文档库 最新最全的文档下载
当前位置:文档库 › 第十一章机械振动

第十一章机械振动

第十一章机械振动
第十一章机械振动

第十一章 机械振动

11-1 一质量为m 的质点在力F = -2

x 的作用下沿x 轴运

动.求其运动的周期. (答案:m 2)

11-2 质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x (SI)沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小;

(2) 作用于质点的力的最大值和此时质点的位置.

(答案:5 N ;10 N ,±0.2 m (振幅端点))

11-3 一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速度是24 cm/s ,求

(1)周期T ;

(2)当速度是12 cm/s 时的位移.

(答案:2.72s ;10.8cm )

11-4 一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:

(1) 此小物体是停在振动物体上面还是离开它?

(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?

(答案:小物体不会离开;g A >2

ω,在平衡位置上方19.6 cm 处开始分离)

11-5 在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处.然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动. 试证:

(1) 此物体作简谐振动; (2) 此简谐振动的周期 g

R T /2π=

11-6 一质点沿x 轴作简谐振动,其角频率 = 10 rad/s .试分别写出以下两种初始状态下的振动方程:

(1) 其初始位移x 0 = 7.5 cm ,初始速度v 0 = 75.0 cm/s ;

(2) 其初始位移x 0 =7.5 cm ,初始速度v 0 =-75.0 cm/s .

(答案:x =10.6×10-2cos[10t -(/4)] (SI); x =10.6×10-2

cos[10t +(/4)] (SI))

11-7 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然 后由静止释放并开始计时.求 (1) 物体的振动方程;

x

F 0

m

O R

(2) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;

(3) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间.

(答案:x = 0.1 cos(7.07t ) (SI);29.2 N ;0.074 s )

11-8 一物体放在水平木板上,这木板以 = 2 Hz 的频率沿水平直线作简谐运动,物体和水平木板之间的静摩擦系数s = 0.50,求物体在木板上不滑动时的最大振幅A max .

(答案:0.031 m )

11-9 一木板在水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速率是24 cm/s .如果一小物块置于振动木板上,由于静摩擦力的作用,小物块和木板一起运动(振动频率不变),当木板运动到最大位移处时,物块正好开始在木板上滑动,问物块与木板之间的静摩擦系数为多少?

(答案:0.0653)

11-10 一质点在x 轴上作简谐振动,选取该质点向右运动通

过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B

点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两

点具有相同的速率,且AB = 10 cm 求:

(1) 质点的振动方程; (2) 质点在A 点处的速率.

(答案:)4

34cos(10252π-π?=-t x (SI);3.93

10-2

m/s )

11-11 在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250 g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向

下, 求振动方程的数值式.

(答案:)64.07cos(05.0+=t x (SI))

11-12 一质点按如下规律沿x 轴作简谐振动:)3

2

8cos(1.0π+

π=t x (SI). 求此振动的周期、振幅、初相、速度最大值和加速度最大值.

(答案:0.25s ,0.1 m ,2/3,0.8 m/s ,6.4 m/s 2

11-13 一质量为0.20 kg 的质点作简谐振动,其振动方程为 )2

15cos(6.0π-=t x (SI).

求:(1) 质点的初速度;

(2) 质点在正向最大位移一半处所受的力.

(答案:3.0 m/s ;-1.5 N )

11-14 有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求

(1) 振动频率; (2) 振幅和初相.

(答案:0.5Hz ;8.8 cm ,226.8°或-133.2°)

O x

A B v x

11-15 一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2

m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:

(1) 振动周期T ; (2) 加速度的最大值a m ;

(3) 振动方程的数值式.

(答案:4.19 s ;4.5×10-2

m/s 2

;x = 0.02)2

1

5.1cos(π+

t (SI))

11-16 一质点作简谐振动,其振动方程为x = 0.24)3

121cos(π+πt (SI),试用旋转矢

量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间t .

(答案:0.667s )

11-17 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹

簧的劲度系数k = 25 N ·m -1

. (1) 求振动的周期T 和角频率.

(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相.

(3) 写出振动的数值表达式.

(答案:0.63s ,10 s -1

;-1.3m/s ,/3;)3

1

10cos(10152

π+?=-t x (SI))

11-18 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.

(答案:

π2

1

11-19 一简谐振动的振动曲线如图所示.求振动方程.

(答案:)3/212/5cos(1.0π+π=t x (SI))

11-20 一定滑轮的半径为R ,转动惯量为J ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如图所示.设弹簧的劲度系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力.现将物体m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.

(答案:2

2

mR

J kR +=

ω)

11-21 在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动

x (cm) t

-5 10 O -10

2

m

后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.

(答案:)1.9cos(10

22

t x π?=-)

11-22 一弹簧振子沿x 轴作简谐振动(弹簧为原长时振动物体的位置取作x 轴原点).已知振动物体最大位移为x m = 0.4 m 最大恢复力为F m = 0.8 N ,最大速度为v m = 0.8 m/s ,又知t = 0的初位移为+0.2 m ,且初速度与所选x 轴方向相反.

(1) 求振动能量;

(2) 求此振动的表达式.

(答案:0.16J ;)3

1

2cos(4.0π+

π=t x )

11-23 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)3

18cos(5.0π+π=t x 的规

律作自由振动,式中t 以秒作单位,x 以厘米为单位,求

(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ;

(4) 平均动能和平均势能.

(答案: = 8 s -1

,T = 2/ = (1/4) s ,A = 0.5 cm ,

= /3;

)318sin(104v 2πππ+?-=-t ,)3

1

8cos(103222π+π?π-=-t a ;3.95×10-5 J ,3.95×

10-5

J )

11-24 一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25

N ·m -1

,如果起始振动时具有势能0.06 J 和动能0.02 J ,求 (1) 振幅;

(2) 动能恰等于势能时的位移;

(3) 经过平衡位置时物体的速度.

(答案:0.08 m ;0.0566m ;0.8m/s )

11-25 在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .

(1) 上述的外加拉力是多大?

(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?

(答案:0.444N ;1.07×10-2 J ,4.44×10-4

J )

11-26 在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求

(1) 小球的振动周期; (2) 振动能量.

(答案:0.201 s ;3.92×10-3

J )

11-27 一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?

(答案:0.04 J )

11-28 如图,有一水平弹簧振子,弹簧的劲度系数k = 24

N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.

(答案:)2cos(204.0π+=t x (SI))

11-29 两个同方向简谐振动的振动方程分别为 )4310cos(1052

1π+?=-t x (SI), )4

1

10cos(10622π+?=-t x (SI)

求合振动方程.

(答案:)48.110cos(10

81.72

+?=-t x (SI))

11-30 一物体同时参与两个同方向的简谐振动: )2

12cos(04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI)

求此物体的振动方程.

(答案:)22.22cos(05.0+π=t x (SI))

O

A

(完整版)物理选修3-4第十一章机械振动试题及答案详解(可编辑修改word版)

N M P 单元过关测试 ----- 机械振动 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷 1 至 4 页,第 II 卷 4 至 8 页, 共计 100 分,考试时间 90 分钟 第 I 卷(选择题 共 40 分) 一、本题共 10 小题;每小题 4 分,共计 40 分。在每小题给出的四个选项中,有一个或多个选项正确,全 部选对得 4 分,选对但不全得 2 分,有错选得 0 分. 1. 弹簧振子作简谐运动,t 1 时刻速度为 v ,t 2 时刻也为 v ,且方向相同。已知(t 2-t 1)小于周期 T , 则(t 2-t 1) ( ) A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 2. 有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将 被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪 光照片,如右图所示,(悬点和小钉未被摄入),P 为摆动中的最低点。已知每相邻两次闪光的时间间隔相等, 由此可知,小钉与悬点的距离为 ( )A .L /4 B .L /2 C .3L /4 D .无法确定 3. A 、B 两个完全一样的弹簧振子,把 A 振子移到 A 的平衡位置右边 10cm ,把 B 振子移到 B 的平衡位 置右边 5cm ,然后同时放手,那么:( ) A .A 、 B 运动的方向总是相同的. B .A 、B 运动的方向总是相反的. C .A 、B 运动的方向有时相同、有时相反. D .无法判断 A 、B 运动的方向的关系. 4. 铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就 会受到一次冲击。由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动。普通钢轨长为 12.6m ,列车固有振动周期为 0.315s 。下列说法正确的是 ( ) A. 列车的危险速率为40m / s B. 列车过桥需要减速,是为了防止列车发生共振现象 C. 列车运行的振动频率和列车的固有频率总是相等 D .增加钢轨的长度有利于列车高速运行 5.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这 就做成了一个共振筛,筛子做自由振动时,完成 20 次全振动用 15 s ,在某电压下,电动偏心轮转速是 88 r /min.已知增大电动偏心轮的电压,可以使其转速提高,增加筛子的质量,可以增大筛子的固有周期,要 使筛子的振幅增大,下列做法中,正确的是(r /min 读作“转每分”) ( ) A.降低输入电压 B.提高输入电压 C.增加筛子的质量 D.减小筛子的质量 6.一质点作简谐运动的图象如图所示,则该质点 ( ) A. 在 0.015s 时,速度和加速度都为-x 方向 B. 在 0.01 至 0.03s 内,速度与加速度先反方向后同方向,且速度是先减小后 增大,加速度是先增大后减小。

大学物理第五章机械振动习题解答和分析要点

5-1 有一弹簧振子,振幅A=2.0?10-2m,周期T=1.0s,初相?=3π/4.试写出它的振动位移、速度和加速度方程。 分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。解:振动方程为:x=Acos[ωt+?]=Acos[ 3π 42πTt+?] 代入有关数据得:x=0.02cos[2πt+ 振子的速度和加速度分别是: v=dx/dt=-0.04πsin[2πt+3π 4 3π 4](SI) ](SI) a=dx/dt=-0.08πcos[2πt+222](SI) 5-2若简谐振动方程为x=0.1cos[20πt+π/4]m,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s时的位移、速度和加速度. 分析通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据x=Acos[ωt+?]=0.1cos[20πt+π/4] 得:振幅A=0.1m,角频率ω=20πrad/s,频率ν=ω/2π=10s 周期T=1/ν=0.1s,?=π/4rad (2)t=2s时,振动相位为:?=20πt+π/4=(40π+π/4)rad 22 由x=Acos?,ν=-Aωsi n?,a=-Aωcos?=-ωx得 -1, x=0.0707m,ν=-4.44m/s,a=-279m/s 5-3质量为2kg的质点,按方程x=0.2sin[5t-(π/6)](SI)沿着x轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。2解:(1)跟据f=ma=-mωx,x=0.2sin[5t-(π/6)] 2 将t=0代入上式中,得:f=5.0N 2 (2)由f=-mωx可知,当x=-A=-0.2m时,质点受力最大,为f=10.0N 5-4为了测得一物体的质量m,将其挂到一弹簧上并让其自由振动,测得振动频率ν1=1.0Hz;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为 ν2=2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析根据简谐振动频率公式比较即可。解:由ν=1 2πk/m,对于同一弹簧(k相同)采用比较法可得:ν1 ν2=m'm 解得:m=4m'

第5章-机械振动

第五章机械振动 5-1. 从运动学看什么是简谐振动?从动力学看什么是简谐振动?一个物体受到使它返回平 衡位置的力,它是否一定作简谐振动? 答:从运动学观点来看,物体在平衡位置做往复运动,运动变量(位移、角位移等)随 时间t 的变化规律可以用一个正(余)弦函数来表示,则该物体的运动就是简谐振动;从动 力学来看,如果物体受到的合外力(矩)与位移(角位移)的大小成正比,而且方向相反, 则该物体的运动就是简谐振动。由简谐振动的定义可看出,不一定作简谐振动。 5-2. 若物体的坐标x ,速度υ和时间t 分别具有下列关系,试判断哪些情况下物体的运动是 简谐振动?并确定它的周期。 (1)2sin x A Bt =; (2)2A Bx υ=- (3)5sin()2x t π π=+; (4)cos At x e t π-= (各式中A 、B 均为常数)。 答:只要物体的运动状态方程满足cos()x A t ω?=+或者sin()x A t ω?=+ ,或者满足2220d x x dt ω+=的形式,则均为简谐振动。由此可判定出 :(1)是简谐振动,振动周期T B π =;(2)是简谐振动,因为满足2220d x x dt ω+=的判椐。振动周期T = (3)是简谐振动,振动周期2T s =; (4)不是简谐振动。 5-3 刚度系数分别为k 1和k 2的两根轻质弹簧,与质量为m 的滑块相连,水平面光滑, 如图5-3所示。试证明其为简谐振动,并求出振动周期。 解:建立坐标并对物体m 进行受力分析。设初时物体处于坐 标原点O 的右侧x 处,初速度v 0,物体受左右弹簧力的合力为 12()F k k x =-+, 大小与x 成正比,方向与位移方向相反 , 满足简谐振动的动力学规律,故是简谐振动。 由牛顿第二定律可得: 22 12122()()0k k k k d x x m dt m ω++=+= ,即 习题5-3图 2122()0k k d x x dt m ++=,由此知园频率 212()k k m ω+=,周期为 2T = 5-4 质量为31.010-?kg 的小球与轻弹簧组成的系统,按3510cos(8)() 3x t m π π-=?+

大物习题答案第4章机械振动

第4章 机械振动 基本要求 1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系 2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析 3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义 4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点 基本概念 1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。 简谐振动的运动方程 cos()x A t ω?=+ 2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。 3.周期T 作简谐振动的物体完成一次全振动所需的时间。 4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1 T ν = 5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为 22T π ωπν= = 6.相位和初相位 简谐振动的运动方程中t ω?+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位? 7.简谐振动的能量 作简谐振动的系统具有动能和势能。 弹性势能22 2p 11cos ()22 E kx kA t ω?= =+

动能[]2 2222k 111sin()sin ()222 E m m A t m A t ωω?ωω?==-+=+v 弹簧振子系统的机械能为222k p 11 22E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。 9.受迫振动 系统在周期性外力作用下的振动。周期性外力称为驱动力。 10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。 基本规律 1.一个孤立的简谐振动系统的能量是守恒的 物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。图表示了弹簧振子的动能和势能随时间的变化(0?=)。为了便于将此变化与位移随时间的变化相比较,在下面画了x-t 曲线,由图可以看出,动能和势能的变化频率是弹簧振子振动频率的两倍。 2.简谐振动的合成 若一个质点同时参与了两个同方向、同频率的简谐振动,即 111cos()x A t ω?=+ 222cos()x A t ω?=+ 图 弹簧振子的动能和势能随时间的变化 E p E O O x k E 2 1 2 E kA =t t

最新第十一章 机械振动单元检测(答案详解)

单元检测 (时间:90分钟 满分:100分) 一、选择题(本题共10个小题,每小题4分,共40分) 图1 1.如图1所示,劲度系数为k 的轻弹簧一端挂在天花板上,O 点为弹簧自然伸长时下端点的位置.当在弹簧下端挂钩上挂一质量为m 的砝码后,砝码开始由O 位置起做简谐运 动,它振动到下面最低点位置A 距O 点的距离为l 0,则( ) A .振动的振幅为l 0 B .振幅为l 0 2 C .平衡位置在O 点 D .平衡位置在OA 中点B 的上方某一点 2.质点沿x 轴做简谐运动,平衡位置为坐标原点O ,质点经过a 点和b 点时速度相同, 所花时间t ab =0.2 s ;质点由b 点再次回到a 点花的最短时间t ba =0.4 s ;则该质点做简谐运动的频率为( ) A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 3.关于简谐运动的周期,以下说法正确的是( ) A .间隔一个周期的两个时刻,物体的振动情况完全相同 B .间隔半个周期奇数倍的两个时刻,物体的速度和加速度可能同时相同 C .半个周期内物体动能的变化一定为零 D .一个周期内物体势能的变化一定为零 4. 图2 如图2所示,三根细线于O 点处打结,A 、B 两端固定在同一水平面上相距为L 的两点 上,使AOB 成直角三角形,∠BAO = 30°.已知OC 线长是L ,下端C 点系着一个小球(忽 略小球半径),下面说法正确的是( ) A .让小球在纸面内摆动,周期T =2π L /g B .让小球在垂直纸面方向摆动,周期T =2π 3L /2g C .让小球在纸面内摆动,周期T =2π 3L /2g D .让小球在垂直纸面内摆动,周期T =2π L /g 5.如图3所示,

普通物理学第十章 机械振动试题

第十章 机械振动 一、是非题 1.简谐振动的能量与频率的平方成正比。···········································()2.两个简谐振动的合振动仍然是一周期性振动。·····································()3.两个简谐振动的合振动的振幅仅决定于两个分振动的振幅,与其他因素无关。··········()4.物体作简谐振动,其动能随时间作周期性变化。····································()6.两个同方向同频率简谐振动的合振动振幅在其相位差为π的奇数倍时取最小值。······()7.简谐振动是一种变速运动。·····················································()8.简谐振动的特点是回复力与位移成正比且方向相同。·······························()10.物体作简谐振动,它的总能量与振幅成正比。······································()11.两个同方向同频率简谐振动的合振动振幅在其相位差为π的奇数倍时取最小值。······()12.两个同方向同频率简谐振动的合振动振幅在其相位差为π的奇数倍时取最大值。······() 二、选择题 1.做简谐振动的物体运动至正方向端点,其位移、速度和加速度为······················() A .0,0,0s a υ=== B .2 0,0,s a A υω ===C .2 ,0,s A a A υω ===?D .,,0 s A A a υω=?==2.对于两个谐振动,下列三图中,满足“振幅相同、频率不同、初相位相同”说法的是:·······( ) A .a B .b C .c D .以上都不对 3.一质点在竖直方向做简谐振动,设向上为s 轴的正方向,t=0时,质点在A/2处,且向下运动,如果将位移方程写成cos()s A t ω?=+,则初相位?为······························() A . 3 π B . 23 πC . 6 πD .3 π? 4.某质点参与15cos(/2)s t cm ππ=?及215cos(/2)s t cm ππ=+两个同方向、同频率的简谐振动,则合振动的振幅为·························································( )

大物习题集答案解析第4章机械振动

第4章 机械振动 4.1基本要求 1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系 2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析 3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义 4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点 4.2基本概念 1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。 简谐振动的运动方程 cos()x A t ω?=+ 2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。 3.周期T 作简谐振动的物体完成一次全振动所需的时间。 4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1 T ν = 5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为 22T π ωπν= =

6.相位和初相位 简谐振动的运动方程中t ω?+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位? 7.简谐振动的能量 作简谐振动的系统具有动能和势能。 弹性势能22 2p 11cos ()22E kx kA t ω?= =+ 动能[]2 2222k 111sin()sin ()222 E m m A t m A t ωω?ωω?==-+=+v 弹簧振子系统的机械能为222k p 11 22 E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。 9.受迫振动 系统在周期性外力作用下的振动。周期性外力称为驱动力。 10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。 4.3基本规律 1.一个孤立的简谐振动系统的能量是守恒的 物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。图4.1表示了弹簧振子的动能和势能随时间的变化(0?=)。为了便于将此变化与位移随时间的变化相比较,在下面画了x-t 曲线,由图可以看出,动能和势能的变化频率是弹簧振子振动频率的两倍。

大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2 100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振动位移、速度和加速度方程。 分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[ ?π ?ω+=+=t T A t A x 代入有关数据得:30.02cos[2]()4 x t SI π π=+ 振子的速度和加速度分别是: 3/0.04sin[2]()4 v dx dt t SI π ππ==-+ 2223/0.08cos[2]()4 a d x dt t SI π ππ==-+ 5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度. 分析 通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1 /210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π= (2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,2 2 cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=- 5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2 ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N = (2)由x m f 2 ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k == ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2 π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-== t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π -=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

2021年高中物理第11章 机械振动 单元综合试题及答案2

第十一章 《机械振动》综合测试 1、 关于简谐运动,下列说尖中正确的是( )。 A .位移减小时,加速度减小,速度增大。 B .位移放向总跟加速度方向相反,跟速度方向相同。 C .物体的运动方向指向平衡位置时,速度哏位移方向相反,背向平衡位置时,速度哏位移方向相同。 D .水平弹簧振子朝左运动时,加速度方向跟 速度方向相同,朝右运动时,加速度方向跟 速度方向相反。 2、 某一弹簧振子做简谐运动,在图的四幅图象中,正确反映加速度a 与位移x 的关系的是( ) 3、 如图所示的演示装置,一根张紧的水平绳上挂着五个单摆,其中A. E 摆长相同,先使A 摆摆动,其余各摆也摆动起来, A .各摆摆动的周期均与A 摆相同 B . B 摆摆运动的周期最短 C .C 摆摆动的周期最长 D . C 摆振幅最大 4、荡秋千是我国民间广为流传的健身运动, 关于荡秋千的科学原理,下列说法中正确的(A . 人应始终按照秋千摆动的节奏前后蹬板,这样才能越荡越高。荡秋千的过程是将人体内储存的营养物质的化学能转化为机械能的过程 B . 人和秋千属同一振动系统,人与秋千的相互作用力总是大小相等,方向相反,对系统做功之和为零,只有在与秋千的固有周期相同的外力作用下才能越荡越高 C . 秋千的运动是受迫振动,因此人用力的频率应保持和秋千的固有频率相同,秋千向下运动埋双脚向下用力,当秋千向上运动时双脚向上用力,这样才能越荡越高。荡秋千的过程是将人体仙储存的营养物质的化学 能转化为机械能和内能的过程。 D . 秋千的运动是受迫振动,当秋千在最高点时,人应站直身体,每当秋千向下运动时,先下蹲,系统势能向动能转化,在秋千通过最低点后逐渐用力站起,当到达最高点时身体恢复直立。。。。如此循环,系统的机械能不断增大,秋千才能越荡越高。 A B C D

11第十一章 机械振动

第十一章 机械振动 1.单项选择题(每题3分,共30分) (1)将单摆的摆球从平衡位置向位移的正方向拉开,使摆线与竖直方向成微小角度? ,然后将摆球由静止释放。如果从放手时开始计时,并用余弦函数表示摆球的振动方程,则该单摆振动的初相为[ B ] (A) π; (B) 0 ; (C) π/2 ; (D) ?。 (2)一个弹簧振子和一个单摆在地面上的固有振动周期分别为T 1和T 2,如果将它们拿到月球上去,相应的周期分别为1T '和2T '。则有[ D ] (A) 11T T >'、22T T >'; (B) 11T T ='、22T T ='; (C) 11T T <'、22T T <'; (D) 11T T ='、22T T >'。 (3)一个弹簧振子的谐振子的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置并且向规定的正方向运动时开始计时。则其振动方程为[ B ] (A) )2(cos π-=t k m A x ; (B) )2(cos π -=t m k A x ; (C) )2( cos π+=t k m A x ; (D) )2 (cos π+=t m k A x 。 (4)某质点在x 轴上作简谐振动,振辐A =6cm ,周期T = 2s ,将其平衡位置取作坐标原点。 如果t = 0时刻质点第一次通过x = -3cm 处,并且向x 轴负方向运动,则质点第二次通过x = -3cm 处的时刻为[ B ] (A) 2s ; (B) (4/3) s ; (C) 1s ; (D) (2/3) s 。 (5)某质点作简谐振动的振动方程为)cos(αω+=t A x ,当时间t = 0.5T 时,质点的速度 为[ B ] (A) αωcos A ; (B) αωsin A ; (C) αωcos A -; (D) αωsin A -。 (6)某质点沿x 轴作简谐振动,其振动方程为)4/π3cos(+=t A x ω,在图11-29中,表示该质点振动曲线的是[ A ] (7)当作简谐振动的弹簧振子偏离平衡位置的位移大小为振幅的1/4时,其动能为振动总能量的[ A ] (A) 15/16; (B) 13/16; (C) 11/16; (D) 9/16。 (8)一个作简谐振动的质点的振动方程为)cos(?ω+=t A x ,在求其振动动能时,得出如下面五个表达式,① )(sin 21222?ωω+t A m 、②)(c o s 2 1 222?ωω+t A m 、③ )s i n (212?ω+t kA 、④)(cos 2122?ω+t kA 、⑤)(sin π22222?ω+t mA T ,其中m 是质点的

第四章机械振动

第二篇振动与波 振动和波动是物质的基本运动形式。 在力学中有机械振动和机械波 在电学中有电磁振荡和电磁波 声是一种机械波 光则是电磁波 量子力学又叫波动力学。 第四章机械振动 教学时数:6学时 本章教学目标 了解简谐振动的动力学特征,掌握描述简谐振动的重要参量,理解简谐振动的运动学方程,知道弹簧振子的动能和势能随时间变化的规律;了解简谐振动的合成,掌握同方向、同频率谐振动的合成方法,能够求相关问题的合振动方程,了解同方向不同频率简谐振动的合成,了解阻尼振动、受迫振动、共振的含义。 教学方法:讲授法、讨论法等 教学重点:掌握同方向、同频率谐振动的合成方法,能够求相关问题的合振动方程 机械振动:物体在某固定位置附近的往复运动叫做机械振动,它是物体一种普遍的运动形式。例如活塞的往复运动、树叶在空气中的抖动、琴弦的振动、心脏的跳动等都是振动。 广义地说,任何一个物理量在某一量值附近随时间作周期性变化都可以叫做振动。例如交流电路中的电流、电压,振荡电路中的电场强度和磁场强度等均随时间

作周期性的变化,因此都可以称为振动。 §4—1 简谐振动的动力学特征 简谐振动是振动中最基本最简单的振动形式,任何一个复杂的振动都可以看成是若干个或是无限多个谐振动的合成。 定义:一个作往复运动的物体,如果其偏离平衡位置的位移z(或角位移口)随时间f 按余弦(或正弦)规律变化,即 x = A cos(ωt + φ0) 则这种振动称之为简谐振动。 研究表明,作简谐振动的物体(或系统),尽管描述它们偏离平衡位置位移的物理量可以千差万别,但描述它们动力学特征的运动微分方程则完全相同。 一、弹簧振子模型 将轻弹簧(质量可忽略不计)一端固定,另一端与质量为m 的物体相连,若该系统在振动过程中,弹簧的形变较小(即形变弹簧作用于物体的力总是满足胡克定律),那么,这样的弹簧——物体系统称为弹簧振子。 如图所示,将弹簧振子水平放置,使振子在水平光滑支撑面上振动。以弹簧处于自然状态(弹簧既未伸长也未压缩的状态)的稳定平衡位置为坐标原点,当振子偏离平衡位置的位移为x 时,其受到的弹力作用为 F= - kx 式中k 为弹簧的劲度系数,负号表示弹力的方向与振子的位移方向相反。即振子在运动过程中受到的力总是指向平衡位置,且力的大小与振子 偏离平衡位置的位移成正比,这种力就称之为线性回复力。 如果不计阻力(如振子与支撑面的摩擦力,在空气中运动时受到的介质阻力及其 222==-m k dt x d m kx ω

第十一章 机械振动

第十一章机械振动 11.3 简谐运动的回复力和能量 新课标要求 (一)知识与技能 1、理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。 2、掌握简谐运动回复力的特征。 3、对水平的弹簧振子,能定量地说明弹性势能与动能的转化。 (二)过程与方法 1、通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。 2、分析弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。 (三)情感、态度与价值观 1、通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。 2、简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。 教学重点 1、简谐运动的回复力特征及相关物理量的变化规律。 2、对简谐运动中能量转化和守恒的具体分析。 教学难点 1、物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。 2、关于简谐运动中能量的转化。

教学方法 讨论与归纳、推导与列表对比、多媒体模拟展示 教学用具: CAI 课件 教学过程 (一)引入新课 教师:前面两节课我们从运动学的角度研究了简谐运动的规律,不涉及它所受的力。 我们已知道:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向总指向圆心。那么物体简谐运动时,所受合力有何特点呢? 这节课我们就来学习简谐运动的动力学特征。 (二)进行新课 1.简谐运动的回复力 (1)振动形成的原因(以水平弹簧振子为例) 问题:(如图所示)当把振子从它静止的位置O 拉开一小段距离到A 再放开后,它为什么会在A -O -A '之间振动呢? 分析:物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力。回复力是根据力的效果命名的,对于水平方向的弹簧振子,它是弹力。 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 回复力是根据力的作用效果命名的,不是什么新的性质的力,可以是重力、弹力或摩擦力,或几个力的合力,或某个力的分力等。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

第五章机械振动自测题

一.自测题 12-1.一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上试判断下面哪种情况是正确的 (A)竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B)竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C)两种情况都可作简谐振动; (D)两种情况都不能作简谐振动。 12-2.一质点在x轴上作谐振动,振幅4cm A=,周期2s T=,取平衡位置为坐标原点,若0 = t时刻质点第一次通过2cm x=-处,且向x轴正方向运动,则质点第二次通过2cm x=-处的时刻 (A) 1s;(B) 4 s 3 ;(C) 2 s 3 ;(D)2s。 12-3.一弹簧振子作简谐振动,总能量为E1,如果谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量变为 (A)E 1 4 ;(B) E 1 2 ;(C)4 1 E;(D)2 1 E。 150

151 12-4.用余弦函数描述一简谐振动。已知振幅为A ,周期为T ,初相π?3 1-=,则振动曲线为 12-5.已知某简谐振动的振动曲线如图所示,则此简谐振 动的振动方程为 (A) ??? ??+=3232cos 2ππt x ;(B) ?? ? ??-=332c o s 2ππt x ; 2 1 -2 o 1 x (m) t (s) o 2 T x (m ) t (s ) 2A - 2 A (A) o 2 T x (m ) t (s ) 2A - 2 A (B) o 2T x (m ) t (s ) 2A - 2A (C) o 2 T x (m ) t (s ) 2A - 2 A (D)

人教版高中物理选修3-4第十一章机械振动试题

高中物理学习材料 (马鸣风萧萧**整理制作) 选修3-4第十一章机械振动试题 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共计100分。考试时间90分钟。 第I 卷(选择题 共40分) 一、本题共10小题;每小题4分,共计40分。在每小题给出的四个选项中,有一个或多个选项正确,全部选对得4分,选对但不全得2分,有错选得0分. 1.弹簧振子作简谐运动,t 1时刻速度为v ,t 2时刻也为v ,且方向相同。已知(t 2-t 1)小于周期T ,则(t 2-t 1) ( ) A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 2.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪光照片,如右图 所示,(悬点和小钉未被摄入),P 为摆动中的最低点。已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为 ( ) A .L /4 B .L /2 C .3L /4 D .无法确定 3.A 、B 两个完全一样的弹簧振子,把A 振子移到A 的平衡位置右边10cm ,把B 振子移到B 的平衡位置右边5cm ,然后同时放手,那么: ( ) A .A 、 B 运动的方向总是相同的. B .A 、B 运动的方向总是相反的. C .A 、B 运动的方向有时相同、有时相反. D .无法判断A 、B 运动的方向的关系. 4 .铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就

4第四章 机械振动

- 81 - 第二篇振动与波 振动和波动是物质的基本运动形式。 在力学中有机械振动和机械波 在电学中有电磁振荡和电磁波 声是一种机械波 光则是电磁波 量子力学又叫波动力学。 第四章 机械振动 教学时数:6学时 本章教学目标 了解简谐振动的动力学特征,掌握描述简谐振动的重要参量,理解简谐振动的运动学方程,知道弹簧振子的动能和势能随时间变化的规律;了解简谐振动的合成,掌握同方向、同频率谐振动的合成方法,能够求相关问题的合振动方程,了解同方向不同频率简谐振动的合成,了解阻尼振动、受迫振动、共振的含义。 教学方法:讲授法、讨论法等 教学重点:掌握同方向、同频率谐振动的合成方法,能够求相关问题的合振动方程 机械振动:物体在某固定位置附近的往复运动叫做机械振动,它是物体一种普遍的运动形式。例如活塞的往复运动、树叶在空气中的抖动、琴弦的振动、心脏的跳动等都是振动。 广义地说,任何一个物理量在某一量值附近随时间作周期性变化都可以叫做振动。例如交流电路中的电流、电压,振荡电路中的电场强度和磁场强度等均随时间

- 82 - 作周期性的变化,因此都可以称为振动。 §4—1 简谐振动的动力学特征 简谐振动是振动中最基本最简单的振动形式,任何一个复杂的振动都可以看成是若干个或是无限多个谐振动的合成。 定义:一个作往复运动的物体,如果其偏离平衡位置的位移z(或角位移口)随时间f 按余弦(或正弦)规律变化,即 x = A cos(ωt + φ0) 则这种振动称之为简谐振动。 研究表明,作简谐振动的物体(或系统),尽管描述它们偏离平衡位置位移的物理量可以千差万别,但描述它们动力学特征的运动微分方程则完全相同。 一、弹簧振子模型 将轻弹簧(质量可忽略不计)一端固定,另一端与质量为m 的物体相连,若该系统在振动过程中,弹簧的形变较小(即形变弹簧作用于物体的力总是满足胡克定律),那么,这样的弹簧——物体系统称为弹簧振子。 如图所示,将弹簧振子水平放置,使振子在水平光滑支撑面上振动。以弹簧处于自然状态(弹簧既未伸长也未压缩的状态)的稳定平衡位置为坐标原点,当振子偏离平衡位置的位移为x 时,其受到的弹力作用为 F= - kx 式中k 为弹簧的劲度系数,负号表示弹力的方向与振子的位移方向相反。即振子在运动过程中受到的力总是指向平衡位置,且力的大小与振子 偏离平衡位置的位移成正比,这种力就称之为线性回复力。 如果不计阻力(如振子与支撑面的摩擦力,在空气中运动时受到的介质阻力及其 2=-x d m kx

【精修版】物理(选修3-4):第11章《机械振动》精选试题第十一章 单元测试题

精品文档?人教版物理 第十一章单元测试题 一、选择题 1、简谐运动中的平衡位置是指() A.速度为零的位置B.回复力为零的位置 C.加速度最大的位置D.位移最大的位置 2、关于简谐运动,下列说法中正确的是() A.回复力总指向平衡位置 B.加速度和速度方向总跟位移的方向相反 C.做简谐运动的物体如果位移越来越小,则加速度越来越小,速度也越来越小 D.回复力是根据力的效果命名的 3、关于单摆做简谐运动的过程中,下列说法中正确的是() A.在平衡位置摆球的动能和势能均达到最大值 B.在最大位移处势能最大,而动能最小 C.在平衡位置绳子的拉力最大,摆球速度最大 D.摆球由最大位移到平衡位置运动时,动能变大,势能变小 4、卡车在水平面上行驶,货物随车厢底板上下振动而不脱离底板,设货物做简谐运动,货物对底板的压力最大的时刻是() A.货物通过平衡位置向上时 B.货物通过平衡位置向下时 C.货物向上达到最大位移时 D.货物向下达到最大位移时 5、关于简谐运动的位移、加速度和速度的关系,正确的说法是() A.位移减小时,加速度增大,速度增大 B.物体的速度增大时,加速度一定减小 C.位移方向总和加速度方向相反,和速度方向相同 D.物体向平衡位置运动时,速度方向和位移方向相同 6、一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1 s;质点

通过B点后再经过1 s又第二次通过B点.在这2 s内质点通过的总路程为12 cm,则质点的振动周期和振幅分别是() A.3 s,6 cm B.4 s,6 cm C.4 s,9 cm D.2 s,8 cm 7、振动着的单摆的摆球,通过平衡位置时,它受到的回复力() A.指向地面B.指向悬点 C.数值为零D.垂直摆线,指向运动方向 8、如图1所示为弹簧振子P在0 ~ 4 s内的运动图象,从t = 0开始() A.再过1 s,该振子的位移是正的最大 B.再过1 s,该振子的速度沿正方向 C.再过1 s,该振子的加速度沿正方向 D.再过1 s,该振子的加速度最大 9、惠更斯利用摆的等时性发明了带摆的计时器,叫摆钟.摆钟运行 时克服摩擦所需的能量由重锤的势能提供,运行的速率由钟摆控制.旋转钟摆下端的螺母可以使摆上的圆盘沿摆杆上下移动,如图2所示.则下面操作正确的是() A.当摆钟不准确时需要调整圆盘位置 B.摆钟快了应使圆盘沿摆杆上移 C.由冬季到夏季时应使圆盘沿摆杆上移 D.把摆钟从武汉移到北京应使圆盘沿摆杆上移 10、如图3所示,五个摆系于同一根绷紧的水平绳上,A是质量较大的摆,E与A等高,先使A振动从而带动其余各摆随后也跟着振动起来,则下列说法正确的是() A.其他各摆振动的周期跟A摆相同 B.其他各摆振动的振幅大小相等 C.其他各摆振动的振幅不同,E摆振幅最大 D.B、C、D三摆振动的振幅大小不同,B摆的振幅最小 11、如图4所示,一水平弹簧振子在光滑水平面上的B、C两点间做简 谐运动,O为平衡位置.已知振子由完全相同的P、Q两部分组成,彼此图 2 图 3 图 1 图 4

高中物理第十一章机械振动总结

高中物理第十一章 机械振动总结 一、机械振动: (一)简谐运动: 1、简谐运动的特征: 1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化 在振动中位移常指是物体离开平衡位置的位移 2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比, 方向与位移方向相反(指向平衡位置) kx F -= ①回复力:使振动物体回到平衡位置的力叫做回复力。 ②回复力是根据力的效果来命名的。 ③回复力的方向总是指向平衡位置。 ④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。 ⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x m k a -= ⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征 2、简谐运动的运动学分析: 1)简谐运动的运动过程分析: (1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程) (2)运动过程: 简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程 (3)简谐运动的对称性: 做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。动能、势能相等(大小相等、

相等)。 2)表征简谐运动的物理量: (1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。 ①振幅是标量。 ②振幅是反映振动强弱的物理量。 (2)周期和频率: ①振动物体完成一次全振动所用的时间叫做振动的周期。 ②单位时间内完成全振动的次数叫做全振动的频率。 它们的关系是T=1/f 。 在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(?ω+=t A x 4)简谐运动的图像: 振动图像表示了振动物体的位移随时间变化的规律。 反映了振动质点在所有时刻的位移。 从图像中可得到的信息: ①某时刻的位置、振幅、周期 ②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程: 1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。 ①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。 ②阻尼振动的振幅越来越小。 2)简谐运动过程中能量的转化: 系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

基础物理学上册习题解答和分析_第五章机械振动习题解答和分析[1]

习题五 5-1 有一弹簧振子,振幅m A 2 100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振 动位移、速度和加速度方程。 分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[?π ?ω+=+=t T A t A x 代入有关数据得:30.02cos[2]()4 x t SI π π=+ 振子的速度和加速度分别是: 3/0.04sin[2]()4 v dx dt t SI π ππ==-+ 2223/0.08cos[2]()4 a d x dt t SI π ππ==-+ 5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度. 分析 通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1 /210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π= (2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,22cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=- 5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2 ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =

相关文档
相关文档 最新文档