文档库 最新最全的文档下载
当前位置:文档库 › 直流输电与FACTS技术 考试总结

直流输电与FACTS技术 考试总结

直流输电与FACTS技术 考试总结
直流输电与FACTS技术 考试总结

·直流输电过程:一个交流变直流(整流)、传送、直流再变交流(逆变)的过程。

·直流输电的基本原理:从交流电力系统I向系统II输电时,换流站CS1将送端系统I的交流电变换成直流电,通过直流线路将功率输送到换流站CS2,再由CS2把直流电变换成三相交流电。通常把交流变换成直流称为整流,而将直流变换成交流称为逆变。CS1也称为整流站,而CS2又称为逆变站。

·直流输电与交流输电的比较:1,经济性:a线路(直流需两根导线,三相交流需三根)。b 两端设备(直流系统两端是换流站,造价更高,主要设备包括特有的换流器滤波器、和换流变压器、无功补偿设备;交流系统两端是交流变电站,包括变压器、断路器、隔离开关)。c 总费用与等价距离(当输电线路增加到一定值时,直流线路所节省的费用抵偿了换流站所增加的费用,此时交直流输电的总费用正好相等,这个距离称为交直流输电的等价距离。输电距离大于等价距离时适宜采用直流输电)。2,技术性:a稳定性(交流系统输送容量受到稳定性的限制,输送容量与输送距离乘积必须小于一定值;直流输电线路所输送容量只受到导线截面限制。在交直流系统并列的场合,直流输电系统还可提高交流系统稳定性)。b非同步联络线(交流联络线刚性联接,直流弹性联接)。C新发电方式与系统的联接

·直流输电优点:当输送相同的功率时,直流输电线路造价比交流线路低:可以非同步联网:输送容量不受稳定性限制;联网不增加短路容量;线路电晕干扰小;线路基本不存在电容电流,不需无功补偿。缺点:换流站造价高于变电站;目前尚无适用的直流断路器,发展多端直流输电系统受到一定限制;不能使用变压器变换电压水平;运行过程中产生谐波;换流站需要大量的无功补偿;控制复杂。适用场合:远距离大功率输电;海底电缆输电;用电缆向高密度大城市供电;不同额定频率或同频率非同步运行的交流系统之间的联络。

·两端直流输电系统的构成方式:单极系统、双极系统、非同步联络站。

·直流输电系统的基本组成:换流器(将交流电转换成直流电,或者将直流电转换成交流电的设备);换流变压器(向换流器提供适当等级的三相电压源设备。作用:使HVDC系统建立自己的对地参考点;减小注入系统的谐波。);平波电抗器(作用:减小注入直流系统的谐波;减小换相失败的几率;防止轻载时直流电流间断;限制直流短路电流峰值。);滤波器(减小注入交、直流系统谐波的设备。种类: 交流滤波器、直流滤波器。有源、无源滤波器。无源滤波器: 单调谐滤波器;双调谐滤波器;高通滤波器。)

谐波和滤波器

·谐波的危害:①使交流系统中的发电机,变压器和电容器由于谐波造成附加损耗而发热。

②由于谐波谐振引起电网中局部过电压。③由于谐波中的负序分量引起电力系统中的保护误动作。④由于电压波形畸变,引起直流输电控制系统的不稳定和其它一些设备控制系统不稳定。⑤由于谐波中的能量主要集中在较低次数的分量,而这些分量的频率恰好是在人耳的敏感范围,因而低次谐波将对通讯线路产生严重干扰。

·一个P脉冲的换流器,在直流侧产生kp次特征谐波,在交流侧产生kp±1次特征谐波。·特征谐波:在假设条件下,换流器交流侧的各相电流和直流侧的整流电压中所包含的谐波。由换流器的脉动数及换流器结构决定。

·消除谐波危害的措施:1增加换流器脉动数2在换流器交流侧和直流侧装设滤波器。

·非特征谐波产生原因:1交流系统电压不对称2系统三相电抗不相等3最主要原因:控制系统发出的触发脉冲间隔不等。

·与2个单调谐滤波器比较,1个双调谐滤波器具有如下优点:基频下的功耗小;只有一个电感器承受全部冲击电压;投资省。

·桥阀导通条件:1.阀承受正向电压2.在触发极上加足够能量的正的触发脉冲。

·三相桥式电路优点:1.在直流电压相同情况下,桥阀在断态所承受电压的峰值小于等于其他方式。2.当通过功率为一定值时,换流变压器电网侧绕组容量小于或等于其他方式,阀侧绕组容量小于其他方式。3.换流变压器接线简单,不需中心抽头,有利于变压器绝缘。4.阀所需伏安容量小。5.直流电压纹波小。

·假设条件:1.交流系统的等效电源的电势是平衡对称正弦的。2.系统等效阻抗是对称的。

3.直流侧平波电抗器具有无穷大电抗值,因而直流侧电流为不含纹波的稳恒直流。

4.阀具有理想开关的特性。

5.触发脉冲等距。

·换向重叠角γ:当E,Xr,α不变时,γ随Id增大而增大,而E下降,α减小或Xr增大而其他参数不变时,γ也将增大。

·整流器总功率因数小于基波功率因数:是因为交流电流中含有丰富的谐波。这些谐波的存在,使整流器的总视在功率大于基波视在功率。

·直流电压:α=0,γ=0,Vd=1.35E。α>0,γ=0,Vd=1.35Ecosα。

α>0,γ>0,Vd=Vd0cosα-RrId=Vd0cos(α+γ/2)cosγ/2。

·安全关断越前角=15°保证逆变器正常运行时阀所需承受反压的最小时间所对应的电角度。·整流侧阀电压特点:1,在导通期间,是一条代表很小正向压降的直线,此时为零;2,在阻断期间,只有短时间处在正向电压作用下,大部分时间处在反向电压作用下,所以汞弧换流器工作在整流状态下,易发生逆弧。

·逆变侧阀电压特点:1,在导通期间,是一条代表很小正向压降的直线,此时为零;2,在阻断期间,有很长一段时间处在正向电压作用下,此时如果电压过高,特别是电压上升过快,阀在该段时间内存在有未经触发就发生误开通(通弧)故障的可能性;而很短时间处在反向电压作用下,而且电压较低,所以逆变器发生反向导通故障的机率较小。这与整流器情况恰恰相反。

·整流器和逆变器的不同:触发滞后角的不同;整流器功率从交流侧传送到直流侧,直流侧是负载,而逆变器的功率是从直流侧传送到交流侧,直流侧是电源。

·逆变运行需要三个条件:一个反极性的直流电源以提供连续的单向电流;一个提供换相电压的有源交流系统;要有足够大的关断越前角,以保证安全运行。

·触发滞后角:从自然换相点到阀的控制极上加以控制脉冲这段时间,用电气角度来表示。换相重叠角:换相过程两相同时导通时所经历的相位角。触发越前角:从逆变器阀的控制极上加以控制脉冲到自然换相点这段时间,用电气角度来表示。关断越前角:在换相结束时刻到最近一个自然换相点之间的角度。

·比换相压降(等值换相电阻)Rr=3Xr/π意义是一个单位直流电流在换相过程中所引起的压降。它不是真正的电阻,只是代表换相电流在换相电抗中造成的压降而引起的换流器交流端电压和直流电压的降落,所以等值换相电阻是不消耗有功功率的。

·换相失败:两阀换相结束后,如果退出阀在重新承受正压时未能完全恢复阻断能力,或者换相尚未结束换相电压已经反向,都会导致进入阀向退出阀倒换相,最后结果是退出阀重新导通,进入阀又恢复关断状态,即换相没有成功。原因:交流电压突然下降,直流电流突然增大,δ过小等。

一次换相失败:故障在系统一个周期内,输出电压不正常历时240°。

两次换相失败:由于直流电抗为有限值,线路上存在电容,整流器定电流调节装置有时滞等原因,Id增大,?增大,有可能形成两次连续换相失败。影响:1、两阀连续导通一个周期以上,直流电流了流经换流变压器,将造成变压器偏磁2、由于交流电流被加到直流回路上,有可能在线路电容与电感元件之间造成基波频率的谐振过电压。

直流输电系统的调节与控制

·调节直流输电系统输送的直流电流和直流功率:1调节两侧的触发角α,β或关断角δ(主调节,调节范围大,调节迅速),2调节两侧换流变压器分接头以调节交流电势Ez,En.(辅助调节,调节范围有限,速度慢)

·整流器定α、逆变器定β运行方式:不合理由于定α、定β的伏安特性的斜率一般很小,因此当整流侧(逆变侧也是)交流电压有不大的变化时,就会引起直流电流和直流功率的大的波动。直流书送功率的大幅度波动将引起两端系统运行困难,特别是输送功率在交流系统容量中占有较大比重时。而直流电流的剧烈变化,会影响直流系统的安全运行。过大时,可能使换流器严重过载,并且容易引起逆变器换相失败故障;而过小,有可能使直流断续而引起过电压。

·整流器定α、逆变器定δ运行方式:不合理当交流系统电压变化时,直流电流和直流功率的波动的幅度将更大。(情况:逆变侧交流系统为弱系统即系统短路阻抗很大时)(为了保证逆变器的安全运行,减小发生换相失败的几率,要求逆变器的关断越前角δ大于安全关断越前角δ。而为了提高逆变器的功率因数,又希望δ尽可能小,因此直流输电系统中的逆变器往往采用定δ控制,将δ控制在附近)。

·直流输电基本运行方式:整流器定电流,逆变器定δ。(若整~不能定电流,则整~定a,逆~定电流)整流侧的伏安特性由定电流和定a组成,逆变侧由定δ和定电流组成。为了保证整流器正常工作,整流侧的触发角α有一限制值,即正常运行时应有α≥5°左右。当整流侧交流电压下降时,为了维持Id=Id0不变,必须减小α角。如果交流电压下降过多,α减小到a0时仍不能使Id=Id0,整流器就进入定a运行方式。这时若逆变器仍运行于定δ方式,系统的运行状态将明显恶化。为了克服这一缺点,在逆变器也装有定电流调节器,其整定值比整流侧的小一个电流裕额?Id0,即为Id0-?Id0。这样当整流侧由于交流电压下降进入定a,逆变侧转入定电流运行方式。同理,若逆变侧交流电压上升较多,整流侧也会进入定a运行方式。

·逆变侧的定电压运行方式:将逆变侧的定δ段改为定电压段。适用于受端系统为弱系统的场合。优点:1有利于提高受端系统的电压稳定(逆变站交流母线电压下降时,逆变器的电压调节器将自动减小β以维持直流电压不变。β减小,功率因数提高,消耗无功功率减少,防止交流电压进一步下降。如果逆变器采用定δ控制,当交流电压下降,将增大β以保证δ不变,所以功率因数下降,消耗无功增加,电压进一步下降。在交流系统较弱时,可能引起恶性循环,最终电压崩溃)2在轻负载时,δ比满载时大,对防止换相失败有利。缺点:为了保证触发角有一定的调节范围,在额定运行时逆变器的δ角要略大于。这使得定电压调节时的逆变器的功率因数比定δ运行时的低,消耗的无功较多。

·定电流控制特点:因为电流为定值而不随电压的降低而加大,所以动态性能较好,不但可以改善直流输电的运行性能,同时也可以限制过电流和防止换流器过载,并使因故障引起的损害最小;防止系统因交流电压的波动而停运。因此,在正常运行过程中,HVDC系统整流侧基本上采用恒定电流控制。直流电流调节器的稳态和暂态性能是决定直流输电控制系统性能好坏的重要因素。定电流控制的基本原理是把实际的电流和电流的给定值进行比较,当出现差别时,通过一个闭环控制器控制换流器触发角,从而控制直流电压以使电流差值减小或消失,来保证实际电流值等于或接近给定值。

·各级的功能:主控制级通常接收来自调度中心的直流输送功率指令,经过控制运算以后发送一个直流电流指令给极控制级;极控制级经过控制运算以后发送一个触发角指令给各个桥控制级;桥或者换流器单元(阀组)控制级功能为:取触发脉冲的同步信号;产生满足要求的触发脉冲系列以触发晶闸管阀。

·软启动:直流输电系统起动时,采用逐渐升压的方式,以免产生过电压。

·启动过程:起动时限起动逆变器,使β为最大上限值,然后按α=90°触发整流器,同时使电流调节器整定值按一定规律上升,整流器直流电流也随之上升。逆变侧,当电流大于不连续值后,控制系统便自动逐步减小β,同时监视δ,保证δ>δ0,直到Id=Id0、δ=δ0后,起动过程结束。

·停机过程:使整流侧电流调节器电流整定值按一定规律下降,同时逆变侧电流调节器使β增大,直至达到β上限值。当电流降到0后,停发两侧换流器触发脉冲,停机完成。

·快速停机方式:将整流器的触发相位快速增大到α=100°~130°,使其转入逆变运行状态,于是平波电抗器、直流线路电感、线路电容中储存的能量就迅速送到两侧交流系统,直流电流迅速降到0.(处理直流线路短路等故障)

·利用旁通对起动:在两侧投入旁通对,直流线路通过旁通对短路,将直流线路上残余能量泄放掉。然后整流器旁通对退出(解锁),进行软启动。逆变器仍由旁通对短路,有利于快速通过电流不连续区,待电流越过不连续区后解锁逆变器,以后的过程与软启动过程相同。·利用旁通对停机:当电流减小到不连续区附近时,也可以投入旁通对,使换流器越过电流间断区而停机。

·潮流反转:将电流裕量指令从II侧切至I侧,I侧的电流整定值从Id0变成Id0-?Id,II 侧电流整定值从Id0-?Id变成Id0。由于直流系统的电流在Id附近,I侧将检测到电流大于整定值,它的电流调节器将增大α以减小Id。同时,逆变侧将检测到Id小于其定电流调节器整定值Id0,自动从定δ控制转到定电流控制,并增大β,力图维持电流Id等于Id0。这样I侧α不断增大,II侧β不断增大,当I侧α>90°是进入逆变状态,II侧β>90°进入整流状态。这个过程一直进行到I侧δ=δ0,自动转到定δ控制,潮流反转完成。意义:直流输电的优点之一是能迅速而方便地实现潮流翻转,这样不仅在正常运行时可以按照经济的原则调节输送功率的大小和方向,而且还可以在事故情况下很方便地实现事故紧急支援。因此,潮流翻转这一特点,大大加强了两个交流系统的联系,从而提高了系统运行的稳定性和可靠性。

柔性交流输电系统(FACTS)

·定义:所谓FACTS,即是装有电力电子型或其它静止型控制器以加强可控性和增大电力传输能力的交流输电系统.

·FACTS的基本内涵是:基于采用现代大功率电力电子技术构成的各种FACTS控制器,结合先进的控制理论和计算机信息处理技术等,实现对交流输电网运行参数和变量(如电压、相角、阻抗、潮流等)更加快速、连续和频繁的调节,即所谓柔性(或灵活)输电控制,进而达到提高输电系统运行效率、稳定性和可靠性的目的。基石:大功率电力电子技术。核心:FACTS控制器。关键:对输电网参数和变量的柔性化控制。

·FACTS特点:1利用FACTS元件可以快速、平滑地调节系统参数,从而灵活、迅速地改变系统的潮流分布。2FACTS元件具有快速可控的特点,对提高系统的暂态稳定性有十分显著的作用。3FACTS元件可以断续或连续地调节控制参数,可以用来调节系统的阻尼,抑制或消除振荡,改善系统的动态稳定性。4电子开关理论上可以无限次操作而无机械磨损,因而提高了系统控制的灵活性和可靠性。5FACTS技术的显著特点是可以充分利用现有输电线路和设备,以增加FACTS元件的方法,在现有电力系统内逐步实施。

·FACTS与HVDC相同之处:1历史同样悠久2共同的基础:大功率电力电子技术3使用的最终目标一致:提高电力系统的整体运行性能。差异之处1、HVDC基于直流传输原理:交-直-交,控制这种功率交换来达到目的;FACTS基于交流输电原理:(等效地)改变交流电网的参数,从而调节其功率传输来达到目的。2、HVDC要求能控制较大的功率:依赖高耐压和大容量的晶闸管器件;FACTS是通过调节交流电网的参数而“间接”控制电网功率,

“四两拨千斤”:容量要求低,可采用耐压和容量不及晶闸管的可关断器件。

柔性交流输电系统(FACTS)

·FACTS控制器的分类:并联型、串联型、串并联型、其它。

·并联补偿装置的作用:并联补偿可以改变系统的导纳矩阵的对角元素或向系统中注入电流,因此通过并联补偿可以方便地向系统注入或从系统吸收有功功率及无功功率,控制电力系统的有功功率或无功功率的平衡。具体作用:维持或控制节点电压;向电力系统提供或从系统中吸收有功功率;向电力系统提供或从系统中吸收无功功率;通过控制功率变化,阻尼系统振荡;改变电力系统的动态特性;提供电力系统的静态稳定性;快速可控的并联补偿可以提高电力系统的暂态稳定性;改变系统的阻抗特性。

·串联补偿装置的作用:串联补偿可以改变传输线的等效阻抗或者在线路中串入补偿电压,因此通过串联补偿可以方便调节系统的有功及无功潮流,从而有效的控制电力系统的电压水平和功率平衡。

·静止无功补偿器SVC功能主要有:(1)通过动态无功功率的快速调节,提高电力系统稳定性。(2)抑制由于负荷、发电机、传输线停运以及短路等造成的系统振荡。(3)抑制由于线路投切等造成的系统稳态过电压,维护电压水平。(4)通过控制无功减少线损。(5)在诸如大容量电动机启动这样的负荷投运时,稳定母线电压。(6)抑制电压闪变。(7)改善由于单相大负荷造成的三相不平衡。(8)当出现暂态稳定摇摆时,支持系统电压、维持系统同步。·静止无功发生器SVG,ST ACOM(ST ATCOM的作用:动态补偿交流母线无功功率,稳定交流母线电压。)四种工作模式:空载、容性、感性、有源滤波

·有源电力滤波器(APF)基本原理:通过产生于补偿谐波形状一致、相位相反的电流,来抵消非线性负荷产生的谐波电流,以使谐波不会流入公共供电回路。电路结构:APF实质上是一个与负荷谐波电流及基波无功电流反相位的特殊补偿电流源,由四个部分组成:无功电流或谐波成分检测部分。控制系统。逆变电源。输出部分。

·SVG&SVC比较:(1)SVG具有更好的处理特性。SVC在系统电压较低时,表现为电容的特性,即无功随电压的降低按平方关系下降。而SVG则在低电压时,表现为定电流特性,因而无功功率只随电压的降低按一次方关系下降。2)SVG采用PWM控制,具有更快的响应特性。(3)SVG中,无功调节不是通过控制容抗或感抗的大小实现的,因而,无需直接与系统连接的电容器或电抗器,不存在系统谐振问题,且大大减小了设备体积。相同容量下,SVG体积约为SVC的1/3。(4)由于SVG三相的出力可以各自独立地进行控制,因而可以用于三相不平衡负荷的动态补偿。这一点对SVG用于电气化铁道、电弧炉的电压波动补偿非常有利。(5)SVG具有有源滤波器的特性,可以用于需要有源滤波的场合。

·串联补偿与并联补偿的不同之处(1)并联补偿只需要电力系统提供一个节点,另一端为大地或悬空的中性点;而串联补偿需要电网提供两个接入点。(2)并联补偿装置通常只改变节点导纳矩阵的对角线元素,或者等效为注入电力系统的电流源;而串联补偿装置会改变导纳矩阵的非对角元素,或者等效为注入的电压源。(3)并联补偿装置与所接入点的短路容量相比通常较小,主要通过注入或吸收电流改变系统中电流的分布。对节点电压和潮流的控制能力通常较弱。串联补偿能直接改变线路的等效阻抗或通过插入电压源来改变传输线的电压自然分布特性,从而调节电压分布,对电压和潮流的控制能力强。(4)并联补偿产生补偿效果后通常可以使节点附近的区域受益,适合于电力部门采用,而串联补偿可以针对特定的用户,因而对特定用户的补偿采用串联补偿更加合适。(5)并联补偿装置需要承受全部的节点电压,串联补偿装置需要承受全部的线路电流

VSC-HVDC技术

·传统的HVDC缺点:1,需要交流电网提供换相电流,该电流实际上是相间短路电流,因此要保证换相的可靠,受端交流系统必须具有足够的容量,即必须有足够的短路比,当受端电网比较弱时便容易发生换相失败。2,由于开通滞后角α和熄弧角γ的存在及波形的非正弦,传统的HVDC要吸收大量的无功功率,其数值约为输送直流功率的40~60%,这就需要大量的无功补偿及滤波设备,而且在甩负荷时会出现无功过剩,可能导致过电压。3, 因为传统的HVDC需要交流电网提供换相电流,这就要求受端系统必须是有源网络。因此,传统的HVDC不能向无源网络(如孤立负荷)输送电能。

·柔性直流输电的应用场合:非同步联网;连接分布电源;向城市中心送电;促进电力市场发展;提高配电网电能质量;向远方孤立负荷点送电;多端VSC-HVDC网络。

·柔性直流输电构成:换流桥(换流桥每个桥臂是由若干个IGBT级联而成。IGBT旁边都反并联一个二极管,它不仅是负载向直流侧反馈能量的通道,同时也起续流的作用。)换流变压器(不同于CSC-HVDC,VSC-HVDC并不需要特殊的换流变压器或移相变压器,其所用换流变压器与常规的单相或三相变压器大体类似。)换流电抗器(滤除换流器所产生的特征谐波,以获得期望的基波电流和基波电压;抑制直流过电流的上升速度。)直流电容器(为逆变器提供电压支撑;缓冲桥臂关断时的冲击电流;减小直流侧谐波。)交流滤波器(滤去交流侧电压谐波分量;对系统提供部分无功补偿的作用。)

·VSC-HVDC与常规HVDC的区别:功率范围:传统的HVDC主要运行于较大的功率范围,约在250MW以上;而VSC-HVDC输送的功率可以从几MW到几百MW,直流电压可达±150kV。模型组件:VSC-HVDC是以一套有若干标准规格的换流站模块为基础,大多数设备在制造厂家就被封装起来;而传统的HVDC往往是根据系统运行的需要以及某些特殊的用途而设计和装配的。换流电路:VSC-HVDC换流站通过VSC控制IGBT的通断,因此,电路结构与传统HVDC有着很大的不同。运行的独立性:VSC-HVDC不依赖于交流系统去维持电压和频率的稳定;与传统的HVDC相比,短路容量并不重要。VSC-HVDC可以给无源网络直接供电;而传统的HVDC在受端电网中必须有旋转电机。对功率的控制:传统的HVDC终端可以通过滤波器和串联电抗的通断以及在某种程度上对触发角的控制来达到对功率的控制,但是这种控制需要额外的设备和额外的损耗;VSC-HVDC则可以在很短的时间内形成任意的相角或幅值,这为独立地控制有功和无功提供了可能性。

·VSC-HVDC的技术特点1VSC电流能够自关断,可以工作在无源逆变方式,不需要外加的换向电压。2正常运行时VSC可以同时且独立控制有功和无功,控制更加灵活方便。3VSC 不仅不需要交流侧提供无功功率,而且能够起到STA TCOM的作用。4潮流反转时直流电流方向反转,而直流电压极性不变。5由于VSC交流侧电流可以控制,所以不会增加系统的短路容量。6VSC通常采用SPWM技术,开关频率相对较高,经过低通滤波后就可得到所需交流电压,可以不用变压器,所需滤波装置的容量也大大减小。

电力电子技术汇总题库

南通大学电气工程学院电力电子技术 题 库

第二章电力电子器件 一、填空题 1、若晶闸管电流有效值是157A,则其额定电流为100A。若该晶闸管阳、阴间电压为60sinwtV,则其额定电压应为60V。(不考虑晶闸管的电流、电压安全裕量。) 2、功率开关管的损耗包括两方面,一方面是导通损耗;另一方是开关损耗。 3、在电力电子电路中,常设置缓冲电路,其作用是抑制电力电子器件的内因过电压、du/dt或者过电流和di/dt,减小器件的开关损耗。 4、缓冲电路可分为关断缓冲电路和开通缓冲电路。 5、电力开关管由于承受过电流,过电压的能力太差。所以其控制电路必须设有过流和过压保护电路。 二、判断题 1、“电力电子技术”的特点之一是以小信息输入驱动控制大功率输出。(√) 2、某晶闸管,若其断态重复峰值电压为500V,反向重复峰值电压为700V,则该晶闸管的额定电压是700V。(×) 3、晶闸管导通后,流过晶闸管的电流大小由管子本身电特性决定。(×) 4、尖脉冲、矩形脉冲、强触发脉冲等都可以作为晶闸管的门极控制信号。(√) 5、在晶闸管的电流上升至其维护电流后,去掉门极触发信号,晶闸管级能维护导通。(×) 6、在GTR 的驱动电路设计中,为了使GTR 快速导通,应尽可能使其基极极驱动电流大些。(×) 7、达林顿复合管和电力晶体管属电流驱动型开关管;而电力场效应晶体管和绝缘栅极双极型晶体管则属电压驱动型开关管。(√) 8、IGBT 相比MOSFET,其通态电阻较大,因而导通损耗也较大。(×) 9、整流二级管、晶闸管、双向晶闸管及可关断晶闸管均属半控型器件。(×) 10、导致开关管损坏的原因可能有过流、过压、过热或驱动电路故障等。(√) 三、选择题 1、下列元器件中,( BH )属于不控型,( DEFIJKLM)属于全控型,( ACG )属于半控型。 A、普通晶闸管 B、整流二极管 C、逆导晶闸管 D、大功率晶体管 E、绝缘栅场效应晶体管 F、达林顿复合管 G、双向晶闸管 H、肖特基二极管 I、可关断晶闸管 J、绝缘栅极双极型晶体管 K、MOS 控制晶闸管 L、静电感应晶闸管 M、静电感应晶体管 2、下列器件中,( c )最适合用在小功率,高开关频率的变换器中。 A、GTR B、IGBT C、MOSFET D、GTO 3、开关管的驱动电路采用的隔离技术有( ad ) A、磁隔离 B、电容隔离 C、电感隔离 D、光耦隔离 四、问答题 1、使晶闸管导通的条件是什么? 答:晶闸管承受正向阳极电压,并在门极施加触发电流或脉冲(uak>0且ugk>0)。

直流输电技术及其应用论文

直流输电技术及其应用 The Feature Development and Application of Direct CurrentTransmission Techniques 山东农业大学电气工程及其自动化10级 摘要本文介绍了直流输电技术在电力系统联网应用中的必要性,直流输电系统的 结构,直流控制保护技术以及直流输电的特点和应用发展方向;同时认为直流输电技术是新能源发电并网的最佳解决方式。 电力工程是21世纪对人类社会生活影响最大的工程之一,电力技术的发展对城乡人民的生产和生活具有重大的关系,电力工业是关系国计民生的基础产业。电力的广泛应用和电力需求的不断增加,推动着电力技术向高电压、大机组、大电网发展,向电力规模经济发展。电力工业按生产和消费过程可分为发电、输电、配电和用电四个环节。输电通常指的是将发电厂发出的电力输送到消费电能的负荷中心,或者将一个电网的电力输送到另一个电网,实现电网互联。随着电网技术的不断进步,输电容量和输电距离的不断增加,电网电压等级不断提高。电网电压从最初的交流13.8KV,逐步发展到高压35KV、66KV、110KV、220KV、500KV、1000KV。电网发展的经验表明,相邻两个电压等级的级差在一倍以上才是经济合理的。这样输电容量可以提高四倍以上,不仅可与现有电网电压配合,而且为今后新的更高级别电压的发展留有合理的配合空间。我国从20世纪80年代末开始对特高压电网的规划和设备的制造进行研究;进入21世纪后,加快了特高压输电设备、电网研究和工程建设。2005年9月26日,第一条750KV输电实验线路(官亭——兰州东)示范工程投运;2006年12月,云南——广东±800KV特高压直流输电工程开工建设,并于2010年6月18日,通过验收正式投运,该工程输电距离1373KM,额定电压±800KV,额定容量500万KW,和2010年7月8日投运的向家坝——上海±800KV特高压直流示范工程一样,是当今世界电压等级最高的直流输电项目。 1.使用直流输电的原因 随着电力系统规模的不断扩大,输电功率的增加,输电距离的增长,交流输电遇到了一些技术困难。对交流输电来说,在输电功率大,输电导线横截面积较大的情况下,感抗会超过电阻,但对稳定的直流输电,则只有电阻,没有感抗。输电线一般是采用架空线,但跨过海峡给海岛输电时,要用水下电缆,电缆在金属线芯外面包裹绝缘层,水和大地都是导体,被绝缘层隔开的金属线芯和水或大地构成了一个电容器,在交流输电的情况下,这个电容对输电线路的受电端起旁路电容的作用,并且随着电缆的增长,旁路电容会增大到几乎不能通交流的程度。另外,交流电路若要正常工作,经同一条线路供电的所有发电机都要必须同步运行;要使电力网内众多的发电机同步运行,技术上是很困难的,而直流输电不存在同步问题。现代的直流输电,只是输电环节是直流,发电仍是交流,在输电线路的起端有专用的换流设备将交流转换为直流,在输电线路的末端也有专用的换流设备将直流换为交流。 2.直流输电技术的特点 随着电网的不断扩大,输电功率、输电距离迅速增加,交流输电遇到了一些难以克服的技术问题,直流输电所具有的的技术特点,使之作为解决输电技术难题的方向之一而受到重视。 2.1直流输电系统运行稳定性好 为保证电网稳定,要求网上所有发电机都必须同步运行,即所谓系统稳定性问题。对于交流长距离输电,线路感抗远远超过了电阻,并且输电线路越长,电抗越大,系统稳定越困难,

电力电子技术知识点

(供学生平时课程学习、复习用,●为重点) 第一章绪论 1.电力电子技术:信息电子技术----信息处理,包括:模拟电子技术、数字电子技术 电力电子技术----电力的变换与控制 2. ●电力电子技术是实现电能转换和控制,能进行电压电流的变换、频率的变换及相 数的变换。 第二章电力电子器件 1.电力电子器件分类:不可控器件:电力二极管 可控器件:全控器件----门极可关断晶闸管GTO电力晶体管GTR 场效应管电力PMOSFET绝缘栅双极晶体管IGBT及其他器件 ☆半控器件----晶闸管●阳极A阴极K 门极G 2.晶闸管 1)●导通:当晶闸管承受正向电压时,仅在门极有触电电流的情况晶闸管才能开通。 ●关断:外加电压和外电路作用是流过晶闸管的电流降到接近于零 ●导通条件:晶闸管承受正向阳极电压,并在门极施加触发电流 ●维持导通条件:阳极电流大于维持电流 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才会开通。 当晶闸管导通,门极失去作用。 ●主要参数:额定电压、额定电流的计算,元件选择 第三章 ●整流电路 1.电路分类:单相----单相半波可控整流电路单相整流电路、桥式(全控、半控)、单相全波可控整流电路单相桥式(全控、半控)整流电路 三相----半波、●桥式(●全控、半控) 2.负载:电阻、电感、●电感+电阻、电容、●反电势 3.电路结构不同、负载不同●输出波形不同●电压计算公式不同

单相电路 1.●变压器的作用:变压、隔离、抑制高次谐波(三相、原副边星/三角形接法) 2.●不同负载下,整流输出电压波形特点 1)电阻电压、电流波形相同 2)电感电压电流不相同、电流不连续,存在续流问题 3)反电势停止导电角 3.●二极管的续流作用 1)防止整流输出电压下降 2)防止失控 4.●保持电流连续●串续流电抗器,●计算公式 5.电压、电流波形绘制,电压、电流参数计算公式 三相电路 1.共阴极接法、共阳极接法 2.触发角ā的确定 3.宽脉冲、双窄脉冲 4.●电压、电流波形绘制●电压、电流参数计算公式 5.变压器漏抗对整流电流的影响●换相重叠角产生原因计算方法 6.整流电路的谐波和功率因数 ●逆变电路 1.●逆变条件●电路极性●逆变波形 2.●逆变失败原因器件触发电路交流电源换向裕量 3.●防止逆变失败的措施 4.●最小逆变角的确定 触发电路 1.●触发电路组成 2.工作原理 3.触发电路定相 第四章逆变电路

电力电子技术期末复习资料汇总

电力电子技术复习题库 第二章: 1.使晶闸管导通的条件是什么? ①加正向阳极电压;②加上足够大的正向门极电压。 备注:晶闸管承受正向阳极电压,并在门极施加触发电流。 2.由于通过其门极能控制其开通,但是不能控制其关断,晶闸管才被称为(半控型)器件。 3.在电力电子系统中,电力MOSFET通常工作在( A )状态。 A. 开关 B. 放大 C. 截止 D. 饱和 4.肖特基二极管(SBD)是( A )型器件。 A. 单极 B. 双极 C. 混合 5.按照电力电子器件能够被控制电路信号所控制的程度可以分为: ①不可控器件;②半控型器件;③全控型器件 6.下列电力电子器件中,(C)不属于双极型电力电子器件。 A. SCR B. 基于PN结的电力二极管 C. 电力MOSFET D. GTR 7.按照驱动电路加在电力电子器件控制端和公共端之间信号的性质,可以将电力电子器件(电力二极管除外)分为(电流驱动型)和(电压驱动型)两类。 8.同处理信息的电子器件类似,电力电子器件还可以按照器件部电子和空穴两种载流子参与导电的情况分为(单极性器件)、(双极型器件)和(复合型器件)。 9.(通态)损耗是电力电子器件功率损耗的主要成因。当器件的开关频率较高时,(开关)损耗会随之增大而可能成为器件功率损耗的主要因素。(填“通态”、“断态”或“开关”) 10.电力电子器件在实际应用中,一般是由(控制电路)、(驱动电路)和以电力电子器件为核心的(主电路)组成一个系统。 11. 按照电力电子器件能够被控制电路信号所控制的程度,肖特基二极管(SBD)属于(不可控)

型器件。 12.型号为“KS100-8”的晶闸管是(双向晶闸管)晶闸管,其中“100”表示(额定有效电流为100A ),“8”表示(额定电压为800V)。 13.型号为“KK200-9”的晶闸管是(快速晶闸管)晶闸管,其中“200”表示(额定有效电流为200A),“9”表示(额定电压为900V )。 14.单极型器件和复合型器件都是(电压驱动)型器件,而双极型器件均为(电流驱动)型器件。(填“电压驱动”或“电流驱动”) 15. 对同一晶闸管,维持电流I H<擎住电流I L。(填“>”、“<”或“=”) 16.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管阳极电流大于维持电流(保持晶闸管导通的最小电流); 要使晶闸管由导通变为关断,可使阳极电流小于维持电流可以使晶闸管由导通变为关断。在实际电路中,常采用使阳极电压反向、减小阳极电压,或增大回路阻抗等方式使晶闸管关断。 17.GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能? 答:CTO的开通控制方式与晶闸管相似,但是可以通过门极施加负的脉冲电流使其关断。 GTO 和普通晶闸管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益1 a 和2 a ,由普通晶闸管的分析可得:1 a + 2 a =1 是器件临界导通的条件。 1 a + 2 a >1,两个等效晶体管过饱和而导通;1 a + 2 a <1,不能维持饱和导通而关断。 GTO 之所以能够自行关断,而普通晶闸管不能,是因为GTO 与普通晶闸管在设计和工艺方面有以下几点不同: ②GTO 在设计时2 a 较大,这样晶体管V2控制灵敏,易于GTO 关断; ②GTO 导通时的1 a + 2 a 更接近于1,普通晶闸管1 a + 2 a 31.15,而GTO 则为1 a + 2 a 1.05,GTO 的饱和程度不深,接近于临界饱和,这样为门极控制关断提供了有利条件; ③多元集成结构使每个GTO 元阴极面积很小,门极和阴极间的距离大为缩短,使得P2极区

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

2020年经典的输电技术总结

2020年经典的输电技术总结 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术.下面是小 输电技术总结1 2019年10月12日,由中国高等学校电力系统及其自动化专业学术年会组织委员会主办,西华大学电气与电子信息学院承办,亚洲电能质量产业联盟、内蒙古工业大学协办的中国高等学校电力系统及其自动化专业第35届学术年会在四川成都隆重开幕。《电力自动化设备》杂志社是本次会议支持单位之一。 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术、电力工业 的原则。经过30多年的发展,该年会已成为全国高校电力系统及其自动化专业师生一年一度不可缺少的学术盛会,为培养我国

的贡献。 会上,华北电力大学赵成勇教授进行了《直流输电技术面临 输电技术总结2 特高压输电技术是中国实现能源大范围优化配置的战略途径,该技术是世界上最先进的输电技术之一。目前,在世界范围内只有我国全面掌握了这项技术,并开始了大规模的工程应用。我国从2004年底开始集中开展大规模研究论证、技术攻关以及工程实践,进行了特高压交流输电、特高压直流输电技术的研究,掌握了过电压抑制、外绝缘配置、电磁环境控制等关键技术,研制出变压器、开关、串补装置,和换流变、换流阀、平波电抗器、直流控制保护等核心设备,建立了包括研究、设计、制造在内完整的特高压输电技术体系,整个体系具有完全的自主性。 中国由于能源资源与电力需求存在远距离、逆向分布特点,以及经济快速发展带来的电力需求,需要开发和应用远距离、大容量、高效率的特高压输电技术。实践证明特高压输电在大范围内配置能源资源具有技术和经济优势。以特高压800千伏直流输电项目为例,相比较500千伏直流工程,它的输送容量提高到 2-3倍,经济输送距离提高到2-2.5倍,运行可靠性提高了8倍,

电力电子复习题及总结答案

电力电子必胜 绪论 填空题: 1.电力电子技术是使用________器件对电能进行________的技术。 2.电能变换的含义是在输入与输出之间,将________、________、________、________、________中的一项以上加以改变。 3.电力变换的四大类型是:________、________、________、________。 4. 在功率变换电路中,为了尽量提高电能变换的效率,所以器件只能工作在________状态,这样才能降低________。 5. 电力电子器件按照其控制通断的能力可分为三类,即: ________、________、________。 6. 电力电子技术的研究内容包括两大分支:________________ 技术和________技术。 7.半导体变流技术包括用电力电子器件构成_____________电路和对其进行控制的技术,以及构成________装置和________系统的技术。 8.电力电子技术是应用在________领域的电子技术。 9.电力电子技术是一门由________、________、________三个学科交叉形成的新的边缘技术学科。 简答题 1. 什么是电力电子技术? 2. 电能变换电路的有什么特点?机械式开关为什么不适于做电能变换电路中的开关? 3. 电力变换电路包括哪几大类? 电力电子器件 填空题: 1.电力电子器件一般工作在________状态。 2.在通常情况下,电力电子器件功率损耗主要为________,而当器件开关频率较高时,功率损耗主要为________。 3.电力电子器件组成的系统,一般由________、________、________三部分组成,由于电路中存在电压和电流的过冲,往往需添加________。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为________、________、________三类。 5.按照器件能够被控制的程度,电力电子器件可分为以下三类:、 和。 6.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为________和________两类。。 7. 电力二极管的主要类型有、、。 8. 普通二极管又称整流二极管多用于开关频率不高,一般为Hz以下的

直流输电技术

直流输电技术

直流输电技术课程报告柔性直流输电在城市配电网中的应用 院系:电气工程及自动化学院姓名: 学号: 导师: 时间:

1.城市配电网交流供电存在问题 城市电网是城市现代化建设的重要基础设施之一,是电力系统的主要负荷中心,具有用电量大、负荷密度高、安全可靠和供电质量要求高等特点。随着城市化进程的不断推进和社会经济的高速发展,城市负荷不仅持续快速增长,并且对供电可靠性以及电能质量的要求越来越高,因此,向城市负荷中心供给大量优质可靠的电能将面临越来越大的困难和挑战。一,随着城市发展建设的日趋成熟,从环境保护以及土地资源的限制考虑,不仅制约了大容量电源的建设,而且造成向城市供电的线路走廊越来越拥挤,甚至出现缺少必要线路走廊的供电瓶颈;二,由于增加城市供电能力的投资成本越来越高,人们对于健康和居住环境的要求增高,因此需要采取合适的供电方式以节约资金、减少电网建设运行对城市居住环境的影响;三,随着城市供电容量的增加,系统的短路电流增大,这对于开关设备以及其他网络元件的安全运行造成极大的威胁;还有,城市负荷对于供电可靠性以及电能质量的要求越来越高,这就需要向城市负荷中心供电应该满足运行灵活、可控性高的要求,以满足各种运行情况的需求。 目前城市电网的供电方式依然采用高压交流供电,特别是大城市或者中小城市中心区域采用地下电缆供电,高压交流电缆供电在一定程度上解决了城市供电中架空线走廊缺乏、电力设施与城市景观不和谐等问题,但依然受到供电距离、无功消耗较大等问题的限制。 2.城市配电网采用柔性直流输电的优点 柔性直流输电能瞬时实现有功和无功的独立解耦控制,结构紧凑、占地面积小、易于构成多端直流系统;能向系统提供有功和无功的紧急支援,在提高系统的稳定性和输电能力等方面具有优势。利用这些特点不仅可以解决目前城市电网存在的问题,而且可以满足未来城市电网的发展要求,改善系统的安全稳定运行。主要表现在以下几个方面: (1)增强城市电网的供电能力,满足城市日益增长的负荷需求VSC-HVDC 采用新型的直流电缆,不仅占用空间小、输电能力强,而且可以安装在现有的交流电缆管内或线路走廊内,这样可以充分利用输电走廊,增强城市电网的供电能力,满足城市负荷需求。 (2)为城市负荷中心提供必要的无功支撑,克服电压稳定性所构成的限制VSC-HVDC 不仅能实现有功和无功的独立快速控制,还能动态补偿交流母线的无功,稳定母线的电压。这不仅可以有效缓解城市中心区大量的地下交流电缆以及空调负荷比例的日益增大造成的无功缺乏问题,还可以为城市负荷中心提供必要的无功支撑,维持城市电网的安全稳定运行。 (3)提高城市电网可控性和安全可靠性VSC-HVDC 具有快速多目标控制能力,可实现正常运行时潮流的优化调节故障时交流系统之间的快速紧急支援和故障隔离。此外,还可增强系统的可控性和抗扰动能力,从而达到提高稳定性、运行可靠性和不增加短路容量、改善电能质量的目的。 (4)增强城市电网建设的可实施性,节省电力建设成本VSC-HVDC 结构紧凑、占用空间小,模块化的设计使得设计、生产、安装和调试周期大为缩短。采用新型的直流电缆不仅安装容易、快速,而且机械强度和柔韧性好、重量轻,更重要的是无油、电磁辐射和无线电干扰小,利于实现与市政设施和环境的协调。不仅增强城市电网建设的可实施性,而且可节省征地、赔偿等建设成本。

浅谈高压直流输电与交流输电各自优缺点

浅谈高压直流输电与交流输电各自优缺点 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

电力电子总结完美版

一、填空题 1、对SCR 、TRIAC 、GTO 、GTR 、Power MOSFET 、这六种电力电子器件,其中要用交流 电压相位控制的有SCR TRIAC 。可以用PWM 控制的有GTO GTR Power MOSFET IGBT;要用电流驱动的有SCR TRIAC GTO GTR (准确地讲SCR 、TRIAC 为电流触发型 器件),要用电压驱动的有Power MOSFET IGBT ;其中工作频率最高的一个是Power MOSFET ,功率容量最大的两个器件是SCR GTR;属于单极性的是Power MOSFET;可能发生 二次击穿的器件是GTR,可能会发生擎住效应的器件是IGBT ;属于多元集成结构的是Power MOSFET IGBT GTO GTR 。 2、SCR 导通原理可以用双晶体管模型来解释,其触发导通条件是阳极加正电压并且门极有触发电流,其关断条件是阳极电流小于维持电流。 3、GTO 要用门极负脉冲电流关断,其关断增益定义为最大可关断阳极电流与门极负脉冲电流最大值的比即off β=ATO GM I I ,其值约为5左右,其关断时会出现特殊的拖尾 电流。 4、Power MOSFET 通态电阻为正温度系数;其定义式为= |DS DS U GS I ≥0,比较特殊的是器件体内有寄生的反向二极管,此外,应防止其栅源极间发生擎住效应。 5、电力二极管额定电流是指最大工频正弦半波波形条件下测得值,对于应用于高频电力电子电路的电力二极管要用快恢复型二极管,但要求其反向恢复特性要软。 6、在电力电子电路中,半导体器件总是工作在开关状态,分析这类电路可以用理想开关等效电路;电力电子技术的基础是电力电子器件制造技术,追求的目标是高效地处理电力。 7、硬开关电路的电力电子器件在换流过程中会产生较大的开关损耗,主要原因是其电压波形与电流波形发生重叠,为了解决该缺陷,最好使电力电子器件工作在零电压开通,零电流关断状态;也可采用由无源元件构成的缓冲技术,但它们一般是有损耗 的。 8、电力电子电路对功率因数的定义与线性电路理论的定义在本质上的差别是有基波因数。 9、交流调压电路采用由两个SCR 反并联接法组成交流开关作为控制,若交流电路的大感性 负载阻抗角为80度,则SCR 开通角的移相范围80度到180度。 10、SCR 三相全控变流电路带直流电动机负载时,其处于整流状态时触发角应满足小于90度 条件;其处于有源逆变状态时触发角应满足大于90度 条件;SCR 的换流方式都为电网 换流。 11、有源逆变与无源逆变的差异是交流侧接在电网上还是接在负载上;加有续流二极管的任何整流电路都不能实现有源逆变的原因是负载被二极管短路不能产生负电压。逆变角的定义是α>90度时的控制角βπα=- 12、电压源逆变器的输出电压是交流方 波;其逆变桥各臂都要反并联 二极管。 13、SPWM 的全部中文意思是正弦脉冲宽度调制,这种技术可以控制输出交流的大小;产 生SPWM 波的模拟法用自然采样法。而计算机则采用规则采样法。 14、单端正激式DC/DC 变换电路要求在变压器上附加一个复位 绕组,构成磁复位 电路; 反激式DC/DC 变换电路与Buck-Boost 直流斩波器类似。 15、肖特基二极管具有工作频率高 ,耐压低 的应用特点。肖特基二极管具有反向恢复时间短,正向压降小,耐压低,效率高等特点。 16、GTR 关断是工作点应在 截止 区,导通时工作点应在 饱和 区;它有可能因存在 二 次击穿而永久失效的缺陷。

高压直流输电技术的发展与应用

高压直流输电技术的发展与应用 1 绪论 1.1 课题来源及研究的目的和意义 高压直流输电(高压直流输电),是利用稳定的直流电具有无感抗,容抗也不起作用,无同步问题等优点而采用的大功率远距离直流输电。输电过程为直流。常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。 高压直流输电技术被用于通过架空线和海底电缆远距离输送电能;同时在一些不适于用传统交流联接的场合,它也被用于独立电力系统间的联接。世界上第一条商业化的高压直流输电线路1954年诞生于瑞典,用于连接瑞典本土和哥特兰岛,由阿西亚公司(ASEA, 今ABB集团)完成。 在一个高压直流输电系统中,电能从三相交流电网的一点导出,在换流站转换成直流,通过架空线或电缆传送到接受点;直流在另一侧换流站转化成交流后,再进入接收方的交流电网。直流输电的额定功率通常大于100兆瓦,许多在1000-3000兆瓦之间。 高压直流输电用于远距离或超远距离输电,因为它相对传统的交流输电更经济。 应用高压直流输电系统,电能等级和方向均能得到快速精确的控制,这种性能可提高它所连接的交流电网性能和效率,直流输电系统已经被普遍应用。 高压直流输电是将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。它基本上由两个换流站和直流输电线组成,两个换流站与两端的交流系统相连接。 1.2主要研究内容、研究方法及思路 (1)经济性三大特性突出节能效果 从经济方面看,直流输电有以下三个主要优点: 首先,线路造价低,节省电缆费用。直流输电只需两根导线,采用大地或海水作回路只用一根导线,能够节省大量线路投资,因此电缆费用省得多。 其次,运行电能损耗小,传输节能效果显著。直流输电导线根数少,电阻发热损耗小,没有感抗和容抗的无功损耗,且传输功率的增加使单位损耗降低,大大提高了电力传输中的节能效果。 最后,线路走廊窄,征地费省。以同级500千伏电压为例,直流线路走廊宽仅40米,对于数百千米或数千千米的输电线路来说,其节约的土地量是很可观的。 除了经济性,直流输电的技术性也可圈可点。直流输电调节速度快,运行可靠。在正

交流输电和直流输电的区别和应用

发表于<物理教学> 交流输电和直流输电的区别和应用 浙江宁波奉化中学方颖315500 高二物理《交变流电》这一章节中,我们向学生讲授了交流输电,有学生问起直流是否好可以输电啊?直流输电和交流输电有和不同、区别?我们为何没有用直流输电呢?当学生这么问时,我们教师就应该向学生详细的说一下现实中有关交流输电和直流输电的有关知识。输电是发电和用电的中间环节,现代输电工程中并存着两种输电方式,高压交流输电和高压直流输电,两种方式各有自己的长处和不足,同时使用它们,可以取得更大的经济效益。输电方式的变化 人类输送电力,已有一百多年的历史了。输电方式是从直流输电开始的,1874年俄国彼得堡第一次实现了直流输电,当时输电电压仅100V,随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V,但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难,由于不能直接给直流电升压,使得输电距离受到极大的限制。不能满足输送容量增长和输电距离增加的要求。 19世纪80年代末发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国劳风竣工,以3104V高压向法兰克福输电,此后,交流输电就普遍的代替了直流输电。但是随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流电遇到了一系列不可克服的技术上的障碍,大功率换流器(整流和逆流)的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到了人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电的装置;1954年在瑞典,从本土到果特兰岛,建立起了世界上第一条远距离高压直流输电工程。 直流输电系统 在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。如图所示为高压直流输电的典型线路示意图。在输电线路的始端,发电系统的交流电经换流变压器、升压后,送到整流器、中去。整流器的主要部件是可控硅变流器和进行交直流变换的整流阀,它的功能是将高压交流电变为高压直流电后,送入输电线路,直流电通过输电线路和送到逆变器和中。逆变器的结构与整流器相同而作用刚好相反,它把高压直流电变为高压交流电。再经过变压器和降压,交流系统A的电能就输送到交流系统B中。在直流输电系统中,通过改变换流器的控制状态,也可以把交流系统B中的电能送到系统A中去,也就是说整流器和逆变器是可以相互转换的。 交流电和直流电的优缺点比较 高压直流输电与高压交流输电相比,有明显的优越性。历史上仅仅由于技术的原因,才使得交流输电代替了直流输电。下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值。 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能…..)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流器相比,造价更低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来了极大的方便;这是交流电与直流电相比所具有的独特优势。 直流电的优点主要表现在输电方面: 输送功率相同时,直流输电所用的线材仅为交流输电~。 直流输电采用两线制,可以以大地和海水作回线,与采用三线制三相交流输电相比,在输电

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

高压直流输电情况总结

高压直流输电总结 一、高压直流输电概述: 1.高压直流输电概念: 高压直流输电是交流-直流-交流形式的电力电子换流电路,由将交流电变换为直流电的整流器、高压直流输电线路及将直流电变换为交流电的逆变器三部分组成。 注意:高压输电好处是在输送相同的视在功率S的前提下,高压输电能够降低输电线路流过的电流,减少线路损耗,提高输送效率(,)。 2.高压直流输电的特点: (1)换流器控制复杂,造价高; (2)直流输电线路造价低,输电距离越远越经济; (3)没有交流输电系统的功角稳定问题; (4)适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; (5)能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; (6)传输功率的可控性强,可有效支援交流系统; (7)换流器大量消耗无功,且产生谐波; (8)双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题; (9)不能向无源系统供电,构成多端直流系统困难。 3.对直流输电的基本要求: (1)能够灵活控制输送的(直流)电功率(大小可调;一般情况下,应能够正反双向传送电功率(功率方向可变);

(2)维持直流线路电压在额定值附近; (3)尽可能降低对交流系统的谐波污染; (4)尽可能少地吸收交流系统中的无功功率; (5)尽可能降低流入大地的电流。 注意:大地电流的不利影响包括①不同接地点之间存在电位差,形成电解池,造成电化学腐蚀;②变压器接地中性点流过直流电流,造成变压器直流偏磁,使变压器噪声增加、损耗加大、振动加剧。 4.高压直流输电的适用范围: 答:1.远距离大功率输电;2.海底电缆送电;3.不同频率或同频率非周期运行的交流系统之间的联络;4.用地下电缆向大城市供电;5.交流系统互联或配电网增容时,作为限制短路电流的措施之一;6.配合新能源供电。 二、高压直流输电系统的基本构成: 1.双端直流输电的基本构成: (1)单极大地回线(相对于大地只有一个正极或者负极): 图2- 1 (2)单极金属回线: 图2- 2 (3)双极大地回线(最常用): 图2- 3 (4)双极单端接地(很少用): 图2- 4 (5)双极金属回线(较少用): 图2- 5 (6)并联式背靠背: 图2- 6 (7)串联式背靠背:

东南大学电力电子技术考点总结

第二章变流器运行(6%) 一、换流重叠角 1、换流重叠角:由于电源电感引起的换流时间所对应的电角度,用表示。是换流开始到 结束所占的电角度。 2、产生原因:进线电抗、电流不能突变、换流需要时间。 3、换流期间,整流输出电压是换流两相电压之平均值。 4、对整流的影响:换流角存在时,输出电压平均值减小(换流压降的存在),换流压降与延迟角无关,只取决于负载电流及电源交流侧阻抗。 二、有源逆变 1、产生条件:负载侧负载侧存在一个直流电源E ,由它提供能量,其电势极性与变流器 的整流电压相反,对晶闸管为正向偏置电压; 变流器在其直流侧输出应有一个与原整流电压极性相反的逆变电压,其平均值,以 吸收能量,并将其能量馈给交流电源。 2、两个电源之间的能量交换必须同极性相连。 3、是电路能够进行换流运行的极限,是变流器工作在整流和逆变的分界点。即区间,电路工作在有源逆变工作状态(三相半波可控整流电路)。 4、为超前角,为的起点,。 5、逆变失败(倾覆):,不能进行换流,两个电源短路。最小超前角°° 6、带有续流二极管的全控电路或半控电路不能工作在有源逆变状态,有源逆变电路必须是全控电路。 第三章门极触发脉冲(8%) 一、门极触发信号的种类 1、直流信号:使晶闸管损耗增加,有可能超过门极功耗,在晶闸管反向电压时,门极直流信号将使反向漏电流增加,也有可能使晶闸管损坏。可用来判断晶闸管是否损坏。 2、交流信号:在温度变化和交流电压幅值波动时,其延迟触发角不稳定。变化范围较小,精度低,不能太大。 3、脉冲信号:便于控制脉冲出现时刻,降低晶闸管门极功耗,通过变压器的双绕组或多绕组输出,实现信号间的绝缘隔离和同步输出。P86 二、晶闸管对门极触发信号电路的要求 1、触发脉冲应有一定的幅值和功率 2、触发脉冲要有一定的宽度 3、触发脉冲前沿要陡 4、要与主电路同步并有一定的移相范围

相关文档
相关文档 最新文档