文档库 最新最全的文档下载
当前位置:文档库 › 2018届高考数学(理)一轮复习高频考点大突破学案:专题32 数列及其综合应用

2018届高考数学(理)一轮复习高频考点大突破学案:专题32 数列及其综合应用

2018届高考数学(理)一轮复习高频考点大突破学案:专题32 数列及其综合应用
2018届高考数学(理)一轮复习高频考点大突破学案:专题32 数列及其综合应用

专题32数列及其综合应用

高频考点一 等差、等比数列求和公式及利用

例1 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列. (1) 求数列{a n }和{b n }的通项公式; (2) 求数列{b n }的前n 项和.

【变式探究】已知首项为3

2的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N +),且S 3+a 3,S 5+a 5,S 4

+a 4成等差数列.

(1)求数列{a n }的通项公式;

(2)设T n =S n -1

S n

(n ∈N +),求数列{T n }的最大项的值与最小项的值.

高频考点二 可转化为等差、等比数列求和 例2、已知数列{a n }的前n 项和S n =n 2+n

2,n ∈N *.

(1) 求数列{a n }的通项公式;

(2) 设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.

高频考点三 根据数列特征,用适当的方法求和

例3 已知数列{a n }的前n 项和S n =-1

2n 2+kn(k ∈N *),且S n 的最大值为8.

(1) 确定常数k ,求a n ;

(2) 求数列????

??

9-2a n 2n 的前n 项和T n .

【解析】(1) 当n =k ∈N *时,S n =-12n 2+kn 取最大值,即8=-12k 2+k 2=1

2

k 2,故k =4,从而a n =S n -S n

-1

=92-n(n≥2).又a 1=S 1=72,所以a n =9

2

-n. (2) 因为b n =9-2a n 2n =n 2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n 2n -1,所以T n =2T n -T n =2+1+1

2+…+

12

n -2-n

2

n -1=4-1

2

n -2-n

2

n -1=4-n +2

2

n -1.

【变式探究】

已知数列{a n }和{b n }满足a 1=1,a 2=2,a n >0,b n =a n a n +1(n ∈N *),且{b n }是以q 为公比的等比数列. (1) 证明:a n +2=a n q 2;

(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1

a 2n

.

【解析】(解法1)(1) 证明:由b n +1b n =q ,有a n +1a n +2

a n a n +1

a n +2

a n

=q, ∴ a n +2=a n q 2(n ∈N *) . (2) 证明:∵ a n =a n -2q 2,∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -

2,a 2n =a 2n -2q 2=…=a 2q 2n -

2,∴ c n =a 2n -1+2a 2n =a 1q 2n

-2

+2a 2q 2n -

2=(a 1+2a 2)q 2n -

2=5q 2n -

2,∴ {c n }是首项为5,以q 2为公比的等比数列.

(3) 解:由(2)得

1

a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1

)+(1a 2+1a 4+…+1a 2n )

=1a 1????1+1q 2+1q 4+...+1q 2n -2+1a 2(1+1q 2+1q 4+ (1)

2n -2)=3

2????1+1q 2+1q 4+…+1q 2n -2. 由题知q>0,当q =1时,1a 1+1a 2+…+1a 2n =32????1+1q 2+1q 4+…+1q 2n -2=32n ;当q≠1时,1a 1+1a 2+…+1a 2n =

32????1+1q 2+1q 4+…+1q 2n

-2=32? ????1-q -

2n 1-q -2=32????

??q 2n -1q 2n -2(q 2

-1). 故1a 1+1a 2+…+1

a 2n =?

??

3

2

n ,q =1,32????

??q 2n -1q 2n -2(q 2-1),q≠1.

高频考点四 数列求和的综合应用

例4 将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 …

记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1,S n 为数列{b n }的前n 项和,且满足

2b n

b n S n -S 2n =1(n≥2).

(2) 解:设上表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×13

2=78,所以表中第

1行至第12行共含有数列{a n }的前78项,故a 81在表中第13行第三列,因此a 81=b 13·q 2=-4

91.又b 13=-

2

13×14,所以q =2.记表中第k(k≥3)行所有项的和为S ,则S =b k (1-q k )1-q =-2k (k +1)·(1-2k )1-2=2

k (k +1)(1-2k )(k≥3).

1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.

(Ⅰ)设2

2

*

1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;

(Ⅱ)设

()

22

*

11

,1,n

n

n n k a d T b n N ===

-∈∑,求证:2111.2n

k k

T d =<∑

【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】

(Ⅰ)证明:由题意得21n n n b a a +=,有22

112112n n n n n n n n c b b a a a a da +++++=-=-=,

因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.

(Ⅱ)证明:()()()

2222221234212n n n T b b b b b b -=-++-+++-+

()()()242222222

21,n n d a a a n a a d d n n =++++=?

=+

所以()2

222

11111

11

1

111112121212n

n

n

k k k k

T d k k d k k d n d ===????==-=?-< ? ?+++?

???∑∑∑. 2.【2016高考新课标3理数】已知数列{}n a 错误!未找到引用源。的前n 项和1n n S a λ=+错误!未找到引用源。,错误!未找到引用源。其中0λ≠.

(I )证明{}n a 错误!未找到引用源。是等比数列,并求其通项公式; (II )若531

32

S =

错误!未找到引用源。 ,求λ. 【答案】(Ⅰ)1

)1

(11---=

n n a λλλ;(Ⅱ)1λ=-

3.【2016高考浙江理数】设数列{}n a 满足1

12

n n a a +-≤,n *∈N . (I )证明:()1

1

2

2n n a a

-≥-,n *∈N ;

(II )若32n

n a ??≤ ???

,n *∈N ,证明:2n a ≤,n *

∈N .

【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112

n n a a +-

≤得11

12n n a a +-≤,故

111222

n n n n n

a a ++-≤,n *

∈N , 所以

1122311122312222222

2n n n n n n a a a a a a a a --??????-=-+-+???+- ? ? ??????? 121

111

222n -≤

++???+ 1<,

因此

()1122n n a a -≥-.

从而对于任意m n >,均有

3224m

n n a ??

<+? ???

由m 的任意性得2n a ≤. ①

否则,存在0n *

∈N ,有02n a >,取正整数00

03

4

2log 2

n n a m ->且00m n >,则

00

3

4

02log 23322244n n a m m n n a -?????

?

??

??

与①式矛盾.

综上,对于任意n *

∈N ,均有2n a ≤. 4.【2016年高考北京理数】(本小题13分)

设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则?≠)(A G ;

(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N ),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析

.

(Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知?≠)(A G .

设{}

p p n n n n n n A G

对p i ,,1,0???=,记{

}

,i i i k n G k n k N a a *

=∈<≤>N .

如果?≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1.

从而)(A G m i ∈且1+=i i n m .

又因为p n 是)(A G 中的最大元素,所以?=p G . 从而对任意p n k N ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-???=-+11,1,,1,0.

因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a . 所以p a a

a a a a i i

p n p

i n n N ≤-=

-≤--∑=)(11

11.

因此)(A G 的元素个数p 不小于1N a a -. 5.【2016年高考四川理数】(本小题满分12分)

已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;

(Ⅱ)设双曲线22

21n y x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++???+>.

【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析

.

由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q +q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .

(Ⅱ)由(Ⅰ)可知,1n n a q -=.

所以双曲线2

2

21n

y x a -=的离心率

n e ==

由53q ==

解得43

q =.

因为2(1)2(1)1+k k q q -->1

*k q k ->?N ()

. 于是1

1211+1

n n n q e e e q q q --++鬃

?>+鬃?=-, 故1231

433n n n e e e --++鬃?>

. 6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;

(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,

n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;

(3)设{}n b 是无穷数列,已知*

1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.

【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析.

520193n n n n a b c n -=+=-+. 1582a a ==,但248a =,6304

3

a =

,26a a ≠, 所以{}n a 不具有性质P . (3)[证]充分性:

当{}n b 为常数列时,11sin n n a b a +=+.

对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.

7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,. (Ⅰ)求111101b b b ,,;

(Ⅱ)求数列{}n b 的前1 000项和.

【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】

(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =

111101[lg1]0,[lg11]1,[lg101] 2.b b b ======

(Ⅱ)因为0,110,

1,10100,

2,1001000,

3,

1000.

n n n b n n ≤

=?

所以数列{}n b 的前1000项和为1902900311893.?+?+?= 8.【2016高考山东理数】(本小题满分12分)

已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;

(Ⅱ)令1(1).(2)n n n n

n a c b ++=+ 求数列{}n c 的前n 项和T n .

【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+?=n n n T

.

(Ⅱ)由(Ⅰ)知1

1(66)3(1)2(33)

n n n n

n c n n +++==+?+, 又n n c c c c T +???+++=321,

得23413[223242(1)2]n n T n +=??+?+?+???++?,

345223[223242(1)2]n n T n +=??+?+?+???++?,

两式作差,得

234123[22222(1)2]

n n n T n ++-=??+++???+-+?

22

4(21)

3[4(1)2]

21

32n n n n n ++-=?+-+?-=-? 所以223+?=n n n T

9.【2016高考江苏卷】(本小题满分16分)

记{}1,2,100U =…,

.对数列{}(

)*

n a n N ∈和U 的子集T ,若T =?,定义0T

S

=;若

{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设

{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .

(1)求数列{}n a 的通项公式;

(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ?…,

,求证:1T k S a +<; (3)设,,C D C U D U S S ??≥,求证:2C C D D S S S +≥ . 【答案】(1)13n n a -=(2)详见解析(3)详见解析

(3)下面分三种情况证明.

①若D 是C 的子集,则2C C D C D D D D S S S S S S S +=+≥+= . ②若C 是D 的子集,则22C C D C C C D S S S S S S +=+=≥ . ③若D 不是C 的子集,且C 不是D 的子集.

令U E C D = e,U F D C = e则E ≠?,F ≠?,E F =? .

于是C E C D S S S =+ ,D F C D S S S =+ ,进而由C D S S ≥,得E F S S ≥.

综合①②③得,2C C D D S S S +≥ .

【2015江苏高考,20】(本小题满分16分)

设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a

依次成等比数列;

(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;

(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 34

2321,,,+++依次成等比数列,并说明理由. 【答案】(1)详见解析(2)不存在(3)不存在 【解析】

(1)证明:因为1

12222n n n n

a a a d a ++-==(1n =,2,3)是同一个常数,

所以12a ,22a ,32a ,42a 依次构成等比数列.

(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2a d +(a d >,2a d >-,0d ≠). 假设存在1a ,d ,使得1a ,2

2a ,3

3a ,4

4a 依次构成等比数列, 则()()3

4

a a d a d =-+,且()()

6

4

2

2a d a

a d +=+.

令d t a =

,则()()3111t t =-+,且()()64

112t t +=+(112

t -<<,0t ≠), 化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,

()()21212313410t t t t t t t t +++-=+=++=+=,则14

t =-.

显然1

4

t =-

不是上面方程得解,矛盾,所以假设不成立, 因此不存在1a ,d ,使得1a ,2

2a ,3

3a ,4

4a 依次构成等比数列.

且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+????????, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+????????.

再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**). 令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,

则()()()()()()()()()()

222

213ln 13312ln 1231ln 111213t t t t t t g t t t t ??

++-+++++?

?'=+++. 令()()()()()()()222

13ln 13312ln 1231ln 1t t t t t t t ?=++-+++++, 则()()()()()()()613ln 13212ln 121ln 1t t t t t t t

?'=++-+++++????.

【2015高考浙江,理20】已知数列{}n a 满足1a =12

且1n a +=n a -2n a (n ∈*N ) (1)证明:11

2n

n a a +≤

≤(n ∈*N )

; (2)设数列{}

2

n a 的前n 项和为n S ,证明

11

2(2)2(1)

n S n n n ≤≤

++(n ∈*N ). 【答案】(1)详见解析;(2)详见解析.

【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,1

2

n a ≤,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--???->,由1

02

n a <≤

得, 2

11[1,2]1n n n n n n a a a a a a +==∈--,即1

12n n a a +≤≤;(2)由题意得2

1n n n a a a +=-, ∴11n n S a a +=-①,由

1111=n n n n a a a a ++-和112n n a a +≤≤得,111

12n n

a a +≤-≤, ∴1111

2n n n a a +≤

-≤,因此

*111()2(1)2

n a n N n n +≤≤∈++②,由①②得 11

2(2)2(1)

n S n n n ≤≤

++. 【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+. (I )求{}n a 的通项公式;

(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .

【答案】(I )13,1,3,1,

n n n a n -=?=?>?; (II )1363

1243n n

n T +=+?

.

(Ⅱ)因为

3log n n n a b a = ,所以

113b =

当1n > 时,()11133log 313n n n

n b n ---==-?

所以

111

3T b ==

当1n > 时,

()()1211231

1323133

n n n T b b b b n ---=++++=+?+?++-

所以()()

01231132313n n T n --=+?+?++- 两式相减,得

()()012122333133

n n

n T n ---=+++--? ()111

21313313n n n ----=+--?- 1363

623

n

n +=

-? 所以1363

1243n n n T +=+

? 经检验,1n = 时也适合, 综上可得:1363

1243

n n

n T +=

+? 【2015高考安徽,理18】设*n N ∈,n x 是曲线22

1n y x +=+在点(12),处的切线与x 轴交点的横坐标.

(Ⅰ)求数列{}n x 的通项公式;

(Ⅱ)记222

1321n n T x x x -= ,证明1

4n T n

. 【答案】(Ⅰ)1n n x n =+;(Ⅱ)1

4n T n

≥.

【解析】

1.(2014·湖南卷) 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;

(2)若p =1

2

,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.

【解析】(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2

+p +1.

又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =1

3或p =0.

当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =1

3

.

(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.① 因为122n <1

22n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②

由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=???

?

122n -1=(-1)2n

22n -

1

.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-????122n

=(-1)

2n +1

22n .④

由③④可知,a n +1-a n =(-1)n +

12n

.

于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-1

22+…+(-1)n 2n 1=1+1

2·1-????-12n -1

1+12

=4

3

+13·(-1)

n

2n -1

.

故数列{a n }的通项公式为a n =43+13·(-1)

n

2

n -1.

2.(2014·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;

(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p

.

(2)方法一:先用数学归纳法证明a n >c 1p .

①当n =1时,由题设知a 1>c 1

p

成立.

②假设n =k (k ≥1,k ∈N *

)时,不等式a k >c 1

p 成立.

由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *

. 当n =k +1时,a k +1a k =p -1p +c p a -p k =

1+1p ????c a p k

-1. 由a k >c 1p >0得-1<-1p <1p ????c a p k

-1<0. 由(1)中的结论得????a k +1a k p =????1+1p ????c a p k -1p >1+p · 1p ????c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1

p

, 所以当n =k +1时,不等式a n >c 1

p

也成立.

综合①②可得,对一切正整数n ,不等式a n >c 1

p 均成立.

再由a n +1a n =1+1p ????c a p n -1可得a n +1a n <1, 即a n +1

综上所述,a n >a n +1>c 1

p

,n ∈N *.

方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1

p

,则x p ≥c ,

所以f ′(x )=p -1p +c p (1-p )x -

p =

p -1p ???

?1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1

p

.

3.(2014·湖北卷) 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.

(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.

2018年全国各地高考数学试题及解答分类汇编大全(数列)

2018年全国各地高考数学试题及解答分类汇编大全 一、选择题 1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音 的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( ) A B . C . D . 【答案】D 【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,, 又1a f =,则7 781a a q f ===,故选D . 2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >> 答案:B 解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-, 得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤, 212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <. 3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则 =5a ( ) A .12- B .10- C .10 D .12 答案:B 解答:

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2017届高三数学理一轮复习专题突破训练 数列 一、填空、选择题 1、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 2、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根 3、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞ =++ +,则q = . 4、(虹口区2016届高三三模)若等比数列{}n a 的公比1q q <满足,且24 344,3,a a a a =+=则12lim()n n a a a →∞ ++ +=___________. 5、(浦东新区2016届高三三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,若 533S S =,则53 a a = 6、(杨浦区2016届高三三模)若两整数a 、 b 除以同一个整数m ,所得余数相同,即 a b k m -=()k Z ∈,则称a 、b 对模m 同余,用符号(mod )a b m ≡表示,若10(mod 6)a ≡(10)a >,满足条件的a 由小到大依 次记为12,,,,n a a a ??????,则数列{}n a 的前16项和为 7、(黄浦区2016届高三二模) 已知数列{}n a 中,若10a =,2i a k =*1 (,22,1,2,3, )k k i N i k +∈≤<=,则满足2100i i a a +≥的i 的最小值 为 8、(静安区2016届高三二模)已知数列{}n a 满足181a =,1 311log ,2, (*)3, 21n n n a a n k a k N n k ---+=?=∈?=+?,则数列{}n a 的前n 项和n S 的最大值为 . 9、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S , 2 2|2016|n S n a n (0a >),则使得1 n n a a +≤(n ∈* N )恒成立的a 的最大值为 . 10、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-?+,* n N ∈,则这个数列的前 n 项和n S =___________. 11、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

2018年高考数学试题分类汇编数列

2018试题分类汇编---------数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依 次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++. 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴2 12ln2ln2ln2e e e e e e n n a a a ++ +=++ + 2=222n +++1=22n +-.∴12e e e n a a a +++1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为 29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,所以当n =4时,n S 取得最小值,最小值为?16.

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

2018年全国2卷文科数学十年真题分类汇编6 数列

6 数列 一.基础题组 1. 【2014全国2,文5】等差数列的公差是2,若成等比数列,则的前项和( ) A. B. C. D. 【答案】A 2. 【2010全国2,文6】如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 【答案】: C 【解析】∵{a n }为等差数列,a 3+a 4+a 5=12,∴a 4=4. ∴a 1+a 2+…+a 7= =7a 4=28. 3. 【2006全国2,文6】已知等差数列中,,则前10项的和=( ) (A )100 (B)210 (C)380 (D)400 【答案】B 【解析】依题意可知:,,解得:, ∴. 4.【2005全国2,文7】如果数列是等差数列,则( ) (A) (B) (C) (D) 【答案】B 【解析】∵数列是等差数列,∴, ∴. 5. 【2012全国新课标,文14】等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =__________. 【答案】:-2 【解析】:由S 3=-3S 2,可得a 1+a 2+a 3=-3(a 1+a 2), 即a 1(1+q +q 2 )=-3a 1(1+q ), {}n a 248,,a a a {}n a n S =(1)n n +(1)n n -(1)2n n +(1) 2 n n -177() 2 a a +{}n a 247,15a a ==10S 217a a d =+=41315a a d =+=14,3d a ==101109109 1030421022 S a d ??=+ =+?={}n a 1845a a a a +<+1845a a a a +=+1845a a a a +>+1845a a a a ={}n a m n p q m n p q a a a a +=+?+=+1845a a a a +=+

【高考数学专题突破】《专题三第讲数列求和及综合应用学案》(解析版)

第2讲 数列求和及综合应用 数列求和问题(综合型) [典型例题] 命题角度一 公式法求和 等差、等比数列的前n 项和 (1)等差数列:S n =na 1+ n (n -1)2 d (d 为公差)或S n =n (a 1+a n ) 2 . (2)等比数列:S n =???? ?na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1其中(q 为公比). 4类特殊数列的前n 项和 (1)1+2+3+…+n =1 2n (n +1). (2)1+3+5+…+(2n -1)=n 2 . (3)12+22+32+…+n 2 =16n (n +1)(2n +1). (4)13+23+33+…+n 3=14 n 2(n +1)2 . 已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3 ,n ∈N * .

(1)求证:数列???? ?? 1a n 为等差数列; (2)设T 2n = 1 a 1a 2- 1 a 2a 3+ 1 a 3a 4- 1 a 4a 5 +…+ 1 a 2n -1a 2n - 1 a 2n a 2n +1 ,求T 2n . 【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +2 3 , 所以 1 a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列???? ??1a n 是首项为1,公差为2 3的等差数列. (2)设b n = 1 a 2n -1a 2n - 1 a 2n a 2n +1 =? ??? ?1a 2n -1-1a 2n +11a 2n , 由(1)得,数列???? ??1a n 是公差为2 3的等差数列, 所以 1 a 2n -1 - 1 a 2n +1=-43,即 b n =? ????1a 2n -1-1a 2n +11a 2n =-43×1a 2n , 所以b n +1-b n =-43? ????1a 2n +2-1a 2n =-43×43=-16 9. 又b 1=-43×1a 2=-43×? ????1a 1+23=-20 9 , 所以数列{b n }是首项为-209,公差为-16 9的等差数列, 所以T 2n =b 1+b 2+…+b n =- 209n +n (n -1)2×? ?? ??-169=-49(2n 2 +3n ). 求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n = n (a 1+a n ) 2 或S n =na 1+ n (n -1) 2d ;等比数列{a n }的前n 项和公式:S n =?????na 1,q =1,a 1(1-q n )1-q ,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解. 命题角度二 分组转化法求和 将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和. 已知等差数列{a n }的首项为a ,公差为d ,n ∈N * ,且不等式ax 2 -3x +2<0的解集为(1,

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

最新高考数学数列题型专题汇总

1. 高考数学数列题型专题汇总 1 一、选择题 2 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 3 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

2. 4、如图,点列{A n },{B n }分别在某锐角的两边上,且 19 1122,,n n n n n n A A A A A A n ++++=≠∈*N , 20 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 21 若1n n n n n n n d A B S A B B +=,为△的面积,则 22 23 A .{}n S 是等差数列 B .2{}n S 是等差数列 24 C .{}n d 是等差数列 D .2{}n d 是等差数列 25 【答案】A 26 27 28 29 30 二、填空题 31 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 32 6=S _______.. 33 【答案】6 34 35 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 36

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2016-2018年全国卷高考数列题

2016—2018年全国卷数列高考汇编 8.【2016高考新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )97 4.【2016高考新课标1卷】设等比数列{}n a 错误!未找到引用源。满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 6.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求111101b b b ,,; (Ⅱ)求数列{}n b 的前1 000项和. 7.【2016高考新课标3理数】已知数列{}n a 错误!未找到引用源。的前n 项和1n n S a λ=+错误!未找到引用源。,错误!未找到引用源。其中0λ≠. (I )证明{}n a 错误!未找到引用源。是等比数列,并求其通项公式;(II )若53132 S =错误!未找到引用源。 ,求λ. 4.【2017高考新课标1理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 15. 【2017高考新课标2理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则

11n k k S ==∑ . 9.【2017高考新课标3理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24 B .-3 C .3 D .8 4.【2018高考新课标1理数】记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .12 15.【2018高考新课标1理数】记n S 为等差数列{}n a 的前n 项和. 若21n n S a =+,则6S = . 4.【2018高考新课标2文理数】记n S 为等差数列{}n a 的前n 项和. 若17a =-,315S =-. ⑴求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 17.(2018年全国卷3) 等比数列{}n a 中,12314a a a ==,. ⑴求{}n a 的通项公式; ⑵记n S 为{}n a 的前n 项和.若63m S =,求m .

高考数学压轴专题新备战高考《数列》易错题汇编含答案解析

新数学《数列》试卷含答案 一、选择题 1.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21 C .63- D .21 【答案】C 【解析】 【分析】 根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得 21112163S a ==-. 【详解】 ∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】 此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和. 2.在递减等差数列{}n a 中,2132 4a a a =-.若113a =,则数列1 1 { }n n a a +的前n 项和的最大值为 ( ) A . 24143 B . 1143 C . 2413 D . 613 【答案】D 【解析】 设公差为,0d d < ,所以由2 1324a a a =-,113a =,得 213(132)(13)42d d d +=+-?=- (正舍),即132(1)152n a n n =--=- , 因为 111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +?? ???? 的前n 项和等于 1111116 ()()213213213261313 n --≤--=-?- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中 间若干项的方法,裂项相消法适用于形如1n n c a a +?? ???? (其中{}n a 是各项均不为零的等差数 列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类

浙江专版2018年高考数学第1部分重点强化专题专题2数列突破点5数列求和及其综合应用教学案

突破点5 数列求和及其综合应用 (对应学生用书第19页) [核心知识提炼] 提炼1 a n 和S n 的关系 若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =??? ? ? S 1,n =1,S n -S n -1,n ≥2. 在使用这个关系 式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法 (1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如 a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列. (2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如 a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1 ,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q 1-p ,再转化为等比数列求解. (5)构造法:形如a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1 ,得 a n +1q n +1=p q ·a n q n +1q ,构造新数列{ b n }? ? ???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. (6)取对数法:形如a n +1=pa m n (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和 数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题 数列综合问题的考查方式主要有三种: (1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小. (2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题.

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

2018年全国高考真题分类汇编----数列

2018年全国高考真题分类汇编----数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++ . 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴212ln2ln2ln2e e e e e e n n a a a +++=+++ 2=222n +++ 1=22n +-.∴12e e e n a a a +++ 1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为

相关文档
相关文档 最新文档