tasktracker,属于Map和Reduce)组成[7]。1.1 基于标色法的MapReduce广度优先算法模型给定一个带权有向图,用G=(N,E,W)模型来表示,其中N={ni∣i=1,2,...,m}为完全图的点的集合;E={e(ni,nj)∣i≠j, ni,nj∈N}为弧段集;W={w(ni,nj)∣i≠j,ni,nj∈N}为权值集。一般向图的权值表示节点与节点之间的几何长度,记为w(ni,nj)=dij,dij表示节点ni到节点nj的距离。最短路径计算就是计算从起始点ni到终止点nj的最短几何长度之和为最小。在有向图起始点和终止点的最短路径计算中,MapReduce采用的是广度优先算法。MapReduce计算最短路径用邻接表来表示图,在邻接表中每一行数据构成Map和Reduce的一个数据内容。Map和Reduce的(key,value)中key为N,value值为与这个节点邻接的所有节点的 AdjacentList。在用标色法求解最短路径时,AdjacentList节点的信息包括源点到顶点的距离distance(除到本身的距离为0外,其余初始值皆为无穷大);节点的颜色color(其值可分别取0、1、2,0表示未处理的顶点,1表示等待处理的顶点,2表示已处理的顶点,源点的初始值为1,其余顶点皆为0);被访问顶点和边的权值记为N和W。顶点的数据结构如表1所示。

遗传算法

湖南理工学院 人工智能课程论文 题目:遗传算法及其应用 课程名称:人工智能及其应用 院系:计算机学院 专业班级:计科13 - 2 BJ 姓名:李中文 学号: 14132404129 课程论文成绩: 指导教师:廖军 2015 年 6 月30 日

遗传算法及其应用 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,非常适用于处理传统搜索方法难以解决的复杂和非线性问题。遗传算法是基于达尔文进化论,在计算机上模拟生命进化机制而发展起来的一门新学科。它根据适者生存,优胜劣汰等自然进化规则来进行搜索计算和问题求解。遗传算法具有通用、并行、稳健、简单与全局优化能力强等突出优点,适用于解决复杂、困难的全局优化问题。遗产算法以其广泛的适应性渗透到研究与工程的各个领域,例如:组合优化、机器学习、自适应控制、规划设计和人工生命等,是21世纪有关智能计算中的重要技术之一。 文章的第一部分介绍了遗传算法的基本概念。第二部分介绍了遗传算法的原理。第三部分着重介绍具体实现,以及简单实例,主要体现遗传算法的实现过程。第四部分介绍了一个具体问题,如何用遗传算法来解决,以及实现时的一些基本问题。 文章在介绍遗传算法的原理以及各种运算的同时,还分析了一些应用中出现的基本问题,对于我们的解题实践有一定的指导意义。 关键词:遗传算法,遗传,群体

Genetic algorithm and its application Abstract: genetic algorithm genetic algorithms (GA) is a kind of reference biology natural selection and genetic mechanism of random search algorithm, is very suitable for the complex and non-linear problems that are difficult for traditional search methods. Genetic algorithm is a new subject based on Darwin's theory of evolution, which is developed on the computer simulation of life evolution. It is based on the survival of the fittest, the survival of the fittest natural evolution rule to search algorithm and solve problems. Genetic algorithm has the advantages of general, parallel, robust, simple and global optimization, which is suitable for solving complex and difficult global optimization problems. Inheritance algorithm with its extensive adaptability penetrated into various fields of research and engineering, for example: combinatorial optimization, machine learning, adaptive control, planning and design and artificial life, is one of the most important technologies in the 21st century the intelligent calculation. The first part of the article introduces the basic concepts of genetic algorithm. The second part introduces the principle of genetic algorithm and three kinds of operations: selection, exchange, variation. The third part focuses on the specific implementation of the three operations, as well as a simple example, the main embodiment of the genetic algorithm to achieve the process. In the fourth part, the two parts are introduced, which are all the problems of NP-, how to use genetic algorithms to solve the problems, and some basic problems in the implementation of the problem. In the introduction of the principle of genetic algorithm and various operations, it also analyzes the basic problems that arise in some applications. Key words: genetic algorithm, genetic variation, population

遗传算法的应用研究_赵夫群

2016年第17期 科技创新科技创新与应用 遗传算法的应用研究 赵夫群 (咸阳师范学院,陕西咸阳712000) 1概述 遗传算法(Genetic Algorithms,GA)一词源于人们对自然进化系统所进行的计算机仿生模拟研究,是以达尔文的“进化论”和孟德尔的“遗传学原理”为基础的,是最早开发出来的模拟遗传系统的算法模型。遗传算法最早是由Fraser提出来的,后来Holland对其进行了推广,故认为遗传算法的奠基人是Holland。 随着遗传算法的不断完善和成熟,其应用范围也在不断扩大,应用领域非常广泛,主要包括工业控制、网络通讯、故障诊断、路径规划、最优控制等。近几年,出现了很多改进的遗传算法,改进方法主要包括:应用不同的交叉和变异算子;引入特殊算子;改进选择和复制方法等。但是,万变不离其宗,都是基于自然界生物进化,提出的这些改进方法。 2遗传算法的原理 遗传算法是从某一个初始种群开始,首先计算个体的适应度,然后通过选择、交叉、变异等基本操作,产生新一代的种群,重复这个过程,直到得到满足条件的种群或达到迭代次数后终止。通过这个过程,后代种群会更加适应环境,而末代种群中的最优个体,在经过解码之后,就可以作为问题的近似最优解了。 2.1遗传算法的四个组成部分 遗传算法主要由四个部分组成[1]:参数编码和初始群体、适应度函数、遗传操作和控制参数。编码方法中,最常用的是二进制编码,该方法操作简单、便于用模式定理分析。适应度函数是由目标函数变换而成的,主要用于评价个体适应环境的能力,是选择操作的依据。遗传操作主要包括了选择、交叉、变异等三种基本操作。控制参数主要有:串长Z,群体大小size,交叉概率Pc,变异概率Pm等。目前对遗传算法的研究主要集中在参数的调整中,很多文献建议的参数取值范围一般是:size取20~200之间,Pc取0.5~1.0之间,Pm取0~0.05之间。 2.2遗传算法的基本操作步骤 遗传算法的基本操作步骤为: (1)首先,对种群进行初始化;(2)对种群里的每个个体计算其适应度值;(3)根据(2)计算的适应度,按照规则,选择进入下一代的个体;(4)根据交叉概率Pc,进行交叉操作;(5)以Pm为概率,进行变异操作;(6)判断是否满足停止条件,若没有,则转第(2)步,否则进入(7);(7)得到适应度值最优的染色体,并将其作为问题的满意解或最优解输出。 3遗传算法的应用 遗传算法的应用领域非常广泛,下面主要就遗传算法在优化问题、生产调度、自动控制、机器学习、图像处理、人工生命和数据挖掘等方面的应用进行介绍。 3.1优化问题 优化问题包括函数优化和组合优化两种。很多情况下,组合优化的搜索空间受问题规模的制约,因此很难寻找满意解。但是,遗传算法对于组合优化中的NP完全问题非常有效。朱莹等[2]提出了一种结合启发式算法和遗传算法的混合遗传算法来解决杂货船装载的优化问题中。潘欣等[3]在化工多目标优化问题中应用了并行遗传算法,实验结果表明该方法效果良好。王大东等[4]将遗传算法应用到了清运车辆路径的优化问题求解中,而且仿真结果表明算法可行有效。 3.2生产调度 在复杂生产调度方面,遗传算法也发挥了很大的作用。韦勇福等[5]将遗传算法应用到了车间生产调度系统的开发中,并建立了最小化完工时间目标模型,成功开发了车间生产调度系统模块,并用实例和仿真验证了该方法的可行性。张美凤等[6]将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。 3.3自动控制 在自动控制领域中,遗传算法主要用于求解的大多也是与优化相关的问题。其应用主要分为为两类,即离线设计分析和在线自适应调节。GA可为传统的综合设计方法提供优化参数。 3.4机器学习 目前,遗传算法已经在机器学习领域得到了较为广泛的应用。邢晓敏等[7]提出了将遗传算子与Michigan方法和基于Pitt法的两个机器学习方法相结合的机器学习方法。蒋培等[8]提出了一种基于共同进化遗传算法的机器学习方法,该方法克服了学习系统过分依赖于问题的背景知识的缺陷,使得学习者逐步探索新的知识。 3.5图像处理 图像处理是一个重要的研究领域。在图像处理过程中产生的误差会影响图像的效果,因此我们要尽可能地减小误差。目前,遗传算法已经在图像增强、图像恢复、图像重建、图像分形压缩、图像分割、图像匹配等方面应用广泛,详见参考文献[9]。 4结束语 遗传算法作为一种模拟自然演化的学习过程,原理简单,应用广泛,已经在许多领域解决了很多问题。但是,它在数学基础方面相对不够完善,还有待进一步研究和探讨。目前,针对遗传算法的众多缺点,也相继出现了许多改进的算法,并取得了一定的成果。可以预期,未来伴随着生物技术和计算机技术的进一步发展,遗传算法会在操作技术等方面更加有效,其发展前景一片光明。 参考文献 [1]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999,6. [2]朱莹,向先波,杨运桃.基于混合遗传算法的杂货船装载优化问题[J].中国船舰研究,2015:10(6):126-132. [3]潘欣,等.种群分布式并行遗传算法解化工多目标优化问题[J].化工进展,2015:34(5):1236-1240. [4]王大东,刘竞遥,王洪军.遗传算法求解清运车辆路径优化问题[J].吉林师范大学学报(自然科学版),2015(3):132-134. [5]韦勇福,曾盛绰.基于遗传算法的车间生产调度系统研究[J].装备制造技术,2014(11):205-207. [6]黄巍,张美凤.基于混合遗传算法的车间生产调度问题研究[J].计算机仿真,2009,26(10):307-310. [7]邢晓敏.基于遗传算法的机器学习方法赋值理论研究[J].软件导刊[J].2009,8(11):80-81. [8]蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学自然科学学报,2004,27(3):33-38. [9]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. [10]周剑利,马壮,陈贵清.基于遗传算法的人工生命演示系统的研究与实现[J].制造业自动化,2009,31(9):38-40. [11]刘晓莉,戎海武.基于遗传算法与神经网络混合算法的数据挖掘技术综述[J].软件导刊,2013,12(12):129-130. 作者简介:赵夫群(1982,8-),女,汉族,籍贯:山东临沂,咸阳师范学院讲师,西北大学在读博士,工作单位:咸阳师范学院教育科学学院,研究方向:三维模型安全技术。 摘要:遗传算法是一种非常重要的搜索算法,特别是在解决优化问题上,效果非常好。文章首先介绍了遗传算法的四个组成部分,以及算法的基本操作步骤,接着探讨了遗传算法的几个主要应用领域,包括优化、生产调度、机器学习、图像处理、人工生命和数据挖掘等。目前遗传算法以及在很多方面的应用中取得了较大的成功,但是它在数学基础方面相对还不够完善,因而需要进一步研究和完善。 关键词:遗传算法;优化问题;数据挖掘 67 --

相关文档