文档库 最新最全的文档下载
当前位置:文档库 › 气体放电过程分析

气体放电过程分析

气体放电过程分析
气体放电过程分析

气体放电过程分析报告

一、气体放电的定义

气体放电是人们在自然界与日常生活中常常碰到的现象,如闪电、日光灯等,它一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。气体放电是产生低温等离子体的主要途径。所谓的低温等离子体是区别于核聚变中高温等离子体而言的。低温等离子体物理与技术在经历了一个由20世纪60年代初的空间等离子体研究向80年代和90年代以材料及微电子为导向的研究领域的重大转变之后,现在已经成为具有全球影响的重要课题,其发展对于高科技经济的发展及传统工业的改造有着巨大的影响。

二、气体放电过程分析

气体放电的经典理论主要有汤森放电理论和流注放电理论等。1903年,为了解释低气压下的气体放电现象,汤森(J.S.Townsend)提出了气体击穿理论,引入了三个系数来描述气体放电的机理,并给出了气体击穿判据。汤森放电理论可以解释气体放电中的许多现象,如击穿电压与放电间距及气压之间的关系,二次电子发射的作用等。但是汤森放电解释某些现象也有困难,如击穿形成的时延现象等;另外汤森放电理论没有考虑放电过程中空间电荷作用,而这一点对于放电的发展是非常重要的。电子雪崩中的正离子随着放电的发展可以达到很高的密度,从而可以明显的引起电场的畸变,进而引起局部电子能量的加强,加剧电离。针对汤森放电理论的不足,1940年左右,H.Raether及Loeb、Meek等人提出了流注(Streamer)击穿理论,从而弥补了汤森放电理论中的一些缺陷,能有效地解释高气压下,如大气压下的气体放电现象,使得放电理论得到进一步的完善。近年来,随着新的气体放电工业应用的不断涌现及实验观测技术的进一步发展,将放电理论与非线性动力学相结合,利用非线性动力学的方法来研究气体放电中的各种现象成为气体放电研究中的重要内容。

汤逊理论通过引入“电子崩”的概念,较好地解释了均匀电场中低气压短间隙的气体放电过程,通过这个理论可以推导出有关均匀电场中气隙的击穿电压及其影响因素的一些实用性结论。但是这个理论也有局限性,由于汤逊理论是建立在均匀电场、短间隙、低气压的实验条件下的,因此对于高气压、长间隙和不均匀电场中的气体放电现象就无法作出圆满的解释了。比如,根据汤逊理论,气体放电应在整个间隙中均匀连续地发展,这在低气压下确实如此,如放电管中的辉光放电。然而,在大气压力下长间隙的击穿却往往带有许多分枝的明亮细通道,如天空中发生的雷电放电即是如此。对此,就需要用流注放电理论才能较好地解释这种高气压长间隙已经不均匀电场的气体放电现象了。

流注理论与汤逊理论的不同之处在于:流注理论认为电子的碰撞电离和空间光电离是形成自持放电的主要因素;而汤逊理论则没有考虑放电本身所引发的空间光电离对放电过程的重要作用。同时,流注理论特别强调空间电荷对电场的畸变作用。

等。

三.气体放电的现象和形式

气体放电的形式和现象是多种多样的,依气体压力、施加电压、电极形状、电源频率的不同,气体放电的形式总体上可以分为以下几类:(1)当气压

较低,电源容量较小时,气隙件的放电则表现为充满整个间隙的辉光放电。(2)在大气压下或者更高气压下,放电则表现为跳跃性的火化,称为火花放电。(3)当电源容量较大且内阻较小时,放电电流较大,并出现高温的电弧,称为电弧放电。(4)在极不均匀电场中,还会在间隙击穿之前,只在局部电场很强的地方出现放电,但这时整个间隙并未发生击穿,这种放电称为局部放电。高压输电线路导线周围出现的电晕放电就属于局部放电。(5)当发生气体放电时,电极间交换的频率很高的放电形式叫高频放电。(6)此外,在气体放电中还有一种特殊的放电形式,即在气体介质与固体介质的交界面上沿着固体介质的表面而发生在气体介质中的放电,称为沿面放电。当沿面放电发展到使整个极间发生沿面击穿时称为沿面闪络。例如,在输电线路上出现雷电过电压时,常常会引起沿绝缘子的表面的闪络。

四.气体放电现象的影响因素

气体放电现象及其发展规律主要受以下因素的影响:①所加电压的幅值及波形,如直流电压、交流电压、脉冲电压(模拟雷闪)等。②通过电流的大小,如计数管中的电流(微安级),冲击大电流(兆安级)。③所加电压的频率,如直流电压、工频电压等。④气体的压力,从10-4帕的真空直至几兆帕的高气压。不同气压下,气体击穿的物理过程各异。⑤电极形状,它决定电场的分布,众而影响带电粒子的运动。⑥容器与电极材料,高气压与高真空的气体击穿会受电极材料及表面状态的影响。⑦气体的性质,如负电性气体可以提高气体的击穿电压。

气体放电管

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。 放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。其中,r表示一个正离子轰击阴极表面而

《气体放电技术》辅导资料

气体放电技术辅导资料一 主题:气体放电理论概述 学习时间:2011年4月15日-4月17日 内容: 我们这周主要学习气体放电理论的相关内容。希望通过下面的内容能使同学们加深对气体放电技术知识的理解。 一、学习要求 1.掌握气体放电理论; 2.掌握气体放电的概念; 二、主要内容 (一)气体放电概念 干燥气体是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为带电, 这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。20世纪70年代以来激光导引放电、电子束维持放电等新的放电形式,也日益受到人们的重视。 气体放电的基本物理过程气体放电总的过程由一些基本过程构成,这些基本过程是:激发、电离、消电离、迁移、扩散等。基本过程的相互制约决

定放电的具体形式和性状 (二)气体放电理论 气体中流通电流的各种形式的统称。包括电晕放电、辉光放电、电弧放电、火花放电等。 在电场作用下,带电粒子在气体中运动时,一方面沿电力线方向运动,不断获得能量;一方面与气体分子碰撞,作无规则的热运动,不断损失能量。经若干次加速碰撞后,它们便达到等速运动状态,这时其平均速度u与电场强度E成正比u=KE,系数K称为电子(离子)迁移率。对于离子,K是一个常数;对于电子,它并不是一个常数,而与电场强度E有关。体放电。荷能电子碰撞气体分子时,有时能导致原子外壳层电子由原来能级跃迁到较高能级。这个现象,称为激发;被激发的原子,称为受激原子。 要激发一个原子,使其从能级为E1的状态跃迁到能级为Em的状态,就必须给予(Em-E1)的能量;这个能量所相应的电位差设为eVe,则有eVe=Em-E1,电位Ve称为激发电位。实际上,即使电子能量等于或高于激发能量,碰撞未必都能引起激发,而是仅有一部分能引起激发。引起激发的碰撞数与碰撞总数之比,称为碰撞几率。 受激发后的原子停留在激发状态的时间很短暂(约为10-6秒),便从能量为Em的

气体放电管基础知识教学提纲

2.1气体放电管 2.1.1简介 气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。它主要用于瞬时过电压保护,也可作为点火开关。在正常情况下,放电管因其特有的高阻抗(>1000MΩ)及低电容 (<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。 气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。 气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。但残压高,反应时间慢(≤100ns),动作电压精度较低,有续流现象。 Figure 1气体放电外观图 2.1.2气体放电的伏安特性 气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。 如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di)是负的,称为负阻区。如果200V的直流电压源经1MΩ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。BC段为正常辉光放电区,在此区间内电压基本不随电流而变,当辉光覆盖整个阴极表面时,电流再增加,电压也不增加。CD段称为异常辉光放电区。直流放电电压为90V~300V放电管,其辉光放电区BD的最大电流一般在0.2A~1.5A 之间。当电流增加到足够大时放电E点突然进入电弧放电区,即使是同一个放电管,放电由辉光转入电弧时的电流值也是不能精确重复的。在电弧放电时,处在电场中加速了的正离子轰击阴极表面,阴极材料被溅射到管壁上,阴极被烧蚀,使间隙距离增加,管壁绝缘变坏。在采用合适的材料后,放电管可以做到导通10KA、8/20μs电流数百次。在电弧区,放电管

(完整word版)简要分析汤逊理论与流注理论对气体放电过程

习题1 第36页 1.简要分析汤逊理论与流注理论对气体放电过程、电离因素以及自持放电条件 的观点有何不同? 答:汤逊理论理论实质:电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸变,流注理论认为二次电子的主要来源是空间的光电离。 2.解释α、β、γ、η系数的定义。 答:α系数:它代表一个电子沿着电场方向行径1cm长度,平均发生的碰撞电离次数。 β系数:一个正离子沿着电场方向行径1cm长度,平均发生的碰撞电离次数。 γ系数:表示折合到每个碰撞阴极表面的正离子,使阴极金属平均释放出的自由电子数。 η系数:即一个电子沿电场方向行径1cm时平均发生的电子附着次数。 3.均匀电场和极不均匀电场气隙放电特性有何不同? 答:在均匀电场中,气体间隙内流注一旦形成,放电达到自持的程度,气隙就被击穿。不均匀电场分稍不均匀和极不均匀,在同样极间距离时稍不均匀电场的击穿电压比均匀电场的均匀电场气隙的要低,在极不均匀电场气隙中自持放电条件即是电晕起始条件,由发生电晕至击穿的过程还必须升高电压才能完成。 4.对极间距离相同的正极性棒-板、负极性棒-板、板-板、棒-棒四种电极布局的 气隙直流放电电压进行排序? 答:负极性棒-板最高,其次是棒-棒和板-板,最小的是正极性棒-板。 5.气隙有哪些放电现象? 答:在极不均匀电场中,气隙完全被击穿以前,电极附近会发生电晕放电,产生暗蓝色的晕光,这种特殊的晕光是电极表面电离区的放电过程造成的。在外电离因素和电场作用下,产生了激发、电离、形成大量的电子崩,在此同时也产生激发和电离的可逆过程-复合,这就是电晕。 6.如何提高气隙的放电电压? 答:一是改善气隙中的电场分布,使之均匀化,二是设法削弱或抑制气体介质中的电离过程。 7.简述绝缘污闪的发展过程及防污措施。 答:绝缘子污闪是一个复杂的过程,大体可分为积污、受潮、干区形成、局部电弧的出现和发展等阶段,采用措施抑制或阻止各阶段的形成和转化,就能有效地阻止污闪事故。 防污措施:1.增大爬电比距 2.清扫表面积污 3.用防污闪涂料处理表面 4.采用半导体釉和硅橡胶的绝缘子。 8.雷击放电过程与实验室的长气隙放电过程有何主要区别?

防雷基础知识1

防雷基础知识 一、雷电的基本知识 1、雷电的基本概念 大气的运动形成了云层。云层在运动过程中因为剧烈摩擦生电以及云块切割磁力线,就逐步积聚电荷。雷电是带电云层与另一带电云层,或者云层与大地之间的放电现象。在雷雨云下部的负电荷逐步积聚,带负电荷的云层向下靠近地面时,地面的凸出物、金属等会被感应出正电荷,随着电场的逐步增强,其电场场度一般在超过25Kv/㎝时,就会开始电离并向下梯级式放电,与地面上的物体(建筑物等)形成的向上先导感应形成雷电通路,并随之开始主放电,发出明亮的闪电和隆隆雷声。这种雷击称为负极性下行先导雷击,约占全部对地雷击中的90﹪以上,其余还有正极性下行先导雷击、负极性上行先导雷击两种。只有先导没有主放电的就是闪电。通常的雷击灾害一般是云层与地面之间的放电造成的。 一般认为,当先导从雷云向下发展的时候,它的梯级式跳跃只受到周围大气的影响,没有一定的方向和袭击对象,但它的最后一次跳跃既最后一个梯级就不同了,它必须在这最终阶段选择被击对象。此时,地面上可能有不止一个的物体(比如树木、建筑物等)在它的电场影响下产生向上先导,趋向与下行先导会合。 最后一次跳跃的距离称为闪击距离。从接闪器来说,它可以在这个距离内把雷电吸引到自己身上,而对于此距离之外的下行先导,接闪器将无能为力。闪击距离是一个变量,它和雷电流幅值有关,幅值大相应闪击距离大,反之,闪击距离小。因此,防雷装置的接闪器可以把较远的强的闪电引向自身,但对较弱的闪电则有可能失去对建筑物的有效保护。 2、雷电的主要特性和活动规律 雷电有如下几个特点: 冲击电流大我国所测得的雷电流最大幅值达200KA,一般的雷电流也有几十KA。一次雷电流为200KA的雷击,能使在2Km远处感应产生大于0.6GS的电磁场。而对计算机而言,电磁场干扰能量≥0.3GS则可使计算机数据混乱或丢失;≥0.75GS则可使计算机造成假性损坏;≥2.4GS则可使计算机瘫痪。 时间短一般雷击分为三个阶段,即先导放电、主放电、余光放电。一次放电过程一般是40-100μs。 变化梯度大雷电流变化梯度有的可达10KA/μs。雷电流波型是一种冲击脉冲波形。试验用的8∕20μs波型的雷电流放电器,能将10KA的电流传导出来。国际电工委员会(IEC)要求使用10/350μs波型的放电器,它的电荷量相当于8/20μs脉冲情况下电荷量的约20倍。既波头时间10μs,半值时间350μs。 冲击电压高强大的电流产生的交变磁场,其感应电压可高达上亿伏。 雷电的活动规律: 我国的雷电活动,夏季最活跃,冬季最少。全球分布是赤道附近最活跃,随纬度升高而分别向北向南减少,极地最少。一般来说湿热地区比干燥地区、山区比平原雷电活动多。 雷电活动还有一定的选择性。一般来说土壤电阻率较小或土壤电阻率突变的地区;山坡

高电压技术中的气体放电及其应用探析

高电压技术中的气体放电及其应用探析 气体放电是一种重要的放电现象,广泛地存在于人们的日常生活中,并且在工业中获得了广泛地应用,研究气体放电对于认识和了解科技发展水平具有重要的意义。本文阐述了气体放电的产生条件和气体放电等离子体的特性,并且介绍了高电压技术中的气体放电及其应用探析。 标签:高电压技术;气体放电;应用 引言 众所周知,对气体施加一定的电压后,气体会发生放电现象,也就是说气体发生导电,不具有绝缘的特性,此时形成了等离子体。气体放电被广泛地应用于科学研究和工业中,同时,气体放电在人们的日常生活中也广泛地存在,例如闪电、日光灯等。因此,研究和认识气体放电对于了解当今的科学技术发展水平具有重要意义。 1.高电压技术中的气体放电概论 在电力系统中,气体是一种应用得相当广泛的绝缘材料。如架空输电线、母线、隔离开关的断口处等都是完全依靠空气作为绝缘的。还有些虽然不完全依靠空气作为绝缘,但空气包围在它们的外部,构成绝缘的一部分。SF6气体从被发现至今仅一百余年的历史,它作为高压绝缘材料的广泛应用促进了输变电技术及高压绝缘技术的飞速发展。气体有着固体和液体等其它绝缘介质所没有的优良特性,比如气体不存使用寿命的问题;常用的绝缘气体如空气、氮气以及SF6气体化学稳定性好,不燃不爆,有很高的可靠性和安全性。气体绝缘开关(GasInsulated Switchgear简称GIS)由于具有占地面积小,可靠性高,安全性强,维护工作量很小等优点,加之在经济上的优越性和技术上的先进性,已被广泛的应用于高压输变电系统。而且气体放电理论的实验和研究成果不但为高电压绝缘技术发展提供坚实的理论基础,也同时促进了其他学科的技术进步与发展,包括等离子体刻蚀、等离子体推进、磁流体发电、加速器气体激光器等新兴技术领域。 2.气体放电研究现状 气体放电是研究放电过程中各种带电粒子的产生、消失、相互作用以及运动规律的学科。依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。近年来,气体放电在磁流体发电、等离子体切割及等离子体推进和受控热核反应等方面都得到飞速发展和具体应用。 与其他物理学科一样,对气体放电的研究也是通过在实验研究的基础上进行理论探索的方式进行的。从1858年电子被发现开始,对于气体放电的研究就没有停止过,大量研究取得的丰硕的成果不仅奠定了气体放电学科的理论基础,而

HID气体放电灯技术简析

HID气体放电灯技术简析 60%以上是集中在夜间及天候不良的情况中,这都是因为在这些时间的驾车视线通常较差,驾驶人就必须花费较多眼力及体力来聚精会神观看路面,间接造成疲劳及注意力分散,当然驾车发生意外的比例也会跟着水涨船高。 关键词:飞利浦HID气体放电灯 根据统计,人们驾车发生事故的时间,几乎60%以上是集中在夜间及天候不良的情况中,这都是因为在这些时间的驾车视线通常较差,驾驶人就必须花费较多眼力及体力来聚精会神观看路面,间接造成疲劳及注意力分散,当然驾车发生意外的比例也会跟着水涨船高。 人类对于驾车视线明亮度的追求也是欲求不满,尤其在车辆大灯用久光度衰减的情况下,大多数消费者都会寻求市面上亮度更高的改装灯泡来解决问题。所以,在市面上所谓的超白光、超强光、超炫光一堆灯泡产品也应运而生。不过,直到最新科技的HID气体放电灯出现,人们对于亮度的定义,又有另一番见解了。市面上所谓的车用大灯,目前95%以上都还是使用卤素灯泡,而其发光原理则是藉由其中的钨丝产生光与热。然而受限于钨丝本身的材料熔点,一般原厂的60W卤素灯也顶多产生3000~3200K的色温度;若是改装灯泡,藉由提高钨丝电阻及瓦数,100W灯泡也最多提升到3400~3800K的色温度。

现在越来越多中高级车使用的HID气体放电式灯组,其发光原理与传统的卤素灯就完全不同了。举个简单一点的例子来解释,如果说卤素灯的发光原理像家里的传统灯泡,HID气体放电灯就像日光灯管了。HID气体放电灯的发光原理是利用正负电刺激氙气与稀有金属化学反应发光,所以会发现在HID灯泡的灯管内还有一颗小小的玻璃球,这其中就是灌满了氙气及少许稀有金属,只要用电流去刺激它们进行化学反应,两者就会发出高达4000K色温度的光芒,这不但是传统卤素灯所难以望其项背的光度,4000K其实也是最接近正午日光的色温,最能让人眼感觉舒服的光度。此外,由于氙气分子活动能力会随着使用时间的加长而越趋活泼,因此气体放电灯泡会越用越亮。 就因为HID气体放电灯与传统卤素灯发光原理不同,所以车上的大灯灯泡钨丝用12伏特的电压已能让它发光;要是用在刺激气体放电灯中的氙气发光,那是绝对不够的,所以,真正的HID气体放电灯,就像日光灯组一样必须要有一个变压器,先将车上的12V电压升压到23000V,用在刚开启电源时的瞬间,强烈刺激氙气迅速达到高亮度,接着再将电压转成8000V,稳定持续供应氙气灯泡发光。 其实市面上早已出现许多款改装气体放电灯组,然而受限于配合灯座形式较少,安定器的品质稳定度不佳,单价也偏高,所以市面上消费者的反应并不热衷。因为如此,向以制造灯具出名的PHILIPS公司推出了一款HID气体放电大灯改装套件,不但安定器的品质稳定,也针对市面上各车型的灯座开发适用产品。这组PHILIPS的改装HID气体放

气体放电物理知识要点总结2014-6-6

气体放电物理知识要点总结 1.气体放电过程中一般存在六种基本粒子:电子,正离子,负离子,光子,基态原子(或分子),激发态原子(或分子)。2.光子能量,其中为光的频率,h为普朗克常数。 3.原子能量由原子内部所有粒子共同决定,通常人们感兴趣的是原子最外层电子即价电子,因为气体放电过程主要是由最外层 电子参加的。原子通常处于稳定的能级,成为基态(基态能量 E1),当价电子从外界获得额外能量时,它可以跳跃到更高能级,此时原子处于激发态(激发态能量E2),电子处于激发态的时 间很短,然后会跃迁到基态或低激发态,并以光子形式释放出 能量()。 当电子获得的能量超过电离能时,电子就与原子完全脱离而成 为自由电子,原子变为正离子。 4.正离子也可被电离,负离子是电子附着到某些原子或分子上而形成的。负离子的能量等于原子或分子的基态能量加上电子的 亲和能。气体放电中的带电粒子是电子和各种离子(正离子和 负离子)。每种离子都将影响气体放电的电特性,电子的作用通 常占主导地位。 5.波数等于波长的倒数,表示在真空中每厘米的波长个数。即 6. 原子所处的状态取决于其核外电子的运动状态,可用四个量子数来描述。

主量子数n(n=1,2,3…), 它是由电子轨道主轴的尺寸决定; 轨道角量子数l,(l=0,1,2,3…n-1),它是由椭圆轨道的短轴和长轴之比决定。 轨道磁量子数m l,其取值范围为,它是由轨道相对于磁场的位置决定的; 自旋磁量子数. 7.在光谱中,将电子组态用规定的符号来标志,轨道角量子数用字母s,p,d,f等表示,相应的l值分别为0,1,2,3等。 电子组态所形成的原子态符号可以表示为 第二章.气体放电的基本物理过程 1.带电离子的产生方式:碰撞电离,光电离,热电离,金属表面电离 2.电子与原子碰撞时,若碰撞不引起原子内部的变化,这种碰撞称为弹性碰撞,若电子能量足够大,电子与原子碰撞后,可引起原子内部发生变化,即引起原子的激发或电离,这种碰撞称为非弹性碰撞。碰撞激发:若电子动能比原子的电离能小,但比原子激发能大,则电子与原子碰撞时,可使得原子激发。 碰撞电离:若电子动能比原子的电离能大很多,那么在非弹性碰撞之后,除了电子传递给原子一部分能量外,仍保留一部分动能,它以较低速度继续运动,并且原子被电离释放出一个电子。 分级电离:若被激发的原子再次与电子碰撞,那么电子的动能也可传

气体放电作业

气体放电理论分析就引用 1、引言: 气体中流通电流的各种形式统称气体放电,处于正常状态并隔绝各种外电离因素的气体是完全不导电的,但空气中总会有来自空间的各种辐射,总会有少量带电质点,一般情况下每立方厘米空气中有约500-1000对离子。气体放电等离子体作为物质的第四态,其物性及规律与固态、液态、气态的各不相同。气态放电等离子体是由电子、各种离子、原子组成的,远比气体、液体、固体复杂,其中发生着大量各不相同的基本过程。气体放电时等离子体物理的一个重要组成部分,气体放电现象时通过气体以后由电离了的气体表现出来的。研究气体放电的目的是要了解这种电离了的气体在各种条件下的宏观现象及其性质,同时研究其中所发生的的微观过程,并进一步把这两者联系起来,由表及里地掌握气体放电的机理。由此可见气体放电现象的主要任务是研究各种气体放电现象的物理过程及其内在规律。在自然界和人们的日常生活中经常会碰到气体放电现象,犹如大气的电离层、太阳风、日冕和闪电等都是自然界的气体放电现象。现在对气体放电的类型进行分类阐述并对其应用前景进行研究探讨。 2、气体放电的分类 在不同的物理条件下,由于占主导地位的基本物理过程不同,会产生各种不同形式的气体放电现象。按维持放电是否必须有外界电离源把放电分为非自持放电和自持放电;按放电参量是否随时间变化分为稳态放电和非稳态放电;可根据阴极的工作方式分为冷阴极放电和热阴极放电;可按工作气压的高低分为低气压放电、高气压放电和超高压放电;根据以哪一种基本过程占优势以及电子离子在放电过程中运动的特点为依据可以分为:

辉光放电:辉光放电充满整过电极空间,电流密度较小,一般为1mA/cm2 -5mA/cm2,整个空隙仍呈上升的伏安特性,处于绝缘状态。 电晕放电:高场强度电极附近出现发光的薄层,电流值也不大,整个空隙仍处于绝缘状态。 刷状放电:由电晕电极伸出的明亮而细的断续放电通道,电流增大,但此时间隙仍未被击穿。 火花放电:贯通两电极的明亮而细的断续的放电通道,间隙由一次次火花放电间歇地被击穿。 气体放电过程描述框图:

半导体放电管和气体放电管的基础知识

半导体放电管和气体放电管的基础知识 气体放电管的结构及特性 开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。气体放电管有二极放电管及三极放电管两种类型。有的气体放电管带有电极引线,有的则没有电极引线。从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。 随着过电压的降低,通过气体放电管的电流也相应减少。当电流降到维持弧光状态所需的最小电流值以下时,弧光放电

停止,放电管的辉光熄灭。气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。气体放电管也是电路防雷击及瞬时过压的保护元件。气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。 半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。电压继续增大时,半导体放电管由于负阻效应进入导通状态。只有在当电流小于维持电流时,元件才会复位并恢复到它的高阻抗状态。半导体放电管的优点包括它的快速响应时间,稳定的电气性能参数以及长期使用的可靠性。其响应速度是气体放电管的千分之一,而寿命是气体放电管的10倍以上。半导体放电管是负阻元件,其能量转移特性使之不会被高电压是你坏。这一点是远胜于TVS二极管的。另一方面,半导体放电管也能做到较高的浪涌电流和很低的电容值。 半导体放电管主要用作电子通讯和数据通讯电路的首级和二级过电压保护器。一、半导体放电管的结构和工作原理

气体放电的物理过程

第二章气体放电的物理过程 本章节教学内容要求: 气体分子的激发与游离,带电质点的产生与消失 汤森德气体放电理论:电子崩的形成,自持放电的条件,帕邢定律。 流注理论:长间隙击穿的放电机理,极性效应,先导放电,雷云放电及电晕。 必要说明:1)常用高压工程术语 击穿:在电场的作用下,由电介质组成的绝缘间隙丧失绝缘性能,形成导电通道。 闪络:沿固体介质表面的气体放电(亦称沿面放电) 电晕:由于电场不均匀,在电极附近发生的局部放电。 击穿电压(放电电压)Ub(kV):使绝缘击穿的最低临界电压。 击穿场强(抗电强度,绝缘强度)Eb(kV/cm):发生击穿时在绝缘中的最小平均电场强度。Eb=Ub/S(S:极间距离) 一般在常压大气中,Eb=30kV/cm,当S较小为cm且电场为均匀分布时; Eb=500kV/m,当S较大接近m时。 放电:(狭义与广义)气体绝缘的击穿过程。 辉光放电:当气体压力低,电源容量小时,放电表现为充满整个气体间隙两电极之间的空间辉光,这种放电形式称为辉光放电。 火花放电:在大气压力或更高的压力下,电源容量不大时变现出来的放电。主要表现为:从一电极向对面电极伸展的火花而不是充满整个空间。火花放电常常会瞬时熄灭,接着有突然出现。 电晕放电:在不均匀电场中,曲率半径很小的电极附近会出现紫兰色的放电晕光,并发出“兹兹”的可闻噪声,此种现象称为电晕放电。如不提高电压,则这种放电就局限在很小的范围里,间隙中的大部分气体尚未失去绝缘性能。电晕放电的电流很小 电弧放电:在大气压力下,当电源容量足够大时,气体发生火花放电之后,便立即发展到对面电极,出现非常明亮的连续电弧,此称为电弧放放电。电弧放电时间长,甚至外加电压降到比起始电压低时电弧依然还能维持。电弧放电电流大,电弧温度高。 电气设备常常以一个标准大气压作为绝缘的情况,这是可能发生的是电晕放电,火花放电或者是电弧放电。 2)常见电场的结构 均匀场:板-板 稍不均匀场:球-球 极不均匀场:(分对称与不对称) 棒-棒对称场 棒-板不对称场 线-线对称场 §2-1气体中带电质点的产生和消失 一.带电粒子的产生(电离过程) 气体中出现带电粒子,才可在电场作用下发展成各种气体放电现象,其来源有两个:一是气体分子本身发生电离,二气体中的固体或液体金属发生表面电离。 激励能:一个原子的外层电子跃迁到较远的轨道上去的现象称为激励,其值为两个能级

大工11春《气体放电技术》在线作业

大工11春《气体放电技术》在线作业1 一、判断题(共10 道试题,共60 分。)V 1. 气体击穿后的放电形式和气压有关。 A. 错误 B. 正确 满分:6 分 2. 第一个提出定量的气体放电理论的科学家是汤森。 A. 错误 B. 正确 满分:6 分 3. 等离子体是物质的第四态。 A. 错误 B. 正确 满分:6 分 4. 汤森放电理论适用于pd较大的情况。 A. 错误 B. 正确 满分:6 分 5. 流注放电理论认为二次电子的来源是空间的光电离。 A. 错误 B. 正确 满分:6 分 6. 辉光放电是由电子雪崩的不断发展而引起的放电。 A. 错误 B. 正确 满分:6 分 7. 混合气体中的潘宁效应可以用汤森放电理论来解释。 A. 错误 B. 正确 满分:6 分 8. 一个粒子单位时间内和其他粒子碰撞的平均次数,被称为碰撞频率。 A. 错误 B. 正确 满分:6 分 9. 汤森放电理论认为二次电子的来源是正离子撞击阴极,使阴极表面产生电子逸出。 A. 错误 B. 正确 满分:6 分 10. 参与碰撞的粒子间发生位能变化,这种碰撞被称为弹性碰撞。 A. 错误 B. 正确 满分:6 分 二、单选题(共5 道试题,共20 分。)V 1. 碰撞分类正确的是()。 A. 第一种碰撞,第二种碰撞

B. 弹性碰撞,非弹性碰撞 C. 刚性碰撞,非刚性碰撞 满分:4 分 2. 等离子体判据不包括()。 A. 德拜球内部粒子远大于1 B. 等离子体频率必须大于电子和中性粒子的碰撞频率 C. 等离子体频率必须小于电子和中性粒子的碰撞频率 满分:4 分 3. 放电过程中,设每个电子沿电场方向移动1cm距离时与全体气体分子或者原子碰撞所能产生的平均电离次数,称作()。 A. 汤森第一放电系数 B. 汤森第二放电系数 C. 帕邢系数 满分:4 分 4. 原子中的电子在()态时是稳定的。 A. 基 B. 第一激发 C. 第二激发 满分:4 分 5. 等离子体是由电子,粒子和中性粒子组成的一种()。 A. 固体 B. 液体 C. 准中性气体 满分:4 分 三、多选题(共5 道试题,共20 分。)V 1. 等离子体由()构成。 A. 离子 B. 电子 C. 中子 D. 中性粒子 满分:4 分 2. 常见的气体放电主要包括()。 A. 辉光放电 B. 火花放电 C. 电弧放电 D. 电晕放电 满分:4 分 3. 带电粒子消失的原因是()。 A. 复合 B. 扩散 C. 电离 D. 分解 满分:4 分 4. 电极表面带电粒子的产生包括()。

气体放电过程的分析

气体放电过程的分析 摘要:气体电介质,特别是空气,是电力系统中最重要的绝缘介质。对气体放电过程进行分析,研究气体电介质的绝缘特性具有十分重要的意义。而气体放电又受气体间隙、环境电场影响,其过程的分析需要各种理论的支持。 关键字:气体放电、带电质点、气体间隙、电子崩、汤逊理论、流注理论 K 一、气体中带电质点的产生与消失 1.气体中带电质点的产生 气体的特点:气体的分子间距很大,极化率很小,因此,介电常数都接近于1。纯净的、中性状态的气体是不导电的,只有气体中出现了带电质点(电子、正离子、负离子)以后,才可能导电,并在电场作用下发展成为各种形式的气体放电现象。 气体导电的原因:气体中出现了带电质点(电子、正离子、负离子)以后,游离出来的自由电子、正离子和负离子在电场作用下移动,从而形成气体电介质的电导层。 气体带电质点的来源:有两个,一是气体分子本身发生游离(包括撞击游离、光游离、热游离等多种形式);二是放在气体中的金属发生表面游离。 2.气体中带电质点的消失 气体中带电质点的消失主要有下列三种方式:带电质点受电场力的作用流入电极并中和电量;带电质点的扩散;带电质点的复合。 1)带电质点受电场力的作用而流入电极,中和电量 带电质点在电场力的作用下受到加速,在向电场方向运动途中会不断地与气体分子相碰撞,碰撞后会发生散射,但从宏观来看,是向电场方向作定向运动的。其平均速度开始是逐渐增加的(因受电场力的加速),但随着速度的增加,碰撞时失去的动能也增加,最后,在一定的电场强度下,其平均速度将达到某个稳定值。这一平均速度称为带电质点的驱引速度。 2)带电质点的扩散 带电质点的扩散就是指这些质点会从浓度较大的区域转移到浓度较小的区域,从而使带电质点在空间各处的浓度趋于均匀的过程。 带电质点的扩散是由杂乱的热运动造成的,而不是由于同号电荷的电场斥力造成的,因为即使在很大的浓度下,离子之间的距离仍大到静电力起不到什么作用的程度。电子的直径比离子的直径小很多,在运动中受到的碰撞也比离子少得多,因此电子的扩散比离子的扩散快得多。 3)带电质点的复合 带有异号电荷的质点相遇,发生电荷的传递、中和而还原为中性质点的过程称为复合。复合时,质点原先在游离时所吸取的游离能通常将以光子的形式如数放出。对负离子来说,复合的过程就是从负离子上游离出原先吸附的一个电子。 二、汤逊理论 气隙击穿的过程,就是各种形式的游离持续发展的过程。在不同情况下,各

第一章 气体放电的基本物理过程

第一章气体放电的基本物理过程 一、选择题 1) 流注理论未考虑 A.碰撞游离B.表面游离C.光游离D.电荷畸变电场 2) 先导通道的形成是以 A.碰撞游离B.表面游离C.热游离D.光游离 3) 电晕放电是一种 A.自持放电B.非自持放电C.电弧放电D.均匀场中放电 4) 气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称 为。 A.碰撞游离 B.光游离 C.热游离 D.表面游离 5) ______型绝缘子具有损坏后“自爆”的特性。 A.电工陶瓷 B.钢化玻璃 C.硅橡胶 D.乙丙橡胶 6) 以下哪个不是发生污闪最危险的气象条件? A.大雾 B.毛毛雨 C.凝露 D.大雨 7) 污秽等级II的污湿特征:大气中等污染地区,轻盐碱和炉烟污秽地区,离 海岸盐场3km~10km地区,在污闪季节中潮湿多雾但雨量较少,其线路盐密为mg/cm。A.≤0.03 B.>0.03~0.06 C.>0.06~0.10 D.>0.10~0.25 以下哪种材料具有憎水性? A. 硅橡胶 B.电瓷 C. 玻璃D金属28) 二、填空题 9) 气体放电的主要形式:、、、、 10) 根据巴申定律,在某一PS值下,击穿电压存在 11) 在极不均匀电场中,空气湿度增加,空气间隙击穿电压。 12) 流注理论认为,碰撞游离和是形成自持放电的主要因素。 13) 工程实际中,常用棒-板或电极结构研究极不均匀电场下的击穿特 性。 14) 气体中带电质子的消失有、复合、附着效应等几种形式 15) 对支持绝缘子,加均压环能提高闪络电压的原因是。 16) 沿面放电就是沿着 17) 18) 19) 标准参考大气条件为:温度h0 11g/m3t0 20C ,压力b0 kPa,绝对湿度 20) 三、计算问答题 21) 简要论述汤逊放电理论。 22) 为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?越易吸湿的固体,沿面闪络电压就越______ 等值盐密法是把绝缘子表面的污秽密度按照其导电性转化为单位面积上__________含量的一种方法常规的防污闪措施有:爬距,加强清扫,采用硅油、地蜡等涂料 1/18页 23) 24) 影响套管沿面闪络电压的主要因素有哪些? 某距离4m的棒-极间隙。在夏季某日干球温度t干 30C,湿球温度

电弧与电气触头的基本知识

第二章电弧与电气触头的基本知识 第一节电弧的形成与熄灭 一、电弧放电的特征和危害 电弧的实质是一种气体放电现象,但它又有别于电晕放电、火花放电等。电弧放电的主要特征有:(1)电弧由三部分组成。包括阴极区、阳极区和弧柱区。 (2)电弧温度很高。弧柱中心可达10000℃左右,电弧表面也会达到3000~4000℃。 (3)电弧是一种自持放电现象。极间的带电质点不断产生和消失,处于动平衡状态。 (4)电弧是一束游离的的气体。在外力作用下能迅速移动、伸长、弯曲和变形。 电弧存在时会对电力系统和电气设备造成危害,主要有: (1)电弧的存在延长了开关电器开断故障电路的时间。 (2)电弧产生的高温,将使触头表面熔化和蒸化,烧坏绝缘材料。 (3)电弧在电动力、热力作用下能移动,易造成飞弧短路和伤人,使事故的扩大。 二、电弧的形成 电弧能成为导电通道,是由于电弧的弧柱中存在大量的自由电子,这些自由电子的定向运动形成电弧。下面分析自由电子的产生以及电弧的形成。 (一)弧柱中自由电子的主要来源 1.热电子发射2.强电场发射3.碰撞游离4.热游离 (二)电弧形成的过程 触头刚分离时突然解除接触压力,阴极表面立即出现高温炽热点,产生热电子发射;同时,由于触头的间隙很小,使得电压强度很高,产生强电场发射。从阴极表面逸出的电子在强电场作用下,加速向阳极运动,发生碰撞游离,导致触头间隙中带电质点急剧增加,温度骤然升高,产生热游离并且成为游离的的主要因素,此时,在外加电压作用下,间隙被击穿,形成电弧。 三、电弧的熄灭 当游离作用大于去游离作用时,电弧电流增加,电弧更加炽热燃烧;当两者作用持平时,电弧维持稳定燃烧;若去游离作用始终大于游离作用,则电弧电流减少,直至电弧熄灭。 电弧的去游离方式:去游离过程包括复合和扩散两种形式。 1. 复合:是正、负带电质点相互结合变成不带电质点的现象。 2. 扩散:是弧柱中的带电质点逸出弧柱以外,进入周围介质的现象。 扩散有三种形式:温度扩散、浓度扩散和利用吹弧扩散。 (一)影响去游离的因素 1. 电弧温度 2. 介质的特性 3. 气体介质的压力 4. 触头材料 第二节交流电弧的特性及熄灭

气体放电过程分析

气体放电过程分析报告 一、气体放电的定义 气体放电是人们在自然界与日常生活中常常碰到的现象,如闪电、日光灯等,它一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。气体放电是产生低温等离子体的主要途径。所谓的低温等离子体是区别于核聚变中高温等离子体而言的。低温等离子体物理与技术在经历了一个由20世纪60年代初的空间等离子体研究向80年代和90年代以材料及微电子为导向的研究领域的重大转变之后,现在已经成为具有全球影响的重要课题,其发展对于高科技经济的发展及传统工业的改造有着巨大的影响。 二、气体放电过程分析 气体放电的经典理论主要有汤森放电理论和流注放电理论等。1903年,为了解释低气压下的气体放电现象,汤森(J.S.Townsend)提出了气体击穿理论,引入了三个系数来描述气体放电的机理,并给出了气体击穿判据。汤森放电理论可以解释气体放电中的许多现象,如击穿电压与放电间距及气压之间的关系,二次电子发射的作用等。但是汤森放电解释某些现象也有困难,如击穿形成的时延现象等;另外汤森放电理论没有考虑放电过程中空间电荷作用,而这一点对于放电的发展是非常重要的。电子雪崩中的正离子随着放电的发展可以达到很高的密度,从而可以明显的引起电场的畸变,进而引起局部电子能量的加强,加剧电离。针对汤森放电理论的不足,1940年左右,H.Raether及Loeb、Meek等人提出了流注(Streamer)击穿理论,从而弥补了汤森放电理论中的一些缺陷,能有效地解释高气压下,如大气压下的气体放电现象,使得放电理论得到进一步的完善。近年来,随着新的气体放电工业应用的不断涌现及实验观测技术的进一步发展,将放电理论与非线性动力学相结合,利用非线性动力学的方法来研究气体放电中的各种现象成为气体放电研究中的重要内容。 汤逊理论通过引入“电子崩”的概念,较好地解释了均匀电场中低气压短间隙的气体放电过程,通过这个理论可以推导出有关均匀电场中气隙的击穿电压及其影响因素的一些实用性结论。但是这个理论也有局限性,由于汤逊理论是建立在均匀电场、短间隙、低气压的实验条件下的,因此对于高气压、长间隙和不均匀电场中的气体放电现象就无法作出圆满的解释了。比如,根据汤逊理论,气体放电应在整个间隙中均匀连续地发展,这在低气压下确实如此,如放电管中的辉光放电。然而,在大气压力下长间隙的击穿却往往带有许多分枝的明亮细通道,如天空中发生的雷电放电即是如此。对此,就需要用流注放电理论才能较好地解释这种高气压长间隙已经不均匀电场的气体放电现象了。 流注理论与汤逊理论的不同之处在于:流注理论认为电子的碰撞电离和空间光电离是形成自持放电的主要因素;而汤逊理论则没有考虑放电本身所引发的空间光电离对放电过程的重要作用。同时,流注理论特别强调空间电荷对电场的畸变作用。 等。 三.气体放电的现象和形式 气体放电的形式和现象是多种多样的,依气体压力、施加电压、电极形状、电源频率的不同,气体放电的形式总体上可以分为以下几类:(1)当气压

气体放电

气体放电现象及应用 学习目的:根据课程所学及实际应用,了解气体放电的原理和气体放电的现象和形式、影响因素及伴随的效应。 引言: 在现实生活中我们会遇到很多气体放电的现象,有的时候我们会觉得不可思议,其实这些现象都是能用科学来解释的。科学家们通过对他们的研究,把这些现象的原理应用在我们的生活中,给我们带来了很多益处,在经过科学家的进一步研究后将会给我们带来更大的益处。那么什么是气体放电呢?它发生的形式及现象又是什么呢?我们将如何应用呢? 1.简述气体放电的原理 干燥气体在正常状态下是不导电的,是良好的绝缘介质,但当气体中存在自由带电粒子时,它就变为电的导体。这时若在气体中安置两个电极并加上电压,气体在强电场作用下,少量初始带电粒子与气体原子(或分子)相互碰撞,当碰撞能量超过某一临界值时,会使束缚电子脱离气体原子而成为自由电子。逸出电子后的原子成为正离子,使气体中的带电粒子增殖,这时有电流通过气体,这个现象称为气体放电。 气体放电的根本原因在于气体中发生了电离的过程,在气体中产生了带电粒子。气体电离的基本形式有: (1)碰撞电离 在电场作用下,那些散在气体中的带电粒子(电子或离子)被加速而获得动能,当它们的动能积累到一定数值后,在和中性的气体分子发生碰撞时,有可能使中性的气体分子发生电离,这种电离过程称为碰撞电离。在碰撞电离中,由于电子的尺寸小、重量轻,其平均自由行程也较大,所以在电场中容易被加速并积累起电离所需的能量。因此,电子是碰撞电离中最活跃的因素,它在强电场中产生的这种碰撞电离是气体放电中带电粒子极为重要的来源。 (2)光电离 由光辐射引起的气体分子的电离称为光电离。光子的能量与光的波长有关,波长愈短,能量愈大。各种短波长的高能辐射线如宇宙射线、r射线、x射线以

气体放电的基本物理过程

第一章 气体放电的基本物理过程 一、选择题 1) 流注理论未考虑 的现象。 2) A .碰撞游离 B .表面游离 C .光游离 D .电荷畸变电场 3) 先导通道的形成是以 的出现为特征。 4) A .碰撞游离 B .表面游离 C .热游离 D .光游离 5) 电晕放电是一种 。 6) A .自持放电 B .非自持放电 C .电弧放电 D .均匀场中放电 7) 气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称 为 。 8) A.碰撞游离 B.光游离 C.热游离 D.表面游离 9) ______型绝缘子具有损坏后“自爆”的特性。 10) A.电工陶瓷 B.钢化玻璃 C.硅橡胶 D.乙丙橡胶 11) 以下哪个不是发生污闪最危险的气象条件 12) A.大雾 B.毛毛雨 C.凝露 D.大雨 13) 污秽等级II 的污湿特征:大气中等污染地区,轻盐碱和炉烟污秽地区,离 海岸盐场3km~10km 地区,在污闪季节中潮湿多雾但雨量较少,其线路盐密 为 2/cm mg 。 14) A.≤ B.>~ C.>~ D.>~ 15) 以下哪种材料具有憎水性 16) A. 硅橡胶 B.电瓷 C. 玻璃 D 金属 二、填空题 17) 气体放电的主要形式: 、 、 、 、 18) 根据巴申定律,在某一PS 值下,击穿电压存在 值。 19) 在极不均匀电场中,空气湿度增加,空气间隙击穿电压 。 20) 流注理论认为,碰撞游离和 是形成自持放电的主要因素。 21) 工程实际中,常用棒-板或 电极结构研究极不均匀电场下的击穿特 性。 22) 气体中带电质子的消失有 、复合、附着效应等几种形式 23) 对支持绝缘子,加均压环能提高闪络电压的原因是 。 24) 沿面放电就是沿着 表面气体中发生的放电。 25) 标准参考大气条件为:温度C t 200=,压力=0b kPa ,绝对湿度 30/11m g h = 26) 越易吸湿的固体,沿面闪络电压就越______ 27) 等值盐密法是把绝缘子表面的污秽密度按照其导电性转化为单位面积上 __________含量的一种方法 28) 常规的防污闪措施有: 爬距,加强清扫,采用硅油、地蜡等涂料 三、计算问答题 29) 简要论述汤逊放电理论。 30) 为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高

相关文档
相关文档 最新文档