文档库 最新最全的文档下载
当前位置:文档库 › 6 地下水环境影响评价

6 地下水环境影响评价

6 地下水环境影响评价
6 地下水环境影响评价

6 地下水环境影响评价

6.1 地下水环境影响评价级别

6.1.1 建设项目分类

本项目生产及生活用水全部厂区由2口自备水井(供水能力80m3/h)供给;生产废水酸碱废水(脱硫用水、栈桥冲洗及煤场喷洒)、脱硫废水(中和处理后回用于灰渣加湿)、锅炉排污水(冷却后回用于脱硫工艺用水、灰渣加湿与煤场喷洒)、非经常性废水(锅炉酸洗废水、空气预热器冲洗水等,中和后用于煤场喷洒)不外排,循环冷却水排污水(950.4m3/a)和生活污水(480m3/a)满足《污水排入城镇下水道水质标准》(CJ343-2010)B级标准的进水水质标准要求后经市政管网排入鱼台绿都水质净化有限公司处理厂集中处理。因此,本项目建设、生产运行和服务期满后的各个过程中,可能引起地下水流场或地下水水位变化及导致环境水文地质问题,可能造成地下水水质污染,根据《环境影响评价技术导则地下水环境》(HJ 610-2011),本项目属Ⅲ类建设项目。

6.1.2 地下水环境影响评价级别

6.1.2.1、项目工作等级划分依据

本项目(Ⅲ类)工作等级划分依据见表6.1-1。

表6.1-1 本项目(Ⅲ类)工作等级划分依据表

6.1.2.2、项目评价工作等级

本项目(Ⅲ类)评价工作等级见表6.1-2。

表6.1-2 本项目(Ⅲ类)评价工作等级表

综上可知,根据《环境影响评价技术导则地下水环境》(HJ 610-2011),本

项目地下水评价工作等级为三级。

6.2 地下水环境现状监测与评价

6.2.1地下水环境现状监测

6.2.1.1监测布点

根据评价区内地下水流向,在项目区等处设置3个地下水监测点位。监测布点具体位置见表6.2-1及图6.2-1所示。

表6.2-1 监测布点具体位置表

6.2.1.2 监测项目

pH、总硬度、高锰酸盐指数、氟化物、硫酸盐、硝酸盐、亚硝酸盐、挥发酚、氨氮、氰化物、氯化物、溶解性总固体、砷、汞、六价铬、铅、铁、锰、铜、锌、镍21项。同时测量水温、井深和地下水埋深。

6.2.1.3 监测分析方法

表6.2-2 地下水监测方法一览表

6.2.1.4监测时间、频率

本期地下水监测定于2013年10月23日,监测一天。

6.2.1.5监测结果

地下水环境现状监测结果见表6.2-3。

表6.2-3 地下水监测结果表

6.2.2 地下水环境现状评价

6.2.2.1评价标准

根据环境功能区划,地下水执行《地下水质量标准》(GB/T14848-1993)中III 类标准。

表6.2-4 地下水质量评价标准

6.2.2.2 评价方法

采用单因子指数法进行评价,具体计算公式为:

i 0P i i C C =

式中:Pi-污染因子i 的单因子指数; C i -污染因子i 的实测浓度值(mg/m 3); C i0-污染因子i 的标准值(mg/m 3)。 对于pH 值,其污染指数按下式计算:

7.07.0j j sd pH S pH -=

-(pH j ≤7.0)

7.07.0

j j su pH S pH -=

-(pH j >7.0)

式中:S j —pH 的标准指数; pH j —j 点的pH 值;

pH sd —地下水水质标准中规定的pH 值下限; pH su —地下水水质标准中规定的pH 值上限。 6.2.2.3 评价结果

因挥发酚、氰化物、砷、六价铬、铅、铜、锌、镍均为未检出,不做现状评价。地下水环境质量现状监测评价结果详见表6.2-5。

表6.2-5 地下水监测评价结果表

从监测结果可以看出,朱牌坊村监测点总硬度、亚硝酸盐和硫酸盐超标,最大超标倍数分别为0.007、0.2倍和0.008倍,3#监测点溶解性总固体超标0.06倍,厂址煤渣存放地监测点硫酸盐超标,最大超标倍数为0.056倍,西华村监测点总硬度超标,最大超标倍数分别为0.013倍,其它指标均不超标,基本满足《地下水质量标准》(GB/T14848-93)Ⅲ类标准的要求。

6.3 地下水环境影响分析

6.3.1 区域水文地质条件

拟建场地位于金滕凹陷北缘,距拟建场区较近的断裂构造主要为鱼台断裂。鱼台断裂贯穿鱼台县北部(距现场约2公里),该断裂为隐伏基岩断裂,走向近东西,倾向南,倾角约700为区域正断层,断距约500~800m,该断裂为非全新活动断裂。

勘探深度范围内揭露的地下水为第四系松散层孔隙水,含水层为⑵、⑸、⑻层粉土及⑾—1层细砂。施工结束后测得地水位埋深最大值0.50m,最小值0.38m,平均值0.42m,稳定水位标高34.02~34.04m,平均34.03m。

以大气降水入渗、侧向径流为主要补给来源,以人工开采、侧向径流和地表蒸发为主要排泄途径。水位年变化幅度1~3m,抗浮设计水位可按34.20m考虑。

经取水样分析资料可知:Na+含量为282.09~344.39mg/L,Ca2+含量为94.56~95.01mg/L,Mg2+含量为35.98~36.98mg/L,Cl-含量为261.95~262.79mg/L,SO

4

2-

含量为145.77~146.11mg/L,HCO

3

-含量为586.40~587.32mg/L,该地下水水化学

类型为HCO

3·Cl-Na型水,侵蚀性CO

2

为零,PH值为7.0。

6.3.2地下水动态特征

浅层地下水位动态主要受大气降水、地下水人工开采及地下侧向径流的影响,其动态变化规律是以上各种因素综合作用的结果。不过在年内变化的某一时段内,地下水位的变化受某一主导因素影响而表现出的动态,为时段单项动态。年内动态的综合反映,形成年内组合动态。总之,随着季节和降水量的周期性变化,年内(日历年)地下水位变化规律一般为“下降——上升——下降”。从年初开始,直到主汛期来临,降水少,地下水开采量大,其补给量远小于排泄量,水位持续降低,在6月底或7月初一般到达年内水位最低值。7~9月份,全年约60%的降水量集中在该时段内,此段时间内降水入渗补给量大,又基本没有农业开采,地下水位迅速回升。

6.3.3地下水补给、径流条件

本区浅层地下水的补给来源,主要是大气降水入渗补给,其次有流经本区河道的水体侧渗补给和引湖灌溉渠系及田间渗漏补给。

大气降水直接影响孔隙水储存、调节与均衡。本区地表及包气带岩性一般为砂质粘土及粘土质砂为主,有利于大气降水入渗补给。

本区河道中有水流经时,河道水会对本区地下水造成侧渗补给。

大气降水一般集中在6~9月份,暴雨洪水也一般发生在该段时间内,使降水入渗补给及河道渗漏补给具有明显的季节性变化特征。

地下水的径流主要受当地的地形、地貌和地下水开采等因素的影响。丰水及平水年份浅层地下水总的径流趋势为自东北流向西南。

6.3.4厂区地层情况

勘探深度范围内揭露的地层均为第四系冲(洪)积物,自上而下共分十一层(不含亚层),现分述之:

al+pl)

⑴、粘土(Q

4

灰色、黄色,刀切面有光泽,含锰质结核及少量姜石,姜石径2cm左右,干强度及韧性高,无摇振反应。

该层在场区内均有分布,厚度0.60~1.60m,平均0.98m;层底标高32.91~33.92m,平均33.47m。

地层可塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑵、粉土(Q

4

浅黄色,湿~很湿,夹粉质粘土条纹,刀切面无光泽,干强度及韧性低,摇振反应中等。

该层在场区内均有分布,厚度2.40~4.30m,平均3.37m;层底标高29.44~30.88m,平均30.10m;层底埋深3.60~5.00m,平均4.35m。

该层粘粒含量为4.5~7.4%。

地层呈中密~密实状态,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑶、粘土(Q

4

灰色、黄色,刀切面有光泽,含锰质结核,干强度及韧性高,无摇振反应,顶部40cm力学性质较差。

该层在场区内均有分布,厚度1.20~2.80m,平均2.06m;层底标高27.48~28.34m,平均28.04m;层底埋深6.10~7.00m,平均6.41m。

地层可塑,具中压缩性,局部高压缩性。其物理力学性质指标详见下表:

al+pl)

⑷、粉质粘土(Q

4

暗黄色,刀切面稍有光泽,含姜石,姜石径2cm左右,干强度及韧性中等,无摇振反应。局部夹粉土薄层。

该层在场区内均有分布,厚度1.00~4.40m,平均2.00m;层底标高23.90~27.08m,平均26.04m;层底埋深7.40~10.50m,平均8.41m。

地层可塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑸、粉土(Q

4

浅黄色,湿~很湿,刀切面无光泽,干强度及韧性低,摇振析水,夹粉质粘土及粘土薄层。

该层在场区内均有分布,厚度3.50~8.00m,平均6.12m;层底标高18.44~23.04m,平均20.16m;层底埋深11.40~16.00m,平均14.29m。

地层呈中密~密实状态,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑹、粉质粘土(Q

4

暗黄色,刀切面稍光泽,干强度及韧性中等,无摇振反应,该层底部含贝壳残体。

该层在场地内均有分布,厚度1.40~5.80m,平均3.21m;层底标高15.96~17.52m,平均16.97m;层底埋深17.00~18.50m,平均17.48m。

地层可塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑺、粉质粘土(Q

4

暗黄色,刀切面稍有光泽,含姜石,姜石径2cm左右,干强度及韧性中等,无摇振反应。

该层在场区内均有分布,厚度2.00~3.00m,平均2.41m;层底标高13.26~15.22m,平均14.56m;层底埋深19.30~21.20m,平均19.89m。

地层可塑~硬塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑻、粉土(Q

4

浅黄色,湿~很湿,刀切面无光泽,干强度及韧性低,摇振反应中等。局部夹粉质粘土团块。

该层在场地内均有分布,厚度3.30~6.70m,平均5.82m;层底标高7.24~11.44m,平均8.14m;层底埋深23.00~27.20m,平均26.30m。

地层呈密实状态,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑻—1、粉质粘土(Q

4

浅黄色,刀切面稍有光泽,干强度及韧性中等,无摇振反应。

该层在场地内分布不均,厚度0.60~1.00m,平均0.93m;层底标高10.06~10.74m,平均10.38m;层底埋深23.70~24.40m,平均24.06m。

地层可塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑼、粉质粘土(Q

4

黄褐色,刀切面稍有光泽,含姜石,姜石径3cm左右,具灰绿色斑,干强度

及韧性中等,无摇振反应。

该层在场地内均有分布,厚度8.30~9.80m,平均9.06m;层底标高-1.57~-0.56m,平均-1.24m;层底埋深35.00~36.00m,平均35.68m。

地层可塑~硬塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑽、粘土(Q

4

黄褐色,刀切面有光泽,含锰质结核及姜石,姜石径3cm左右,具灰绿色斑,干强度及韧性高,无摇振反应。

该层在场地内均有分布,厚度6.50~7.10m,平均6.73m;层底标高-8.14~-7.96m,平均-8.05m;层底埋深42.40~42.60m,平均42.50m。

地层硬塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑾、粉质粘土(Q

4

黄褐色,刀切面稍有光泽,含锰质结核及姜石,姜石径3cm左右,干强度及韧性中等,无摇振反应。

该层在场地内均有分布,未揭穿,最大揭露厚度为17.5m。

地层硬塑,具中压缩性。其物理力学性质指标详见下表:

al+pl)

⑾—1、细砂(Q

4

浅黄色,饱和,密实,成份以石英、长石为主,分选及磨圆较好。

该层仅分布于28孔附近,厚度3.00m;层底标高-19.16m;层底埋深53.60m。该层标准贯入试验锤击数43.0击。

工程地质剖面图见图6.3-1。

图6.3-1 工程地质剖面图

6.3.4项目区附近水源地分布

鱼台县饮用水源地尚未进行科学详细的规划论证,现根据鱼台县环保局提供信息知,鱼台县城市饮用水取水口现位于鱼台县城区北侧约2km处。根据饮用水源地保护区的规划原则,一级保护区为以开采井为圆心,半径100米的圆形区域、二级保护区为以开采井为圆心,半径1000米的圆形区域,另外在沿二级保护区向外适当扩展为准保护区和水源补给区等。根据以上原则划分,鱼台县饮用水源地保护区大约位于鱼台县城区北约3km、以开采井为半径约1km的区域内,且开采深层地下水。而拟建项目位于鱼台县城区西北约10km以外的区域,所以认为本拟建项目位于鱼台县城市饮用水源地保护区及其补源区之外,且本项目对地下水可能产生的影响仅为浅水层,不会对深层地下水及10km以外的城市饮用水源地构成不利影响。拟建项目与鱼台县水源地位置关系见图6.3-1。

6.3.5 地下水污染源分析

6.3.5.1 本项目可能产生的渗漏环节及拟采取的防渗措施

1、本项目可能产生的渗漏环节

本项目生产装置及管线比较复杂,可能产生渗漏的主要环节见表6.3-1。

表6.3-1 本项目可能产生渗漏的环节表

2 、本项目拟采取的防渗措施

(1)防腐防渗遵循的原则

根据地下水环境的特点,地下防腐防渗遵循下列原则:

①严格遵照国家有关规定,采用成熟的技术从严设防。

②根据实际情况,把整个生产区域划分为污染区和一般区域,按照对地下水污染的轻重分别设防。

(2)防渗分区

工程依据生产、输送、储存等环节分为污染区和一般区域。具体见分区防渗图6.3-2。

污染区是指在生产过程中有可能发生物料、化学品或含有污染物的介质泄漏到地面或地下的区域。包括:原料储存区、车间、固废暂存区、污水输送管道和事故水池。一般工业固体废物贮存场所严格按照《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)要求制定防渗措施。

A. 重点防渗区域防渗结构图

B. 一般防渗区域防渗结构图

图6.3-3 拟建项目分区防渗结构图

本项目拟对堆场区、污水池、事故水池等进行防渗、防腐处理,以避免工程建成后污废水渗入地下,对地下水产生污染,对生态环境产生不利影响。

全厂防渗等防止地下水污染预防措施见表6.3-2。

表6.3-2 全厂防腐、防渗等预防措施

管道防腐为防治管道污染地下水的重点工程措施。设计推荐管道防腐采用三层PE,防腐层厚度≥0.45mm,具有较好的化学稳定性、绝缘性、整体防腐性能突出。同时,采用牺牲阳极的阴极保护法对管道全线进行保护,可有效的减少管道的腐蚀,减少废水泄漏事故发生。污水管道防渗结构见图6.3-4。

图6.3-4 污水管道防渗结构示意图

事故池、污水池防渗:混凝土池体采用防渗钢筋混凝土,池体内表面涂刷水泥基渗透结晶型防渗涂料(渗透系数不大于1.0×10-7cm/s)。池底采用“水

泥渗透结晶型防渗涂层+抗渗钢筋混凝土整体基础+素填土垫层+原土夯实”(图6.3-5)。

图6.3-5 污水池事故水池防渗示意图

防渗防腐施工管理:

(1)为解决渗漏问题,结合实际现场情况选用水泥土搅拌压实防渗措施,即利用常规标号水泥与天然土壤进行拌和,然后利用压路机进行碾压,在地表形成一层不透水盖层,达到地基防渗之功效。施工程序:水泥土混合比例量为3:7,将厂区地表天然土壤搅拌均匀,然后分层利用压路机碾压或夯实。

水泥土施工过程中特别加强含水量、施工缝、密实度的质量控制,在回填时注意按规范施工、配比,错层设置,加强养护管理,及时取样检验压路机碾压或夯实密实度,若有问题及时整改。

(2)混凝土地面在施工过程中加强质量控制管理,确保混凝土的抗渗性能、抗侵蚀性能。

(3)玻璃钢严格按规范施工,以保证玻璃钢无气泡等影响质量问题。

(4)铺砌花岗岩先保证料石表面清洁,铺砌时注意料石间缝隙树脂胶泥的饱满;每一步工序严格按规范、设计施工,同时加强中间的检查验收,确保施工质量。

装置投产后,已加强现场巡查,特别是在下雨地面水量较大时,重点检查有

无渗漏情况(如地面有气泡现象)。若发现问题,及时分析原因,找到泄漏点制定整改措施,尽快修补,确保防腐防渗层的完整性。

6.3.5.2 本项目对地下水环境的影响

本项目为防止项目污水对地下水造成污染,建设严格的防渗漏设施,包括堆场防渗地坪、完善的污水收集管网,防渗管道等。使可能产生渗漏的环节均得到有效控制,从而避免跑、冒、滴、漏现象的发生。

(1)废水处理及排放对地下水的影响

废水的下渗汇入地下水对区域地下水质有一定的影响。

(2)废水收集、处理对厂区地下水的影响

依据厂址所在地含水层和隔水层分布特征,本项目的建设对地下水环境的影响如下:

①场区地下水为第四系孔隙潜水,主要以大气降水和地表灌溉回渗为主要补充来源。由于该区域各含水层之间水力联系密切,第四系浅层地下水容易受到污水下渗的污染,本项目通过采取严格的防渗措施后,可能产生渗漏的环节均得到有效控制,厂区内的跑、冒、滴、漏现象可以得到避免,可最大程度的减少本项目对地下水的影响。

②深层承压水因有隔水层保护不易受到污染,即使厂区内有少量的跑、冒、滴、漏现象发生,对第四系深层承压水的影响也较小。但是应当指出的是:当深层水大量开采造成其水位低于上层水位,大量井群浅层、深层混合开采,则会通过井筒产生浅层水向深层含水层的补给,因此要注意打井过程中的止水措施,防止人为穿层污染。

③奥陶系岩溶水含水层因埋藏深度大,上覆隔水层厚,本项目不会对奥陶系岩溶水环境产生明显的不利影响。

总的来看,本项目在完善项目区防渗防漏措施下,对周围地下水影响较小,从环境角度是可行的。

6.4 对鱼台县水源地保护区影响的分析

根据地下水源地规划,本项目位于城市饮用水源地保护区及其补源区之外,不会对其构成明显的不利影响。

地表水环境影响评价

地表水环境影响评价 ——紫金山铜矿环境影响报告书(报批版) 评价项目 紫金山铜矿开发过程中将产生废水、废气、噪声和固体废物等污染源,其中主要是废水和固体废弃物,并伴有植被破坏、土层扰动等可能导致水土流失与影响矿区生态的问题。 结合区域环境特征和环境保护目标的分布情况,确定的评价项目有地表水环境、生态环境和大气环境。 评价工作等级 (1)地表水环境影响评价工作等级 紫金山铜矿正常情况下的废水排放量为5700~12300m3/d,主要污染物有pH、Cu、Pb、Zn、As 和Cd,排入的地表水体为汀江。汀江年均流量为185m3/s(属大河),水质按Ⅲ类标准控制。根据《环境影响评价技术导则-地面水环境》(HJ/T2.3-93),确定地表水环境评价工作等级为二级。 评价内容 (1)地表水环境影响评价 采矿废水正常和事故排放情况下对汀江的影响;选冶废水事故排放情况下对汀江的影响。 评价因子 (1)地表水环境评价因子:pH、Cu、Pb、Zn、As、Cd。 环境质量现状

由表4-5可知:汀江及旧县河各项水质指标均符合《地表水环境质量标准》(GB3838 -2002)“Ⅲ类标准”要求,其达标率为100%,说明汀江及旧县河的水质情况良好。 地表水环境影响预测与评价 1 预测模式及参数选取 1.1预测模式选取 由于在铜矿排入汀江处建有金山电站,堆浸场废水排入金山电站库区内,520m 中段废水排入发电站下游的汀江,故评价分排入库区和汀江两种情况进行预测,同时考虑金山电站发电期(非发电期)水文情况。 (1)汀江:混合过程段采用二维稳态混合模式(岸边排放),混合过程段的长度计算采用(2)式。 M y=(0.058H+0.0065B)(gHI)1/2 式中:C(x,y)—预测点污染物浓度,mg/L; Q p—废水排放量,m3/s; C p-污染物排放浓度,mg/L; C h—河流上游污染物浓度,mg/L; x—预测点距排放口的距离,m; y—预测点距岸边的距离,m; B—河流宽度,m; u—河流中断面平均流速,m/s; M y—横向混合系数,m2/s;

地下水环境影响分析

地下水环境影响分析 (一)概述 前已述及,地下水环境影响评价工作从内容上大致可分为两类:一是注重建设工程对地下水水质及其介质环境的影响评价,二是与地下水有关的非污染型环境影响评价。 早期的地下水环境影响评价工作,更注重三废排放对地下水造成污染,致使水质变差的可能性及程度。注重浅表地层的防渗隔污能力,即评价污废水下渗进入含水层,进而对地下水造成污染的可能性。近年来同时注重了建设工程造成的非污染性的生态环境影响。如: 1.大面积的地面硬化会改变地表的入渗能力,减少地表水的下渗补给量,从而影响地下水资源的有效补给。城区附近或多项目连续建设时此类问题比较突出; 2.某些工程因大量引水或排水,会使局部范围内的地下水位升高,造成土地盐渍化、沼泽化等,使生态环境发生改变。如水库工程尤其是平原水库及南水北调等类型的大型调水工程; 3.因工程供水而大量抽取地下水,会导致地下水资源失衡、诱发地面沉降、地面塌陷等地质环境问题; 4.建设工程对植被的破坏除产生地表生态环境影响外,也会影响地下水补给区的水源涵养能力。 考虑以上诸多因素,环境影响评价工作不仅要研究分析含水层与包气带的地层结构、厚度、岩性及渗流过程中各种物理、化学作用的强弱,还要注重研究地下水的水量、水质、环境功能和社会利用价值。这其中涉及包气带、含水层、地下水类型、水动力场、水化学场等诸多水文地质因素。 (二)分析评价的原则与思路 地质环境条件分析是地下水环境影响分析和预测评价的基础,也是定性评价地下水环境影响的基本方法。污染评价和非污染的生态环境影响评价都离不开对地质环境条件的分析研究。 地下水运动、赋存于含水介质中,其运动条件、形态,含水介质类型、结构构造,所处地域的地形、地貌条件及区域地质构造等多种因素,使得对地下水的分析研究十分困难。地下水运动及污染是一个缓慢的过程,污染物自身的转化以及与含水介质的作用都包含在这一过程中,在短期内往往难以完全弄清这些变化过程。因此,通过一定的模型,定量的分析模拟建设工程对地下水的影响过程,评价其影响结果是十分困难的。 实际工作中,多是对产生污染的可能性、污染途径及可能的影响程度进行总体分析,进而提出防止污染物渗入地下的保护措施。这种做法基于: 1.定量评价过于复杂,工作量大、费用高、周期长,定量评价不实用; 2.评价工作的目的是控制污染,保护地下水环境; 3.地下水环境一旦受到污染,将很难治理恢复; 4.地下水是一种宝贵的资源,不管其环境容量如何,均不允许有污染物进入而产生人为污染。 因此,分析污染物是否会进入地下水,通过什么样的途径进入,进入的速度相对快慢,会有什么样的污染物进入,将可能的结果分析提出,以警示建设者应该注意的问题;将可能的污染方式和途径分析清楚,以提出有效的污染防治措施。有此两点,评价工作的目的就基本达到了。 (三) 地质环境条件分析的基本内容 环境影响评价工作,从水文地质条件方面必须阐述明确下列问题,以使参阅者能建立起工程建设地区的水文地质概念模型及对地下水应用功能重要性的认识。

环境影响评价报告书的编写内容

环境影响评价报告书的编写 环境影响报告书是整个论文的重点。环境影响报告书是环境影响评价工作成果的集中体现,是环境影响评价承担单位向其委托单位——工程建设单位或其主管单位提交的工作文件。环境影响评价工作程序大体分为三个阶段:第一阶段为准备阶段,主要工作为研究有关文件,进行初步的工程分析和环境现状调查,筛选重点评价项目,确定各单项环境影响评价的工作等级,编制评价工作大纲;第二阶段为正式工作阶段,其主要工作为工程分析和环境现状调查,并进行环境影响预测和评价环境影响;第三阶段为报告书编制阶段,其主要工作为汇总、分析第二阶段工作所得到的各项资料、数据,得出结论,完成环境影响报告书编制[9]。 建设项目的类型不同,对环境的影响差别很大,环境影响报告书的编制内容也就不同。虽然如此,但其基本格式、基本内容相差不大。根据我国《建设项目环境保护管理条例》规定,本次垃圾填埋场建设项目环境影响报告书应包括以下内容,共分为十五章: 第一章总论:包括项目的背景;编制依据;评价原则;评价标准;评价等级;评价范围;评价重点;污染控制及保护目标; 第二章建设区域环境概况:包括地理位置;地形地貌;气象气候;地表水文;土壤植被;大气;地表水;地下水;社会环境概况; 第三章建设项目概况:包括项目基本概况;总平面布置及场地利用;公用工程;填埋工艺方案; 第四章工程分析:包括工程污染源分析;工程污染物排放; 第五章环境质量现状评价:包括地下水环境影响评价,地表水环境影响评价;声环境影响评价;固体废物环境影响评价;生态环境影响评价;大气环境影响评价; 第六章环境影响预测及分析:包括地下水环境质量现状预测与分析;地表水环境质量现状预测与分析;大气环境质量现状预测与分析;声环境质量现状预测与分析;周围生态质量现状预测与分析;生活垃圾运输过程中环境影响分析; 第七章污染防治措施与对策:包括地下水污染防治措施;渗滤液防治措施;废气防治措施;噪声防治措施;生态环境影响减缓措施; 第八章风险事故评价:包括地表水风险评价;地下水风险评价;填埋气爆炸风险评价;洪涝对填埋场的风险评价;事故防范与应急措施; 第九章污染物总量控制分析:包括总量控制原则;海港区污染物排放总量控制情况;总量控制因子;污染物排放情况;总量控制目标与建议; 第十章公共参与:包括公共参与的目的、方法及内容; 第十一章环境经济损益分析:包括社会损益分析;经济损益分析;环境损益分析; 第十二章环境管理与环境监测包括环境管理及制度;环境监测; 第十三章选址合理性分析及总量控:包括垃圾填埋场选址环境可行性分析;场区布局合理性分析;工程技术可行性分析; 第十四章结论与建议:环境质量现状评价结论;污染防治措施;总量控制结论;场址合理性分析结论; 报告书编制的重点为工程分析,施工期环境影响分析,环境质量现状及影响分析,污染因子分析,以及事故风险分析。

地表水环境影响评价报告书

地表水环境影响评价——紫金山铜矿环境影响报告书(报批版) 评价项目紫金山铜矿开发过程中将产生废水、废气、噪声和固体废物等污染源,其 中主要是废水和固体废弃物,并伴有植被破坏、土层扰动等可能导致水土流失与影响矿区生态的问题。 结合区域环境特征和环境保护目标的分布情况,确定的评价项目有地表水环境、生态环境和大气环境。 评价工作等级 (1)地表水环境影响评价工作等级 紫金山铜矿正常情况下的废水排放量为5700~12300m/d,主要污染物有pH、Cu、3Pb、Zn、As 和Cd,排入的地表水体为汀江。汀江年均流量为185m/s(属大河),3水质按Ⅲ类标准控制。根据《环境影响评价技术导则-地面水环境》(HJ/T2.3-93),确定地表水 环境评价工作等级为二级。 评价内容 (1)地表水环境影响评价 采矿废水正常和事故排放情况下对汀江的影响;选冶废水事故排放情况下对汀江的影响。 评价因子 (1)地表水环境评价因子:pH、Cu、Pb、Zn、As、Cd。 环境质量现状. 由表4-5可知:汀江及旧县河各项水质指标均符合《地表水环境质量标准》(GB3838 说明汀江及旧县河的水质情况良好。%,2002)“Ⅲ类标准”要求,其达标率为100-地表水环境影响预测与评价 1 预测模式及参数选取

1.1预测模式选取 由于在铜矿排入汀江处建有金山电站,堆浸场废水排入金山电站库区内,520m 中段废水排入发电站下游的汀江,故评价分排入库区和汀江两种情况进行预测,同时考虑金山电站发电期(非发电期)水文情况。 (1)汀江:混合过程段采用二维稳态混合模式(岸边排放),混合过程段的长度计算采用(2)式。 M =(0.058H+0.0065B)(gHI)1/2 y 式中:C —预测点污染物浓度,mg/L ; (x,y) Q —废水排放量,m/s ; 3p C -污染物排放浓度,mg/L ; p C —河流上游污染物浓度,mg/L ; h x —预测点距排放口的距离,m ; y —预测点距岸边的距离,m ; B —河流宽度,m ; u —河流中断面平均流速,m/s ; M —横向混合系数,m ;/s 2y H —河流平均水深,m ; a —排放口到岸边的距离,m ; I —河流坡降; g —重力加速度,取9.81m/s 。 2 (2)金山电站库区:预测模式选用(3)式。 式中:符号含义同前。 )汀江:完全混合段采用河流完全混合模式(3) +Q+CQ/(QC =(CQ hhpphp 式中:符号含义同前。 参数选取1.2 )按导则中推荐的经验公式求取。横向混合系数(M y 水文参数1.3 水文基本特征(1)、/s ,多年日平均最大流量4090m 据上杭县水文站资料,汀江年平均流量186m/s 33 ,年平均含沙993.3mmm ,年平均径流深度,年径流量58.49×108.45m 最小流量/s 338 1370kt 。,年平均输沙量量0.25kg/m 3 旧县河为境内汀江第一大支流,发源于连城莒溪白眉山北麓,经新泉进入上杭县境内,流经南阳、旧县、临城三个乡,在临城乡九州村汇入汀江。上杭县境内流,1090m/s 多年平均流量47.3m/s,多年日平均最大流量域面积716km ,河长45.38km ,323 /s 。最小流量2.23m 3 ,0.0012m/m ,坡降为50m ,平均水深为0.77m 汀江水文基本参数:枯水期河宽为 。0.0026m ·s 粗糙率为-1/3 金山水电站对汀江水文的影响(2),死m ×10100.55×m ,调节库容0.264金山水电站总库容(校核洪水位以下)3388 4.95km 。m0.28×10,正常蓄水位设计水库面积库容238不发电时22:00,和5:00~金山电站正常情况下放水发电时间为每天8:00~12:00 丰(个小时电站下泄流量为零。雨季~13:0014:00,即在一天中有11~间为23:007:00和 24小时放水发电。水期)整天年最枯月平均根据金山水电站的发电情况,本评价考虑最不利情况,选择近10 1。—/s 流量16.7m 作为上游来水量,相应的水库出流(根据径流调节)详见表5 3

环评爱好者论坛_地下水环评导则2011

一、适用范围 适用于地下水为供水水源,及对地下水环境可能产生影响的建设项目环评,规划环评中的地下水环评也可参照执行。 二、术语 1、地下水――惟各种形式埋藏在地壳空隙中的水,包括包气带和饱水带中的水。 2、包气带/非饱和带――地表与潜水面之间的地带。 3、饱水带――地下水面以下,土层或岩层空隙全部被水充满的地带,含水层都位于饱水带中。 4、潜水――地表以下,第一个稳定隔水层以上具有自由水面的地下水。 5、承压水――充满于上下两个隔水层间的地下水,承受压力大于大气压力。 6、地下水背景值――又叫地下水本底值,自然条件下地下水中各个化学组分在未受污染情况下的含量。 7、地下水污染――人为或自然原因导致地下水化学、物理、生物性质改变使地下水水质恶化的现象。 8、地下水污染对照值――评价区域内历史记录最早的地下水水质指标统计值,或评价区域内受人类活动影响速度较小的地下水水质指标统计值。 9、环境水文地质问题――指因自然或人类活动产生的与地下水有关的环境问题,如地面沉降、次生盐渍化、土地沙化等。 三、总则 1、建设项目分类 I类:指在项目建设、生产运行和服务期满后的各个过程中,可能造成地下水水质污染的建设项目。 II类:指在项目建设、生产运行和服务期满后的各个过程中,可能引起地下水流场或地下水水位变化,并导致环境水文地质问题的建设项目。 III类:同时具备前两类特征的建设项目。 2、评价基本任务 进行地下水环境现状评价,预测和评价建设项目实施过程中对地下水环境可能造成的直接影响和间接危害(包括地下水污染、地下水流场或地下水位变化),并针对影响和危害提出防治对策,预防控制环境恶化,保护地下水资源,为项目选址决策、工程设计和环境管理提供科学依据。 3、工作程序及工作内容 分准备、现状调查与工程分析、预测评价和报告编写四个阶段。 1

矿山地下水环境影响评价报告

1 总论 1.1 地下水质量标准 评价区域地下水执行《地下水质量标准》(GB/T14848-93)Ⅲ类标准,标准值见表1。 表1 地下水质量标准 1.2 环境保护目标 地下水环境保持《地下水质量标准》(GB/T 14848-93)中的Ⅲ类标准,具体的保护目标情况详见表2和附图XX(环境敏感点分布图)。 表2 主要环境保护目标

1.3地下水评价等级 由于开采过程需要抽排水,可能会引起局部的地下水位下降,同时由于矿体的开挖扰动、废石和矿石的堆放也有可能在一定程度上影响地下水的水质,因此本项目属于Ⅲ类建设项目。 (1)根据Ⅰ类建设项目的评价工作等级划分依据 矿区主要含水岩组为基岩构造裂隙含水岩组,其岩性为下奥统黄隘组泥质砂岩、长石石英砂岩夹薄层页岩和砂岩等组成,厚约800多米,分布在矿区约90%的地方。经试验,该岩层的渗透系数K为0.00066m/d(7.64×10-7cm/s)。从勘察钻孔的静止水位判定,本区地下水位埋深11.16~35m。因此,包气带防污性能为“中”。 评估区围只有一些季节性的溪沟,大气降雨是评估区地下水的主要补给来源,它主要通过表层下渗补给地下水,赋存于下伏的基岩构造裂隙中。大气降水除少量沿岩石裂隙或孔隙往地下渗透以外,绝大部分均沿山坡流入矿区小冲沟处。可见,建设场地的含水层易污染特征为“不易”。 矿区围无特殊地下水资源保护区,但矿区外围的塘梨山屯、红星屯等村民以井水为主要饮用水源。本项目地下水环境敏感程度为“较敏感”。 项目经中和处理达标后外排的生产废水(含矿井涌水)的量为75m3/d,因此,污水的排放强度为“小”。 根据矿石的毒性浸出结果,浸出液呈碱性,因此其主要污染物为酸碱度,推测生产废水的污水复杂程度为“简单”。 对照HJ610-2011《环境影响评价技术导则地下水环境》,按Ⅰ类建设项目的分级判别,本项目地下水环境评价等级定为三级(见表1-3)。

地下水环评实践思考与建议

12特别关注 地下水环评实践思考与建议 陈鸿汉 梁鹏 刘明柱 王柏莉 摘要:地下水是水资源的重要组成部分,开展建设项目地下水环评是从源头控制污染的最有效手段,对地下水保护具有重要意义。《环境影响评价技术导则 地下水环境》 (HJ 610—2011)的颁布,规范了建设项目地下水环评工作。本文结合《技术导则》的实践,分析了地下水环评现状与存在的主要问题,提出了对这些问题的思考与对策建议。 关键词:地下水;环评;实践;对策建议 中图分类号:X828 文献标识码:C 文章编号:2095-6444(2014)03-0012-03 《环境影响评价技术导则 地下水环境》(HJ 610—2011)[1](以下简称《技术导则》)的颁布填补了我国现行环评技术标准体系的空白,标志着我国环评工作已从关注地表以上可见的环境影响,逐渐向地下隐蔽的影响延伸,是环保系统构建全方位立体空间污染防范体系的又一新举措。通过加强《技术导则》的宣贯培训及技术研讨,极大地推动了地下水环评工作的有序前进,进一步提高了项目建设单位和环评单位对地下水环境保护的认识。 地下水环评的重要意义 地下水作为水资源的重要组成部分,在保障饮用水安全、支撑社会经济发展等方面发挥着越来越重要的作用,地下水环境污染已引起国家的高度重视,开展建设项目的地下水环评对于保护地下水具有重要意义。 地下水环评是地下水污染源头防控的有效手段 调查显示,目前我国地下水开采总量已占总供水量的18 %,在全国657个城市中有400多个城市以地下水为饮用水水源。然而,随着经济社会的高速发展,开发建设活动对地下水环境的影响日益凸显,主要表现为:一方面,地下水资源过量开采导致环境水文地质问题加剧。建设项目对地下水资源的大量开采,导致水量减少、水源枯竭,区域地下水位不断下降,乃至引起地面沉降、植被退化、海水入侵等。另一方面,开发建设活动加剧引起地下水环境质量恶化。已有调查数据显示,我国地下水污染表现为由点状、带状向面上扩散,从城市向农村蔓延,自浅层向深层扩散的趋势。石油化工、煤化工、冶炼、农药、焦化等行业造成的地下水污染和风险逐步显现。保护好地下水资源环境,直接关系到经济社会可持续发展和子孙后代生存安全。为此,近年来我国连续制定了《全国地下水污染防治规划(2011—2020年)》和《全国土壤环境保护“十二五”规划》,将地下水污染防治工作列入政府的重要议事日程。地下水污染防治必须把污染预防控制放在首位,地下水环评是地下水污染源头防控的有效手段。 地下水环评是保障群众饮用水安全的重要举措为了保护饮用水水源,国家制定了一系列饮用水水源保护规划与规范[2]。但随着我国城市化、工业化进程的加快,地下水污染加剧,甚至在地下水饮用水水源保护区及其补给区内仍不同程度地存在各种污染源,地下水型饮用水源安全仍不断受到严重威胁,饮用水水源保护面临巨大压力。只有通过立法层面才能有效地遏制地下水环境屡被污染的现状,才能解除饮用水水源面临的威胁。《技术导则》的实施极大地提高了社会对地下水环境保护的认识,有力地推动了国家现行相关法律法规与政策的贯彻实施,对于保障饮用水安全具有十分重要的意义。 地下水环评现状与问题分析 《技术导则》的实施规范了建设项目地下水环评工作,但在实践中,一些环评单位由于缺乏地下水专业人员和相关专业知识,对《技术导则》技术要求的理解和执行还存在一些问题。

环境影响评价——第六章固体废弃物-河海大学

第六章固体废弃物环境影响评价 主要内容 ●固体废弃物来源及分类(**) ●固体废弃物中污染物迁移转化方式(**)●固体废弃物环评主要内容(*) ●固体废弃物的处理处置和防治措施(**)

第六章固体废弃物环境影响评价 第一节固体废弃物来源及分类 ●固体废弃物是指人们在开发建设、生产经营和日常生活活动中向环境排出的固体和泥状废弃物。 ●固体废弃物不适当堆置产生有毒有害气体和扬尘,污染周围大气;经雨水淋溶或地下水浸泡,有毒有害物质随淋滤水迁移,污染附近江河湖泊及地下水;同时淋滤水的渗透、破坏土壤团粒结构和微生物的生存条件,影响植物生长发育;大量未经处理的人畜粪便和生活垃圾又是病原菌的孳生地。

第六章固体废弃物环境影响评价 第一节固体废弃物来源及分类 ●固体废弃物就其来源可分成城市固体废物、工业固体废物和农业固体废物。 ●按污染特性可分为一般废物和危险废物。 ●危险废物泛指除放射性废物以外,具有毒性、易燃性、反应性、腐蚀性、爆炸性、传染性因而可能对人类的生活环境产生危害的废物。

第二节固体废物中污染物进入环境的方式和迁移转化(1)固体废物中污染物进入环境的方式——对大气 ●堆放的固体废物中的细微颗粒、粉尘等可随风飞扬,从而对大气造成污染。 ●一些有机固体废物,在适宜的温度和湿度下被微生物分解,释放出有害气体,可不同程度上产生毒气和恶臭,造成地区性空气污染。 ●采用焚烧法处理固体废物,排出粉尘、HCl、Cl甚至二噁英等污染物,已成为一些国家的大气污染的主要来源之一。

第二节固体废物中污染物进入环境的方式和迁移转化(1)固体废物中污染物进入环境的方式——对水 ●固体废物弃置于水体,将使水质直接受到污染,严重危害水生生物的生存条件。 ●向水体倾倒固体废物,将缩减江河湖面有效面积,降低其排洪和灌溉能力。 ●在陆地堆积或简单填埋的固体废物,经雨水的浸渍和废物本身的分解,将会产生含有有害化学物质的渗滤液,对附近地区地表水和地下水造成危害。

地表水环境影响评价报告书

. 地表水环境影响评价 ——紫金山铜矿环境影响报告书(报批版) 评价项目 紫金山铜矿开发过程中将产生废水、废气、噪声和固体废物等污染源,其中主要是废水和固体废弃物,并伴有植被破坏、土层扰动等可能导致水土流失与影响矿区生态的问题。结合区域环境特征和环境保护目标的分布情况,确定的评价项目有地表水环境、生态环境和大气环境。 评价工作等级 (1)地表水环境影响评价工作等级 紫金山铜矿正常情况下的废水排放量为5700~12300m/d,主要污染物有pH、Cu、3Pb、Zn、As 和Cd,排入的地表水体为汀江。汀江年均流量为185m/s(属大河),3水质按Ⅲ类标准控制。根据《环境影响评价技术导则-地面水环境》(HJ/T2.3-93),确定地表水环境评价工作等级为二级。 评价内容 (1)地表水环境影响评价 采矿废水正常和事故排放情况下对汀江的影响;选冶废水事故排放情况下对汀江的影响。 评价因子 (1)地表水环境评价因子:pH、Cu、Pb、Zn、As、Cd。 环境质量现状 . 范文. .

(GB3838 《地表水环境质量标准》5可知:汀江及旧县河各项水质指标均符合由表4-说明汀江及旧县河的水质情况良好。100%,-2002)“Ⅲ类标准”要求,其达标率为 地表水环境影响预测与评价 1 预测模式及参数选取 1.1预测模式选取520m由 于在铜矿排入汀江处建有金山电站,堆浸场废水排入金山电站库区内,中段废水排入发电站下游的汀江,故评价分排入库区和汀江两种情况进行预测,同时考虑金山电站发电期(非发电期)水文情况。)汀江:混合过程段采用二维稳态混合模式(岸边排放),混合过程段的长度计(1 (2)式。算采用

地下水环境影响评价专题报告(一、二级)

地下水环境影响评价专题报告 (一、二级评价参照) 北京中咨华宇环保技术有限公司 2014年1月 目录

1总论 (3) 编制依据 (3) 1.1.1法律法规、相关政策、技术规范及技术导则 (3) 1.1.2工作技术资料及文件 (3) 地下水环境功能 (3) 评价执行标准及保护目标 (3) 1.3.1评价执行标准 (3) 1.3.2保护目标 (3) 地下水评价等级 (4) 1.4.1评价工作定级 (4) 1.4.2评价范围 (5) 1.4.2.1Ⅰ类建设项目 (5) 1.4.2.2Ⅱ类建设项目 (5) 1.4.2.3Ⅲ类建设项目 (5) 2拟建项目概况与工程分析 (6) 3地下水环境现状调查与评价 (7) 地下水环境现状调查内容 (7) 3.1.1水文地质条件调查 (7) 3.1.2环境水文地质问题调查 (7) 3.1.3地下水污染源调查 (8) 3.1.4地下水环境现状监测 (8) 3.1.5环境水文地质勘察与试验 (8) 地下水环境现状评价 (9) 3.2.1污染源整理与分析 (9) 3.2.2地下水水质现状评价 (11) 3.2.3环境水文地质问题分析 (12) 4地下水环境影响预测与评价 (13) 地下水环境影响预测 (13) 4.1.1预测范围 (13) 4.1.2预测时段 (13) 4.1.3预测因子 (13) 4.1.4预测方法 (14) 4.1.5预测模型概化 (14) 地下水环境影响评价 (14) 4.2.1评价范围 (14) 4.2.2评价方法 (14) 5地下水环境保护措施 (15) 建设项目污染防治对策 (16) 环境管理对策 (16) 6评价结论与建议 (17)

第四章 水环境影响评价

第四章 水环境影响评价 主要内容 水环境影响评价程序与法规 工程分析和环境调查 影响预测 影响评价 实例分析 第一节 水环境影响评价程序和法规 一 技术工作程序 1 准备阶段 2 调查、监测 3 预测、评价、对策 4 编写报告 二 评价等级的划分 (一)地表水评价等级划分 1 建设项目的排污量 污水排放量中不包括间接冷却水、循环水以及其它含污染物极少的清净下水的排放量,但包括含热量大的冷却水的排放量 2 建设项目污水水质的复杂程度 污水水质的复杂程度 复杂:污染物类型数≥3,或者只含有两类污染物,但需预测其浓度的水质参数数目≥10; 中等:污染物类型数=2,且需预测其浓度的水质参数数目<10;或者只含有一类污染物,但需预测其浓度的水质参数数目≥7; 简单:污染物类型数=1,需预测浓度的水质参数数目<7。 3 地面水域规模的确定原则

河流与河口,按建设项目排污口附近河段的多年平均流量或平水期平均流量划分为: 大河:≥150m3/s; 中河:15-150m3/s; 小河:<15m3/s。 湖泊和水库,按枯水期湖泊或水库的平均水深以及水面面积划分为: 当平均水深≥10m时: 大湖(库):≥25km2;中湖(库):2.5-25km2 小湖(库):<2.5km2。 当平均水深<10m时: 大湖(库):≥50km2;中湖(库):5-50km2; 小湖(库):<5km2。 4 地表水水质要求 以《地表水环境质量标准》 (GB3838-2002)为依据 (二)地下水评价等级的划分 划分地下水评价等级尚无标准。通常依据的条件有: ①工程特点;②地下水埋藏条件;③工程所处地理位置。 (三)评价范围 与监测调查范围一致 三、水环境法规、标准和规划 (一)水环境法规 1 《中华人民共和国水法》(1988,1,21) 2 《中华人民共和国水污染防治法》(1996,5) 3 《中华人民共和国水污染防治法》(1996,5) 第一章 总则 第二条 本法适用于中华人民共和国领域内的江河、湖泊、运河、渠道、水库等地表水体以及地下水体的污染防治。 海洋污染防治另由法律规定,不适用本法。

第五章地下水环评导则与相关环境标准

第五章地下水环境影响评价技术导则与相关水环境标准 第一节环境影响评价技术导则一地下水环境 1《环境影响评价技术导则一地下水环境》(HJ 610-2011 )适用于以地下水作为供水水源及对地下水环境可能产生影响的建设项目的环境影响评价。 规划环境影响评价中的地下水环境影响评价可参照执行。 2建设项目分为三类: (l)I 类:指在项目建设、生产运行和服务期满后的各个过起中,可能造成地下水水质污染的建设项目: (2)II 类:指在项目建设、生产运行和服务期满后的各个过程中,可能引起地下水流场或地下水水位变化,并导致环境水文地质问题的建设项目: (3)III类:指同时具备I 类和II 类建设项目环境影响特征的建设项目。 3根据不同类型建设项目对地下水环境影响程度与范围的大小,将地下水环境影响评价工作分为一、二、三级。 4地下水环境影响评价的基本任务包括: (l)进行地下水环境现状评价; (2)预测和评价建设项目实施过程中对地下水环境可能造成的直接影响和间接危害(包括地下水污染、地下水流场或地下水位变化), (3)并针对这种影响和危害提出防治对策,预防与控制地下水环境恶化,保护地下水资源,为建设项目选址决策、工程设计和环境管理提供科学依据。 5四个工作程序:地下水环境影响评价工作可划分为准备阶段、现状调查与工程分析阶段、预测评价及报告编写阶段。 6各阶段主要工作内容 (I)准备阶段 搜集和研究有关资料、法规文件:了解建设项目工程概况:进行初步工程分析;踏勘现场,对环境状况进行初步调查:初步分析建设项目对地下水环境的影响,确定评价工作等级和评价重点:在此基础上编制地下水环境影响评价工作方案。(2)现状调查与工程分析阶段 开展现场调查、勘探、地下水监测、取样、分析、室内外试验和室内资料分析等,进行现状评价工作,同时进行工程分析。 (3)预测评价阶段 进行地下水环境影响预测:依据国家、地方有关地下水环境管理的法规及标准,进行影响范围和程度的评价。 (4)报告编写阶段 综合分析各阶段成果,提出地下水环境保护措施与防治对策,编写地下水环境影响专题报告。

6 水环境影响评价

第六章水环境影响评价 一、水环境质量现状评价 1、庆元县环境质量现状调查 庆元县内大小溪流纵横交错,往西流流入闽江的松源溪和竹口溪,集雨面积1022平方公里,多年平均流量37.36立方米/秒,是该县最主要的两条支流。庆元县环境监测站自建站以来就对两条支流7个断面水质按国家规范开展监测,根据98至2002年监测结果,该县地表水水质均符合各类功能区标准。监测结果见附表6-1和6-2。但是从我们现场踏看可知,在今年极枯水期(50年一遇)时,城区河道的水质有明显污染,部分河段水质发黑发臭,说明水环境容量不容乐观。 2、兰溪桥水库环境质量现状调查 为了准确了解项目建设区域内地面水水质状况,根据实际情况,选择兰溪桥水库出口、水库库区、西演村下等三个断面进行水质现状监测,采用《地面水环境质量标准》(GB3838-2002)中Ⅱ类水标准及《生活饮用水卫生标准》(GB5479-85),对建设区水质进行评价,评价结果见表6-3。由表可知,各参数都能达到(GB3838-2002)中Ⅱ类水标准。 二、水环境影响分析 1、上游水体对水质的影响 由于兰溪桥水库为集中式供水的饮用水水源保护区,其范围为:松源溪周墩桥头,自来水水泵房上游1000m(洋心桥以下段),下游200m(林业车队以上段)为水源一级保护区,洋心桥上游至西演桥为水源二级保护区。引水工程投入运行供水,饮用水水源延长至兰溪桥水库大坝上游,至新桥段为一级水源保护区;新桥上游至洋心村下游,整个库区为二级水源保护区。 据调查,在饮用水源一级保护区内没有向水体排放工业废水的企业,沿岸无直接和间接排放生活污水,二级保护区沿岸有直接向水体排放生活污水600人左右,人均生活污水量按150L计,COD Cr按400mg/L计,则向水体排放污染物COD Cr

地下水环境影响评价关键问题分析

地下水环境影响评价关键问题分析 地下水不仅是工业、农业用水的主要来源,而且也是关键的水资源组成部分。因此,相关部门必须加大地下水环境评价的力度,才能在有效防止地下水环境污染的基础上,促进地下水资源保护工作效率的有效提升,为水资源可持续发展目标的顺利实现奠定坚实的基础。 标签:地下水;环境;影响评价 1地下水在建设中的意义 储存在岩石和土壤空隙中的水称为地下水。由于岩层的过滤和地表岩土的保护作用,地下水在水质和卫生条件方面都较地表水优越,因此地下水是工农生产和人民日常生活的重要供水水源。尤其是华北、西北相对干旱的地区,地表水相对稀缺,地下水的开发利用就颇为重要。此外,地下水是一种天然的矿产资源;地下矿水还具有医疗价值,地下热水也是一项重要能源,观测地下水还可以预报地震,分析地下水还可作为找矿的标志。因此,地下水在发展国民经济发展中的地位非常重要。但地下水同时又具有潜蚀作用,是造成岩溶、塌陷、管涌、滑坡等特殊地貌或灾害的主要营力,也会危及地下工程和建筑物的安全。因此在开发利用地下水时不能不对其有害因素予以密切关注和了解,进行有效的防治,还要防止地下水的污染。研究地下水的目的是为了合理开发和利用地下水资源,防止污染和破坏。如果地下水被污染和破坏就很难治理和恢复,有的甚至不能再恢复,因此要十分重视保护地下水资源。 2地下水环境影响的各种因素 2.1建设工程的大范围开采 由于人们长时间使用和开采地下水,所以水质发生了一定的变化。由于人为的作用以及边界条件改变,使其他层面的水会流入含水层,一部分浸入含水层的水质量比较差,对地下水水质产生一定影响。在引水工程中,过滤网要是长时间使用就会生锈,而且引水工程输水管里面会析出一定的化学物质,会给水质造成一定的影响。不仅如此,含水层水动力要是发生变化,地下水溶解物质化学平衡也会发生一定的变化,水质也会受到一定的影响,产生全新的水化学环境,而且在含水层产生全新的物理化学反应。一些含有金属矿氧化物也会进入水中,在降落漏斗部分,氧化效果会提升,借助硫化物的氧化会将金属转化成易溶状态,迁移能力也会显著提升,进而流入含水层,地下水可溶性固体的高度也会显著提升。 2.2农业活动 2.2.1农业活动致使产生地下水污染问题 主要的体现就是地下水和一些废弃物溶混进而使地下水水质降低。其中就是

4、地下水环境影响预测与评价

4、地下水环境影响预测与评价 1)预测范围与预测时段 项目地下水环境影响预测范围与调查评价范围保持一致,预测层位为基岩风化孔隙裂隙含水层。根据《环境影响评价技术导则 地下水环境》(HJ610-2016)对地下水环境影响预测的时段要求,结合项目工程特点和所在地水文地质条件,确定本项目地下水环境影响预测时段为污染发生后的100d 、1000d 和14a 。 2)情景设置 由工程分析可知,项目拆解车间地面按照相应要求做好防渗要求,正常状况下地下水环境影响在可控范围内,故项目仅对事故工况下的地下水环境影响进行预测分析。 以保守为原则,取废矿物油产生量的5%泄漏,经由包气带渗入地下。根据前述分析,汇水面积15000m 2,根据项目岩土工程勘察可知,项目场地包气带底层岩性为碎石及层块石,渗透系数可达 2.0m/d ,属于强透水性。故认为车间地面一旦破损,废矿物油将随初期雨水全部进入含水层,渗漏量为65.8m 3/a 。 3)预测方法及参数选取 项目所在地水文地质条件简单,预测层位基岩风化孔隙裂隙含水层,上层碎砾石层,透水不含水。根据《环境影响评价技术导则 地下水环境》(HJ610-2016),本项目采用一维半无限长多孔介质主体一端为定浓度边界和一维无限长多孔介质主体示踪剂瞬时注入的解析法对拆解车间事故工况进行地下水环境影响预测,具体方法如下: ??? ? ??++???? ??-=t D ut x erfc e t D ut x erfc C C L D ux L L 2212210 式中:x —距注入点的距离,m ; t —时间,d ; ()t x C ,—t 时刻x 处的示踪剂浓度,g/L ;

环境评估报告-地下水环境影响评价

10 地下水环境影响评价 10.1 地下水环境现状监测与评价 10.1.1 地下水现状监测 10.1.1.1 监测点位布设 根据本工程特点,结合地下水流向和当地井位情况,本工程共布设了两个地下水监测点。具体监测点位见表10.1-1和图8.2-1。 表10.1-1 地下水现状监测点位布设情况表 10.1.1.2 监测时间及频率 监测时间为2010年8月22日-8月24日,每天一次。 10.1.1.3 监测项目 地下水监测项目包括PH、总硬度、氨氮、硝酸盐氮、亚硝酸盐氮、硫酸盐、高锰酸盐指数、砷、汞、铁、锰、氟化物、细菌总数、大肠菌群共十四项,同时记录井深、水位。 10.1.1.4 分析方法 水样采集、保存依据《环境监测技术规范》进行,分析方法采用《生活饮用水标准检验法》(GB/T5750-2006),具体见表10.1-2。 表10.1-2 地下水监测与分析方法

10.1.1.5 监测结果 监测因子监测结果见表10.1-3。 10.1.2 地下水环境现状评价 10.1.2.1 评价标准 本次评价采用《地下水质量标准》(GB/T14848-93)Ⅲ类水质标准进行现状评价。见表10.1-4。 表10.1-4 地下水质量标准 单位:mg/L 10.1.2.2 评价方法 采用单因子指数法对地下水环境现状监测统计结果进行评价,评价公式为: i i i S C P / 式中:P i ——指污染物i 的单因子指数; C i ——指污染物i 的监测结果; S i ——指污染物i 的所执行的评价标准。 对PH 值进行评价的公式为: P PH =(7.0-PHi)/(7.0-PHsd) PHi ≤7.0 P PH =(PHi-7.0)/(PHsu-7.0) PHi ≥7.0 式中:P PH ——指PH 值的单因子指数; PH i ——指PH 的监测结果; PH sd ——指水质标准中PH 值的下限;PH su ——指水质标准中PH 值的上限。

地下水环境影响评价评价

6 地下水环境影响评价 6.1 地下水环境影响评价级别 6.1.1 建设项目分类 本项目生产及生活用水全部厂区由2口自备水井(供水能力80m3/h)供给;生产废水酸碱废水(脱硫用水、栈桥冲洗及煤场喷洒)、脱硫废水(中和处理后回用于灰渣加湿)、锅炉排污水(冷却后回用于脱硫工艺用水、灰渣加湿与煤场喷洒)、非经常性废水(锅炉酸洗废水、空气预热器冲洗水等,中和后用于煤场喷洒)不外排,循环冷却水排污水(950.4m3/a)和生活污水(480m3/a)满足《污水排入城镇下水道水质标准》(CJ343-2010)B级标准的进水水质标准要求后经市政管网排入鱼台绿都水质净化有限公司处理厂集中处理。因此,本项目建设、生产运行和服务期满后的各个过程中,可能引起地下水流场或地下水水位变化及导致环境水文地质问题,可能造成地下水水质污染,根据《环境影响评价技术导则地下水环境》(HJ 610-2011),本项目属Ⅲ类建设项目。 6.1.2 地下水环境影响评价级别 6.1.2.1、项目工作等级划分依据 本项目(Ⅲ类)工作等级划分依据见表6.1-1。 表6.1-1 本项目(Ⅲ类)工作等级划分依据表

6.1.2.2、项目评价工作等级 本项目(Ⅲ类)评价工作等级见表6.1-2。 表6.1-2 本项目(Ⅲ类)评价工作等级表 综上可知,根据《环境影响评价技术导则地下水环境》(HJ 610-2011),本

项目地下水评价工作等级为三级。 6.2 地下水环境现状监测与评价 6.2.1地下水环境现状监测 6.2.1.1监测布点 根据评价区内地下水流向,在项目区等处设置3个地下水监测点位。监测布点具体位置见表6.2-1及图6.2-1所示。 表6.2-1 监测布点具体位置表 6.2.1.2 监测项目 pH、总硬度、高锰酸盐指数、氟化物、硫酸盐、硝酸盐、亚硝酸盐、挥发酚、氨氮、氰化物、氯化物、溶解性总固体、砷、汞、六价铬、铅、铁、锰、铜、锌、镍21项。同时测量水温、井深和地下水埋深。 6.2.1.3 监测分析方法 表6.2-2 地下水监测方法一览表

地表水环境影响评价概述

第五章地表水环境阻碍评价 第一节地表水体的污染和自净 水是环境中最活跃的自然要素之一。水是一切生命机体的组成物质,也是生命代谢活动所必需的物质。假如地球上没有水,专门难设想有整个生物界。人类生活需要水,各种生产活动也需要水。水是万物之本。因此,水是人类不可缺少的特不宝贵的自然资源。它对人类的社会进展起着专门重要的作用。 水体是水集中的场所,水体又称为水域。按水体所处的位置可把它分为三类: 地面水水体 地下水水体 海洋 ?这三种水体中的水能够相互转化,它通过水在自然界的大循环和小循环实现。三种水体是水在自然界的大循环中的 三个环节。 ?在太阳能和地表面热能的作用下,地球上的水不断地被蒸发变成水蒸气进入大气。从海洋蒸发的水蒸气进入大气, 被气流带到陆地上空,遇冷凝聚成雨、雪、雹等落到地面,一部分被蒸发返回大气,一部分经地面径流流入地面水体

(江河、湖泊、水库等),一部分经地层渗透进入地下水体。 地面水体的水经地面径流,最终都回归海洋。这种海洋和 陆地之间水的往复运动过程,称为水的大循环。 ?仅在局部地区(仅在陆地上或仅在海洋上)进行的水循环称为水的小循环。在自然界中水的大、小循环是交错在一起 的,周而复始地运动着。 一.地表水资源 地表水水体要紧指江、河、湖泊、沼泽、水库、海洋和湿地等。地面水水体的概念不仅包括水,而且包括水中的悬浮物、底泥和水生生物。它是完整的生态系统或自然综合体。是地球水资源的重要组成部分 地表水水体按使用目的和爱护目标可划分为五类。 I类要紧适用于源头水和国家自然爱护区的水体; Ⅱ类要紧适用于集中式生活饮用水水源地一级爱护区内的水体,以及宝贵鱼类爱护区、鱼虾产卵场的水体; Ⅲ类要紧适用于集中式生活饮用水水源地二级爱护区和一般鱼类爱护区及游泳区的河段; Ⅳ类要紧适用于一般工业用水和娱乐用水水体;

建设项目地下水环境影响评价技术导则

附件 建设项目地下水环境影响评价技术导则 执行有关问题的说明 一、资料收集途径 地下水环境影响评价应尽可能收集已有相关资料。资料收集途径为:地质与水文地质图件、调查报告,地质钻孔、水文地质钻孔等基础性资料,可从国土部门收集;场地区大比例尺的建设项目岩土工程勘察数据及报告,可从项目建设单位收集;评价区地下水水位与水质等动态监测资料,可从国土、水利、建设、环保等部门收集;水源地位置、水源地开采量、水源井分布情况等地下水开发利用方面的资料,可从水利部门收集;饮用水源保护区划分、污染源分布资料,可从当地环保部门收集;降水、气温、蒸发量等气象资料,可从当地气象部门收集。当收集的资料不满足地下水影响评价技术要求时,应补充环境水文地质专题调查,并在满足《导则》技术要求的前提下,尽量利用已有的水井、泉等地下水露头点进行现状监测。

二、野外踏勘前的已有资料分析方法 为编制地下水环境影响评价工作方案,在野外踏勘前应首先根据地下水环境影响评价任务与相应工作等级的评价技术要求,整理、汇编各类已有资料,对各类量化数据进行分析统计,编制综合图表。其次,综合分析评价区地质、水文地质资料,系统了解评价区地下水环境形成、分布、地下水补径排特征与资源开发利用情况。最后,对污染源进行编录,了解重要污染源类型及其分布情况,分析地表水、地下水质量、污染情况变化及与建设项目的关系。 三、资料精度与时限 不同评价工作等级的水位、水质监测精度及资料时限性按《导则》“8.3.4 地下水环境现状监测”规定执行。对于地质平面图、地质剖面图、水文地质平面图、水文地质剖面图、钻孔柱状图等区域地质与水文地质资料没有时限要求;在水文地质条件未发生大的变化,且能够充分说明评价区水文地质现状的前提下,评价区的水文地质平面图、水文地质剖面图等水文地质资料没有明确时限要求,但应尽可能利用最新的和精度高的地质与水文地质资料。 四、评价等级 《导则》“4.1建设项目分类”中定义“Ⅲ类建设项目是指同时具备I

地下水开采环评报告模版

一、项目基本情况 二、当地社会、经济、环境简述 2.1自然环境 2.1.1地理位置 第二自来水有限公司选址于******珍东桥头(详见图1)。 ***位于***东南部,北纬25°01′,东经118°05′,省道205、212线交叉地带,地处闽南金三角腹地,距离***城13公里,东离***74公里,南抵厦门73公里,西达漳州60公里。 2.1.2气象气候 该区域属中亚热带湿润与潮湿山地气候,年均气温16℃,最冷月6℃,最热月25℃,干燥度为80%。年平均风速1.7m/s,年静风频率为44%,年东北风向频率为9~15%,东南风向频率为8~12%。 2.1.3地形、地貌及地质状况 ***地处戴云山脉东南坡。地势自西北向东南倾斜,从湖头盆地西缘的五阆山至官桥盆地西缘的跌死虎一带为天然的分界线,线以西称内***,地势峻陡,坡度大。线以东称外***,以低山丘陵串珠状河谷盆地为主。全县最高峰太华尖海拔1600米。 2.1.4水系情况

***境内主要河流为晋江上游的西溪(蓝溪),长145公里(境内105公里),支流有小蓝溪、龙潭溪、双溪、金谷溪、蓬莱溪等。还有九龙江水系的举溪、龙涓溪、福前溪;人工湖有村内、冬青水库等。 本项目最终纳污水体为西溪。 2.2社会环境 ***位于***东南部,土地总面积106平方公里,辖29个行政村、1个居委会,镇政府驻地在官桥村。 ***的主要农作物有水稻、大豆、甘薯等;经济作物以油料、水果、烟叶、茶叶等。全镇以石材工业为龙头,带动食品加工、运输、建筑、机械及其它产业综合发展的乡镇企业经济格局。 省道205线、212线24米水泥大道贯穿镇区;全镇拥有1万多门电话,是我县第一个程控电话超万门乡镇,全镇有线电视覆盖率达100%。 水电设施方面:拥有11万伏变电站1座,中小型水电厂4家,柴油发电机组1座,已建成日产万吨自来水厂。 文教卫生方面:拥有全日制中学4所、小学习38所,中心卫生院1所,村级卫生所40个。 2.3环境规划情况 2.3.1水环境 本项目的取用西溪支流小蓝溪河床地下水作为供水水源,根据《***地表水环境功能区划》,自来水厂取水点上游1000米至下游100米水域为水源一级保护地,水环境功能规划为GB3838-2002《地表水环境质量标准》的Ⅱ类水域;水厂取水点上游1000米至2000米、下游100米至200米水域为水源二级保护地,水环境功能规划为GB3838-2002《地表水环境质量标准》的Ⅲ类水域。 2.3.2大气环境

相关文档
相关文档 最新文档