文档库 最新最全的文档下载
当前位置:文档库 › 色谱分析实验讲义2014.3.12解析

色谱分析实验讲义2014.3.12解析

色谱分析实验讲义2014.3.12解析
色谱分析实验讲义2014.3.12解析

色谱分析实验讲义

2014.03.12

实验一气相色谱的基本操作及进样练习

一、实验目的

(1) 了解气相色谱仪的主要结构组成和应用。

(2) 掌握仪器基本操作和调试程序,熟悉气路运行过程。

(3) 明确热导池检测器的操作注意事项。

(4) 掌握气相色谱进样操作要领,练习微量注射器的使用方法。

二、实验原理

通过实验了解气相色谱仪的结构与原理。气相色谱仪是实现气相色谱过程的仪器,按其使用目的可分为分析型、制备型和工艺过程控制型。但无论气相色谱仪的类型如何变化,构成色谱仪的5个基本组成部分皆是相同的,它们是载气系统、进样系统、分离系统(色谱柱)、检测系统及数据处理系统。

载气系统:载气是构成气相色谱过程中的重要一相——流动相,一般由高压钢瓶供气。

进样系统:汽化室是进样系统中不可缺少的组成部分,它的作用是把液体样品瞬间加热变成蒸汽,然后由载气带人色谱柱。

分离系统:色谱柱比作气相色谱仪的“心脏”,样品就是在此根据其性质的不同进行分离的。检测系统:检测器是气相色谱仪的关键部件。它的作用是将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定

和测量。

数据处理系统:数据处理系统目前多采用微机型色谱数据处理机和配备操作软件包的工作站,既可对色谱数据进行自动处理,又可对色谱系统的参数进行自动控制。三、仪器与试剂

1.仪器

气相色谱仪(GC9790型);检测器(热导池TCD);色谱柱(邻苯二甲酸二壬酯DNP);微量进样器(1 μL)。

2.试剂

环己烷(AR);载气(氮气或氢气,含量99.99%以上)。

四、实验内容

1.开机操作步骤

(1)通气:首先连接好色谱柱,在检查气路密封良好的情况下,先逆时针旋转钢瓶总阀,调整减压阀输出压力0.4 ~ 0.5 Mpa,调节气相色谱仪上的载气稳压阀(总压),使其输出压力为0.3Mpa,调节柱前压1和2的稳流阀2~3圈,载气流量氮气约为30mL·min-1,氢气约为40 mL·min-1。

(2) 通电:检查仪器开关都应处于“关闭”位置后,开启气相色谱仪右侧的电源开关,仪器接通电源以后计算机首先进入仪器的自检程序,其状态显示为指示灯全部打开,直到屏幕出现“OK!”字样后表示仪器自检通过,可以进入正常操作程序,并且显示器自动切换到屏幕显示状态,等待用户输入操作信息,此时若不进行任何信息输入,仪器保持此状态15秒后,将执行上一次关机前所设定的储存参数。

(3) 升温:系统自检完毕后,通过按[热导]、[注样器]、[柱箱]键,设定热导检测器的温度、注样器的温度和色谱柱的温度,各温度设定值检查无误后,按[输入] 键,仪器进入加热升温状态。当实际温度达到设定温度后,恒温后仪器已进入稳定状态。

(4) 热导池电流调整:通过按[参数]键,设定热导检测器控制器参数,选择极性为1,桥电流120mA(氢气作载气)。

(5) 打开计算机和色谱工作站,双击桌面上图标,进入色谱工作站操作界面,把此界面中的信号通道改为B,选择“操作”菜单中的“谱图采集”命令或单击工具条上的“谱图采集”绿色按钮,这时文档窗口谱图区内开始有谱线走动,按下色谱仪上的通桥电流的红色按键,通上桥电流,观察基线是否稳定。基线稳定后,通过[调零]旋钮调整基线位置。基线位置调整好以后,即可进样分析。

2.液体进样操作练习

(1) 每人选用一支1μL微量进样器,在实验老师的指导下,取0.5 μL的环己烷进样,进样的同时按下绿色遥控开关或单击工具条上的谱图采集绿色按钮,进行谱图采集,文档窗口内开始有谱图走动。如果要调节谱图在横向和纵向上的缩放,请分别调节“谱图参数”表中“满屏时间”和“满屏量程”两个谱图显示参数,也可分别单击这两个参数旁的“满屏”按钮,使当前已采集到的谱图分别在横向和纵向上满屏。如果谱图严重闪烁,可以通过加大满屏时间值来降低闪烁的程度。

(2) 待色谱峰出完后,选择“操作”菜单中“手动终止”命令或工具条上的手动停止红色按钮,这时将终止程序对谱图信号数据的实时采集和处理。实际上,当谱图采集时间到达谱图参数表中的“采集时间”参数所指定的值时不用手动下达这个命令,程序也会自动结束谱图信号数据的实时采集和处理。

(3) 在谱图采集结束时程序会弹出一保存对话框,提示将整个文档窗口中的内容存到哪个磁盘文件中,这时可将程序推荐的文件名改为更有意义的文件名进行保存,然后记录色谱峰的峰面积,峰面积记录完毕后,执行下一次的进样操作,这样的操作总共进行8次,最后以8次进样的峰面积,求出极差和相对标准偏差。

(4) 微量进样器的使用方法及注意事项老师会进行讲解,每次实验后,要用适当溶剂清洗进样器。

3.关机

实验结束后,首先按起桥电流的红色按钮,断掉桥电流。然后将[柱箱]、[检测器]、[注样器]的温度都设定为50℃,待各温度降至设定温度后,关闭主机上的加热电源开关和总的

电源开关,最后关闭载气。

五、注意事项

(1) 取好样后应立即进样,进样时整个动作应稳定、连贯、迅速。

(2) 硅橡胶密封垫圈在几十次进样后,容易漏气,须及时更换。

(3) 先通载气,确保载气通过热导检测器后,再打开热导桥流。

(4) 当使用双气路色谱仪时,两路的载气流速应保持相同。

(5) 热导池系统使用氢气作载气时,必须置毛细管系统稳压阀处于关闭状态。

六、问题与讨论

(1) 为什么有时同一样品同一进样量时色谱峰形(如峰高)不同?

(2) 为什么有时进样后不出峰?

实验二 内标法定量分析正己烷中的环己烷

一、实验目的

(1) 了解内标法的定量原理以及选择内标物的原则。

(2) 学会用内标法进行定量分析的实验技术。

(3) 熟悉氢火焰检测器的特点和使用方法。

二、实验原理

内标法也是常用的一种比较准确的定量方法。当样品中的所有组分因各种原因不能全部流出色谱柱,或检测器不能对各组分都有响应,或只需测定样品中某几个组分时,可用内标法定量。内标法的原理是,准确称取一定量样品,加入一定量的内标物,根据被测物和内标物的质量及其在色谱图上的峰面积比,求出被测组分的含量,计算公式如下:

%100?=m

s s s i i i W f A W f A P 式中,P i 是组分i 的百分含量;W m ,W s 分别是样品和内标物的质量;A i ,A s 分别是被测组分和内标物的峰面积;f i ,f s 分别是被测组分和内标物的质量校正因子。

试样中各组分经色谱柱分离后进入检测器被检测,在一定操作条件下,被测组分i 的质量(m i )或其在裁气中的浓度与检测器响应讯号(色谱图上表现为峰面积A i 或峰高h i )成正比,可写作:

i i

i=A f m ′ 这就是色谱定量分析的依据,式中

i f ′为比例常数,称为被测组分i 的绝对质量校正因

子。由于同一种检测器,对不同物质具有不同的响应值,这样就不能用峰面积来直接计算物质的含量。为了使检测器产生的响应讯号能真实地反映出物质的含量,需要对响应值进行校正,这就是校正因子的意义。根据上式得:

i

i i A m =f ′ 可见i f ′就是单位峰面积所代表物质的质量,它主要由仪器的灵敏度所决定。由于i f ′值与色谱操作条件有密切关系而不易准确测定,因此在色谱定量分析中,采用相对校正因子i f ,即被测物质i 与标准物质s 的绝对校正因子之比值,此比值不受实验条件的影响,只与检测器类型有关:

i

s s i s s i i s i i A m A m =A m A m =f f =f ′′ 式中

s f ′、m s ,、A s 分别为标准物质的绝对校正因子、质量及峰面积。按被测组分使用的不同计量单位,可分为质量校正因子及体积校正因子等(通常把“相对”二字略去)。 测定i f 时,先准确称量被测物质i 和标准物质s 的m i 和m s ,混合后在一定的实验条件下进行色谱测定,然后测量相应的峰面积A i 和A s ,,再按上式计算i f 值。为了方便起见,在内标法当中,常以内标物本身作为标准物,其f s =1.00。内标法要求选择一个适宜的内标物,它在样品中不存在,当加入内标物进行色谱分离时,在色谱图上它应与被测组分靠近并与其他组分完全分离,内标物的量也应与被测组分的量相当,以提高定量分析的准确度。

内标法的定量分析方法中还有一种内标工作曲线法。首先配制一系列的标准溶液,测得相应的A i /A s 值,绘制A i /A s ~m i /m s 标准曲线,如下图所示。这样可在无需预先测定f i 的情况下,称取固定量的试样和内标物质,混合均匀后即可进样,根据A i/A s 之值求得样品的含量。内标法定量结果准确,对于进样量及操作条件不需严格控制,内标工作曲线法更适合用于工厂的控制分析。

内标工作曲线示意图

三、仪器与试剂

1.仪器

气相色谱仪(GC9790型,福立分析仪器有限公司);热导检测器(TCD);色谱柱(7%DNP);微量进样器(1 μL ,5 μL )。

2.试剂

氢气;正己烷(AR);环己烷(AR);苯(AR);未知样品。

四、实验内容

(1) 打开载气,确保载气流经热导检测器,并调整流速大约为30 mL·min-1。

(2) 打开色谱仪的电源开关,待自检结束后,打开加热电源开关,在操作面板上通过按[注样器]、[柱箱]、[热导]键将汽化室、柱箱、检测器的温度分别设定为为100℃、60℃、80℃。

(3) 打开计算机和色谱工作站,点击计算机桌面上HW-2000色谱工作站图标,进入色谱工作站操作界面,选择色谱通道B,点击快捷菜单上的绿色按钮进入谱图采集状态。

(4) 当实际温度达到设定值后,通过仪器上的控制面板设定热导检测器桥电流为100mA,然后打开热导检测器开关,通上桥电流,观察基线是否稳定,通过调零旋钮调整基线位置。

(5) 待色谱仪稳定后,用微量注射器注入2 μL按质量法配置的已知浓度的环己烷、苯标准溶液,记录保留时间和峰面积。重复操作三次(计算组分的校正因子)。

(6) 将0.5 μL正己烷、环己烷、苯分别注人色谱柱,记下各自的保留时间(目的是利用保留时间定性未知组分)。

(7) 称量一定量的未知物W m。

(8) 称量一定量的内标物W s,将其加入上述未知物中,并混合均匀。

(9) 取2 μL含有内标物的未知样品注入色谱仪,记录保留时间和峰面积。此步骤重复三次。

(10) 实验结束后,首先按起桥电流的红色按钮,断掉桥电流。然后将柱温、检测器、注样器的温度设定为50℃,待温度降至设定温度后,关闭各部分电源开关,最后关闭载气。

五、数据处理

(1) 列表整理保留值及峰面积的数据。

(2) 以苯为标准物质计算环己烷的校正因子。

(3) 以苯为内标物利用内标法计算环己烷的含量。

六、注意事项

(1) 先通载气,确保载气通过热导检测器后,再打开热导桥流。

(2) 当使用双气路色谱仪时,两路的载气流速应保持相同。

(3) 热导池系统使用氢气作载气时,必须置毛细管系统稳压阀处于关闭状态。。

七、问题与讨论

(1) 你认为实验中选取苯为内标物是否合适?为什么?

(2) 内标法定量有什么优点?它对内标物有何要求?

(3) 实验中是否需要严格控制进样量,实验条件若有变化是否会影响测定结果?为什么?

(4) 在内标工作曲线法中,是否需要应用校正因子,为什么?

实验三 载气流速及柱温变化对分离度的影响

一、实验目的

(1) 进一步理解分离度的概念及其影响因素。

(2) 掌握分离度的计算方法。

(3) 了解实验条件的选择对色谱分析的重要性。

二、实验原理

理论塔板数(n )或有效理论塔板数(n 有效)是衡量柱效的重要指标,从理论上,理论板数越多,柱效越高。但理论塔板数多到什么程度才能满足实际分离的要求,一般很难给出确切的定量指标,然而,分离度(Rs )可以作为色谱柱总分离效能的量化指标,因为它从本质上反映了热力学和动力学两方面的因素。分离度主要是针对两个相邻色谱峰而言,在混合物中一般指“难分离物质对”的相邻两峰之间的保留时间差别越大,越有利于分离,两峰的峰宽越窄,越有利于分离,因此,按定义,分离度Rs 正比于相邻两峰保留值之差,反比于两峰宽之和的一半:

()

212112Y Y t t R R R s +-=

(1) 或 )(2,21211221y y t t R R R s +-= (2)

式中,t R 2,t R 1分别为组分1和2的保留时间;Y 1,Y 2分别为组分1和2峰的基线宽度;y 1/2,y 1/2,2分别为组分1和2的半峰宽。公式(1)和公式(2)的物理意义相同,只是数值不同。两组分保留值差别的大小取决于固定相的性质,即色谱柱的选择性。而色谱峰的宽窄主要是动力学问题,也是柱效的表征。因此,分离度与固定相的选择性和柱效有密切的关系,从分离度的基本定义可以推导出下列表达式:

k

k n R s +-=1141αα (3) 式中,α是色谱柱的选择性,也称相对保留值,可以定量地描述色谱体系中两种物质迁移速率不同的特性,相对保留值的定义为:

12''1212

k k t t t t t t M R M R R R =--==

α (4) 式中,'2R t ,'1R t 分别为组分1和2的调整保留时间;t R 1,t R 2分别为组分1和2的保留时间;

t M 是空气保留时间;k 1,k 2分别为组分1和2的容量因子。组分在固定相中的质量(W s )和分配在气相中的质量(W g )之比,称为容量因子,以k 表示:

M

R g s t t W W k '== (5) k 值主要由组分和固定液的性质所决定,它可以通过t 'R 和t M 进行计算。

从公式(3)可以看出,分离度Rs 是塔板数n 、相对保留值α及容量因子k 的函数,因此,可通过调整柱温、柱压和气、液体积等因素来改变n 或α或k ,从而达到改善分离度的目的。

三、仪器与试剂

1.仪器

气相色谱仪(GC9790型,福立分析仪器有限公司);热导检测器;色谱柱(10%SE-30)。

2.试剂

乙醇(AR);丙醇(AR);丁醇(AR);未知样。

四、实验内容

(1) 打开载气,确保载气流经热导检测器,并调整流速大约为30 mL·min -1。

(2) 打开色谱仪的电源开关,待自检结束后,打开加热电源开关,在操作面板上通过按

[注样器]、[柱箱]、[热导]键将汽化室、柱箱、检测器的温度分别设定为为120℃、80℃、100℃。

(3) 打开计算机和色谱工作站,点击计算机桌面上HW-2000色谱工作站图标,进入色谱工作站操作界面,选择色谱通道B ,点击快捷菜单上的绿色按钮进入谱图采集状态。

(4) 当实际温度达到设定值后,通过仪器上的控制面板设定热导检测器桥电流为100MA ,然后打开热导检测器开关,通上桥电流,观察基线是否稳定,通过调零旋钮调整基线位置。

(5) 待仪器稳定后,注入2 μL 未知样品,记录保留时间和半峰宽。

(6) 分别注人0.5 μL 乙醇、丙醇、丁醇,记录各自的保留时间。

(7) 注人40 μL 左右的空气样品,记录空气峰的保留时间t M 。

(8) 将柱温分别恒温在80℃,90℃,110℃,130℃,重复测量未知样品和空气的保留时间以及半峰宽,流速为30 mL·min -1。

(9) 将载气流速分别调整为20,30,60,80 mL·min -1,重复测量未知样和空气的保留时间及半峰宽,柱温恒定在80℃。

(10) 实验结束后,首先按起桥电流的红色按钮,断掉桥电流。然后将柱温、检测器、注样器的温度设定为50℃,待温度降至设定温度后,关闭各部分电源开关,最后关闭载气。

五、数据处理

(1) 计算不同柱温下丙醇和乙醇,丙醇与丁醇的分离度。说明柱温对分离度的影响。

(2) 计算不同载气流速下的丙醇和乙醇,丙醇与丁醇的分离度。说明载气流速对分离度

的影响。

六、注意事项

(1) 改变柱温和流速后,待仪器稳定后再进样。

(2) 为了保证峰宽测量的准确,应调整适当的峰宽参数。

(3) 控制柱温的升温速率,切忌过快,以保持色谱柱的稳定性。

七、思考题

(1) 分离度是不是越高越好?为什么?

(2) 影响分离度的因素有哪些?提高分离度的途径是什么?

(3) k值的最佳范围是2~5,如何调整k值?

(4) 在给定条件下,如果使丙醇与相邻两峰的分离度为R s=1.5,所需的柱长是多少?(假设塔板高度为H=10 mm)。

实验四程序升温毛细管柱气相色谱分析有机混合物

一、实验目的

(1) 了解程序升温在气相色谱分析中的重要作用。

(2) 掌握程序升温色谱法的操作方法。

(3) 了解毛细管色谱法在复杂样品分析中的应用。

二、实验原理

程序升温是气相色谱分析中一项常用而且十分重要的技术。对于每一个预分析的组分来说,都对应着一个最佳的柱温,但是当分析样品比较复杂、沸程很宽的时候,若使用同一柱温进行分离,其分离效果很差,因为低沸点的组分由于柱温太高,很早流出色谱柱,色谱峰重叠在一起不易分开;高沸点的组分则因为柱温太低,很晚流出色谱柱,甚至不流出色谱柱,其结果是各组分的色谱峰分布疏密不均,有时还出现怪峰,给分析工作带来困难。

程序升温是指在一个分析周期里,色谱柱的温度按照适宜的程序连续地随时间呈线性或非线性升高的色谱操作模式。在程序升温中,首先采用足够低的初始温度,使低沸点组分能得到良好的分离,然后随着温度不断升高,高沸点的组分也能较快的流出,并和低沸点组分一样得到良好的分离和峰形。因此,对于沸程较宽组分较多的混合物样品,必须采用程序升温来代替等温操作,程序升温的方式可分为线性升温和非线性升温,根据分析任务的具体情况,通过实验选择适宜的升温方式,就可以得到比较理想的分离效果。

毛细管柱的柱效要比填充柱高很多,这是由于单位柱长液相体积小,气相体积大(开管柱),在一定温度下容量比降低,虽然毛细管柱的每米板数与填充柱相当,但由于毛细管是空的,可以使用很长的柱子,所以总的柱效很高,因此在分离难分离物质对如 =1.03时,必须采用毛细管柱色谱。由于它的分离效率高,因而对所涂渍的固定液性质要求不像填充柱那样苛刻,避免了精选固定液的麻烦,只需几根极性不同的毛细管柱即可解决大多数较复杂样品的分析。

苯系物中成分较多,极性和沸点变化范围较大,采用定温色谱方法不能一次进行很好的分离,本实验采用程序升温毛细管色谱法来测定苯系物中各种组分,分离效果良好。

三、仪器与试剂

1.仪器

GC9790型气相色谱仪(温岭福立分析仪器有限公司);氢火焰离子化检测器;OV-1701毛细管色谱柱(ф0.25mm*30m*0.32mm)中国科学院兰州化学物理研究所色谱技术研究开发中心;HW-2000色谱工作站;0.5μL微量注射器。

2.试剂

试剂:氢气(高纯);压缩空气(高纯);氮气(高纯);苯;甲苯;邻二甲苯;对二甲苯;乙基苯、正己烷;环己烷。

四、实验内容

(1) 通载气,确保载气流经色谱柱,调节流速约为30mL·min-1。

(2) 打开色谱仪的电源开关,待自检结束后,打开加热电源开关,在操作面板上通过按[辅助1]、[柱箱]、[检测器]键将汽化室、柱箱、检测器的温度分别设定为为160℃、60℃、160℃。

(3) 打开计算机和色谱工作站,点击计算机桌面上HW-2000色谱工作站图标,进入色谱工作站操作界面,选择色谱通道A,点击快捷菜单上的绿色按钮进入谱图采集状态。

(4) 待设定温度平衡以后,通H2和压缩空气,调整流速分别为30 mL·min-1和300 mL·min-1。用点火枪点燃氢焰,并检查氢火焰是否已点燃。通过调零旋钮调整基线位置。

(5) 待色谱仪稳定后,用0.5μL微量注射器注入0.2 μL苯系物标准溶液,记录保留时间和各峰分离度。

(6) 再将柱温设定为110℃,待设定温度平衡以后,用微量注射器注入0.2 μL苯系物溶液,记录每个色谱峰的保留时间和峰分离度。

(7) 用微量进样器分别注入0.1 μL正己烷、环己烷、苯、甲苯、邻二甲苯、对二甲苯乙基苯,记录各自的保留时间(目的是利用保留时间定性未知组分)。

(8) 设置柱温升温程序:首先把柱温设定为60℃,在此温度下保持2分钟,然后以每分钟30℃的升温速率升至110℃,在此温度下保持1分钟。

(9) 待初始温度稳定,准备指示灯亮以后,用微量注射器注入0.2 μL苯系物标准溶液,,进样的同时立即按下《启动》键开始程序测定,同恒温操作方法一样可以从显示屏上监视温度运行状态。记录各峰保留时间、分离度及面积百分含量。

(10) 实验结束后,首先关闭氢气、空气,然后将辅助1、柱温、检测器的温度设定为50℃,待温度降至设定温度后,关闭各部分电源开关,最后关闭载气。

五、数据处理

(1) 记录等温条件下苯系物中各组分的保留时间和分离度。

(2) 记录程序等温条件下苯系物中各组分的保留时间、分离度及面积百分含量。

(3) 比较等温和程序升温两种分析条件对分离度及分析时间的影响。

六、注意事项

氢火焰离子化检测器在点火时,可先通人稍大于工作流量的氢气,以利于点火,氢火焰点燃后再调至规定的流速。

七、问题与讨论

(1) 简述氢火焰检测器和热导检测器各自的特点和适用范围。

(2) 升温程序设计的依据是什么?终止温度由什么因素决定?

(3) 简述毛细管柱色谱法与填充柱色谱法的特点和应用范围。

实验五高效液相色谱的基本操作及进样练习

一、实验目的

(1) 了解液相色谱仪的主要结构组成和及其使用方法。

(2) 掌握液相色谱仪的基本操作,明确操作注意事项。

(3) 掌握液相色谱仪的进样操作要领,了解流动相和样品的处理方法。

二、实验原理

高效液相色谱仪现在多做成一个个单元组件,然后根据分析要求将各所需单元组件组合起来,最基本的组件是输液泵、进样器、色谱柱、检测器和工作站(数据系统)。此外,还可根据需要配置自动进样系统、流动相在线脱气装置和自动控制系统等。输液泵将流动相以稳定的流速输送至分析体系,在色谱柱之前通过进样器将样品导入,流动相将样品带人色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至工作站记录、处理和保存。

7

图10-1 高效液相色谱仪的构造示意图

l. 流动相;2. 输液泵;3. 进样器;4. 色谱柱;5. 检测器;6. 工作站;7. 废液瓶

1、高压泵

高压泵的作用是将流动相以稳定的流速输送到色谱系统。其稳定性直接关系到分析结果的重现性、精度和准确性,因此其流量变化通常要求小于0.5%。流动相流过色谱柱时会产生很大的压力,高压泵通常要求能耐40 ~ 60MPa的高压。

2、进样器

六通阀进样器工作原理

(1) 采样位置; (2) 进样位置

现在的液相色谱仪几乎都采用耐高压,重复性好和操作方便的阀进样器。六通阀进样器是最常用的,进样体积由定量管确定,通常使用的是10、20和50 μL体积的定量管。进样器的结构如上图所示。操作时先将阀柄置于采样位置(Load),这时进样口只与定量管接通,处于常压状态,用微量注射器(体积应大于定量管体积)注入样品溶液,样品停留在定量管中。将进样器阀柄转动至进样位置(Inject)时,流动相与定量管接通,样品被流动相带到色谱柱中。

3、色谱柱

色谱柱是实现分离的核心部件,要求柱效高、柱容量大和性能稳定。最常用的分析型色谱柱是内径4.6 mm,长100 ~ 300 mm的内部抛光的不锈钢管柱,内部填充5 ~ l0 μm粒径的球形颗粒填料。不同的物质在色谱柱中的保留时间不同,依次流出色谱柱进人检测器。

4、检测器

检测器是用来连续检测经色谱柱分离后的流出物的组成和含量变化的装置。它利用被测物的某一物理或化学性质与流动相有差异的原理,当被测物从色谱柱流出时,会导致流动相背景值发生变化,从而在色谱图上以色谱峰的形式表现出来。

5、工作站

一些配置了积分仪或记录仪的老型号的液相色谱仪在很多实验室还在使用,但近几年新购置的仪器,一般带工作站,即所有分析过程都可在线模拟显示,数据自动采集、处理和存储,并对整个分析实现自动控制。如果设置好有关分析条件和参数,可以自动给出最终分析结果。

三、仪器与试剂

1.仪器

高效液相色谱仪(普通配置,带紫外检测器);色谱住:C18(4.6×150 mm);超声波清洗器;微量进样器;溶剂过滤器;无油真空泵。

2.试剂

甲醇(色谱纯);邻苯二甲酸二甲酯(AR)。

四、实验内容

(1) 流动相的准备:将已过滤和脱气的色谱甲醇倒入溶剂贮瓶中备用。

(2) 按先后顺序正确打开电脑和仪器的电源开关。

(3) 待仪器自检结束后,双击电脑桌面上的仪器控制面板,进入色谱工作站操作界面,打开高压泵上的排液阀,点击Purge按钮,以3~ 5mL·min-1的大流量清洗管路,冲洗完毕后,关闭排液阀。

(4) 设定流动相的流速为1 mL·min-1,流动相比例为甲醇:水= 80 : 20,检测波长254 nm。

(5) 开机约30分钟仪器稳定后,用调零旋钮调节基线位置。

(6) 将配制好的物质按照进样要求注入色谱仪,进样量20uL,记录组分的保留时间和峰面积。这样的操作总共进行8次,最后以8次进样的峰面积,求出极差和相对标准偏差。

(7) 分析结束后,让流动相继续流动20分钟,然后停泵,关机。

五、注意事项

(1) 各实验室的仪器设备不可能完全一样,操作时一定要参照仪器的操作规程。

(2) 用微量进样器吸液时,要防止气泡吸入。

六、数据处理

(1) 记录组分的保留时间和峰面积。

(2) 以8次进样的峰面积,求出极差和相对标准偏差。

七、问题与讨论

(1) 什么是正相液相色谱?什么是反相液相色谱?

(2) 流动相使用前为什么要进行脱气?如何进行脱气?

(3) 对流动相和要分析的样品进行过滤的目的是什么?

实验六液相色谱外标法定量分析有机物质的含量

一、实验目的

(1) 了解外标法的定量原理,掌握外标法校正曲线的制作。

(2) 学会用外标法对未知样品进行定量分析的实验技术。

(3) 进一步熟悉高效液相色谱仪的结构、组成、应用及操作。

二、实验原理

外标法又称校正曲线法。色谱分析中,在相同的操作条件下,用已知纯样品配成不同浓度的标准溶液进行试验,,测量各种浓度下对应的峰高或峰面积,用峰高或峰面积对浓度作出标准曲线。样品分析时,进入同样体积的分析样品,从色谱图上求出待测组分的峰高或峰

面积,根据标准曲线查出样品中待测组分的含量。外标工作曲线如下:

外标法工作曲线示意图

在一些工厂的常规分析中,样品中各组分的浓度一般变化不大,在这种情况下可不必作校正曲线,而用单点校正法来进行分析。即配制一个和被测组分含量十分接近的标准样,定量进样,由被测组分与外标组分峰面积或峰高比求被测组分的百分含量。计算公式如下:

%100%??

=E

i i i A A E X 式中 i X ——试样中组分i 的含量; i E ——标准样中组分i 的含量;

i A ——试样中组分i 的峰面积;

E A ——标准样中组分i 的峰面积。

外标法的优点是操作简单和计算方便,缺点是色谱操作条件对分析结果的影响很大,不像归一法和内标法定量操作中可以互相抵消。在实际应用中,应严格控制操作条件稳定,并经常对E i /A E 值和工作曲线进行校正,以减小分析误差。

三、仪器与试剂

1.仪器

高效液相色谱仪(带紫外检测器);色谱住:C 18(4.6×150 mm);超声波清洗器;微量进样器(100μL );溶剂过滤器;无油真空泵。

2.试剂

甲醇(色谱纯);邻苯二甲酸二甲酯(AR);邻苯二甲酸二乙酯(AR)。

四、实验内容

(1) 流动相的准备:将已过滤和脱气的色谱甲醇倒入溶剂贮瓶中备用。

(2) 按先后顺序正确打开电脑和仪器的电源开关。

(3) 待仪器自检结束后,双击电脑桌面上的仪器控制面板,进入色谱工作站操作界面,打开高压泵上的排液阀,点击Purge 按钮,以3~ 5mL·min -1的大流量清洗管路,冲洗完毕后,关闭排液阀。

(4) 设定流动相的流速为1mL·min-1,流动相比例为甲醇: 水= 80 : 20,检测波长254nm。

(5) 开机约30分钟仪器稳定后,用调零旋钮调节基线位置。

(6) 将配好的不同浓度的标准溶液进样,记录保留时间和峰面积,每个样平行进样三次。

(7) 将待测样品进样,记录保留时间和峰面积,平行进样三次。

(8) 将已知物进样,记录保留时间(定性)。

(9) 所有样品分析完后,让流动相继续流动20分钟,然后停泵,关机。

五、注意事项

(1) 实验室的仪器设备不可能完全一样,操作时一定要参照仪器的操作规程。

(2) 用微量进样器吸液时,要防止气泡吸入。

六、数据处理

(1) 根据实验数据做出标准曲线,求出回归方程和相关系数。

(2) 根据标准曲线求出样品中待测物的含量。

七、问题与讨论

(1) 液相色谱的定量方法有哪几种?各有什么优缺点?

(2) 与经典的柱色谱比较,高效液相色谱法是如何实现高效和快速分离的?

(3) 高效液相色谱常用检测器有哪几种?试述其原理及应用。

薄层色谱实验

薄层色谱实验 Prepared on 22 November 2020

薄层色谱(TCL)实验 一、实验目的 1、掌握薄层色谱操作技巧 2、了解薄层色谱的基本原理和应用 二、实验原理 1、原理 薄层色谱是一种微量分析的分离过程,它将样品点在以玻璃板或铝、塑料等片材为载体的多孔吸附剂薄层的固定相上,利用流动相在特定的展开室中将混合物中的组份推移到不同距离处,在色谱展开整个过程中,样品的成份受到正反不同的力的作用。 (1)流动相利用毛细管力带着样品穿过固定相。 (2)样品与固定相的相互作用是指组份在移行过程中由于偶极-(诱导)-偶极相互作用,氢键和范德华力的作用而产生不同程度的延缓、吸附、分散、离子交换和络合等分离机理。 由于样品组份与流动相和固定相之间的相互作用力程度不同,整个毛细管流动过程中分离运动都在进行。基于这点,TLC系统(流动相和固定相)必须与样品很好地匹配。 用显色试剂处理,许多组份可在日光或紫外灯光下检视。色谱可用肉眼或使用光密度计和照相机记录或影像系统方法来评价。 2、薄层色谱的用途

1)化合物的定性检验 通过与已知标准物对比的方法进行未知物的鉴定。在条件一致的情况下,纯化合物在薄层色谱中呈现一定的移动距离,称比移值(R f值)。利用薄层色谱法可鉴定化合物的纯度或确定两种性质相似化合物是否为同一种物质。 影响比移值的因素很多,如薄层的厚度,吸附剂颗粒的大小,酸碱度、活性、外界温度和展开剂纯度、组成、挥发度等。所以要获得比移值重现性就比较困难。为此,在测定某一式样时,最好用对照品和样品同时对照进行。 d2 d1 2)快速分离少量物质(几到几十u g,甚至) 3)跟踪反应进程,在进行化学反应时,常利用薄层色谱观察原料斑点的逐步消失,来判断反应是否完成。 4)化合物纯度的检验(只出现一个斑点,且无脱尾现象,为纯物质) 3、主要操作步骤 薄层板的制备;薄层板的活化;薄层板色谱展开;薄层色谱显色与分析。 四、薄层色谱操作技巧 1、手工自制板 玻璃板的要求:用于制备薄层板的玻璃板要求表面光洁、平整,最好使用厚薄1~2mm的优质平板玻璃,普通窗玻璃一般不宜用于制作薄层板,玻璃板需

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

色谱分析实验讲义

实验一气相色谱的基本操作及进样练习 一、实验目的 (1) 了解气相色谱仪的主要结构组成和应用。 (2) 掌握仪器基本操作和调试程序,熟悉气路运行过程。 (3) 明确热导池检测器的操作注意事项。 (4) 掌握气相色谱进样操作要领,练习微量注射器的使用方法。 二、实验原理 通过实验了解气相色谱仪的结构与原理。气相色谱仪是实现气相色谱过程的仪器,按其使用目的可分为分析型、制备型和工艺过程控制型。但无论气相色谱仪的类型如何变化,构成色谱仪的5个基本组成部分皆是相同的,它们是载气系统、进样系统、分离系统(色谱柱)、检测系统及数据处理系统。 载气系统:载气是构成气相色谱过程中的重要一相——流动相,一般由高压钢瓶供气。 进样系统:汽化室是进样系统中不可缺少的组成部分,它的作用是把液体样品瞬间加热变成蒸汽,然后由载气带人色谱柱。 分离系统:色谱柱比作气相色谱仪的“心脏”,样品就是在此根据其性质的不同进行分离的。检测系统:检测器是气相色谱仪的关键部件。它的作用是将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定 和测量。 数据处理系统:数据处理系统目前多采用微机型色谱数据处理机和配备操作软件包的工作站,既可对色谱数据进行自动处理,又可对色谱系统的参数进行自动控制。 三、仪器与试剂 1.仪器 气相色谱仪(GC9790型);检测器(热导池TCD);色谱柱(邻苯二甲酸二壬酯DNP);微量进样器(1 μL)。 2.试剂 环己烷(AR);载气(氮气或氢气,含量99.99%以上)。 四、实验内容 1.开机操作步骤 (1)通气:首先连接好色谱柱,在检查气路密封良好的情况下,先逆时针旋转钢瓶总阀,调整减压阀输出压力0.4 ~ 0.5 Mpa,调节气相色谱仪上的载气稳压阀(总压),使其输出压力为0.3Mpa,调节柱前压1和2的稳流阀2~3圈,载气流量氮气约为30mL·min-1,氢气约为40 mL·min-1。 (2) 通电:检查仪器开关都应处于“关闭”位置后,开启气相色谱仪右侧的电源开关,仪器接通电源以后计算机首先进入仪器的自检程序,其状态显示为指示灯全部打开,直到屏幕出现“OK!”字样后表示仪器自检通过,可以进入正常操作程序,并且显示器自动切换到屏

气相色谱实验报告word精品

气相色谱实验报告 一、实验目的 1、了解气相色谱仪的基本结构及掌握分离分析的基本原理; 2、了解顶空气相色谱法; 3、了解影响分离效果的因素; 4、掌握定性、定量分析与测定的方法。 二、实验原理气相色谱分离是利用上试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当气 化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附或溶解能力不同,因此各组分在色谱柱中的运行速度就不同。经过 一定的柱长后,使彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间和峰高或峰面积,便可进行定性和定量的分析。 (1)顶空色谱法及其原理介绍顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。这一方法从气相色谱仪角度讲,是一种进样系统,即“顶空进样系统” 。其原理如下: 一个容积为V、装有体积为V o浓度为0)的液体样品的密封容器,在一定温度下达到平衡时,气相体积为Vg,液相体积为Vs,气相样品浓度为Cg,液相中样品浓度为Cs,贝平衡常数K=Cs/Cg 相比3 =Vg/Vs V=Vs+Vg=V o+Vg 又因为是密封容器,所以 C o V o=CoVs=CsVs+CgVg= KCgVs + CgVg C o=KCg+CgVg/Vs=KCg+ 3 Cg=Cg()K+ 3 Cg=C0/(K+ 3 = K'(C 可见, 在平衡状态下, 气相组成与样品原组成为正比关系, 根据这一关系我们可以进行定性和定量分析。(2)顶空色谱法的优点 顶空色谱进样器可与国内外各种气相色谱仪相连接, 它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。 它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比 既可避免在除去溶剂时引起挥发物的损失, 又可降低共提物引起的噪音, 具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。固相萃取和液相萃取时不可避免地带入共萃取物干扰分析。顶空分析可看成是气相萃

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

薄层色谱法实验报告

实验报告 一、实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 二、实验原理 有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值R f表示。 R f 原点至层析斑点中心的距离原点至溶剂前沿的距离 三、实验仪器与药品 5.0cm×15.0cm硅胶层析板两块,卧式层析槽一个,点样用毛细管。 四、物理常数 五、仪器装置图

“浸有层析板的层析槽”图 1-层析缸,2-薄层板,3-展开剂饱和蒸汽,4-层析液 六、实验步骤 (1)薄层板的制备: 称取2~5g层析用硅胶,加适量水调成糊状,等石膏开始固化时,再加少许水,调成匀浆,平均摊在两块5.0×15cm的层析玻璃板上,再轻敲使其涂布均匀。(老师代做!)固化后,经105℃烘烤活化0.5h,贮于干燥器内备用。 (2)点样。 在层析板下端2.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取毛细管,分别蘸取偶氮苯、偶氮苯与苏丹红混合液,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1~2mm为宜!斑点间距为1cm) (3)定位及定性分析 用铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前沿到起始线的距离,然后计算各样品的比移值并定性确定混合物中各物质名称。

实验注意事项 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。 3、展开用的烧杯要洗净烘干,放入板之前,要先加展开剂,盖上表面皿,让烧杯内形成一定的蒸气压。点样的一端要浸入展开剂0.5cm 以上,但展开剂不可没过样品原点。当展开剂上升到距上端0.5-1cm 时要及时将板取出,用铅笔标示出展开剂前沿的位置。 讨论: 七、思考题

气相色谱法实验报告

气相色谱定性和定量分析实验报告 班级 姓名 学号: 成绩: 一、实验目的 1.熟悉气相色谱仪的工作原理及操作流程; 2.能够根据保留值对物质进行定性分析; 3.能够对物质进行定量分析 二、实验原理 气相色谱法是一种用以分离、分析多组分混合物极有效的分析方法。它是基于被测组分在两相间的分配系数不同,从而达到相互分离的目的。在混合物分离以后,利用已知物保留值对各色谱峰进行定性是色谱法中最常用的一种定性方法。它的依据是在相同的色谱条件下,同一物质具有相同的保留值,利用已知物的保留时间与未知组分的保留时间进行对照时,若两者的保留时间相同,则认为是相同的化合物。 气相色谱法分离分析醇系物的基本原理是基于醇系物中各组分在气相和固相两相间分配系数的不同。当试样流经色谱柱时被相互分离,被分离组分依次通过检测器时,浓度(或质量)信号被转换为电信号输出到记录仪,获得醇系物的色谱流出曲线(如图1),完全分离时,可依据流出曲线上各组分对应的色谱峰面积进行定量。 色谱分析的定性方法有多种,当色谱条件固定且完全分离时,采用将未知物的保留值与已知纯试剂(标样)的保留值相对照的方法定性较为简单,两者相同或相近即为同一物质。 实际测定可采用相对保留值is r 代替保留值进行定性分析。 M Rs M Ri Rs Ri is t t t t t t r --=='' 式中:t ’Ri ——被测组分的调整保留时间 t ’Rs ——标准物质的调整保留时间 t Ri ——被测组分保留时间 t Rs ——标准物质的保留时间(热导池检测器的标准物质一般指定为:苯) t M ——死时间 常用的色谱定量方法有归一化法、外标法、内标法。 归一化法是将样品中的所有色谱峰的面积之和除某个色谱峰的面积,即得色谱峰相应组分在混合物中的含量。

GC-MS实验

实验七 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5%)混合而成,甲醇为溶剂,均为色谱纯。 实验条件

色谱分析实验大纲

气相色谱法分析苯、甲苯、萘混合物 一、实验目的 1. 气相色谱图的分析。 2. 温度对保留时间的影响。 3. 保留因子、分离度的计算。 4. 标准曲线的建立。 二、实验原理 基本术语 基线(base line)--经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。 噪音(noise)--基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。 漂移(drift)--基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。 色谱峰(peak)--组分流经检测器时响应的连续信号产生的曲线上的突起部分。正常色谱峰近似于对称形正态分布曲线(高斯Gauss曲线)。 峰高(peak height,h)-峰的最高点至峰底的距离。 峰宽(peak width,W)-峰两侧拐点处所作两条切线与基线的两个交点间的距离。 半峰宽(peak width at half-height,W h/2)-峰高一半处的峰宽。 峰面积(peak area,A)-峰与峰底所包围的面积。 死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。 保留时间(retention time,t R)--从进样开始到某个组分在柱后出现浓度极大值的时间。 保留因子: 分离度: 气相色谱中随着温度升高,目标物保留时间减少,分离度降低。 三、仪器与试剂 仪器:高效液相色谱仪;超声波清洗器;色谱柱(C18);微量注射器(20ul)。 试剂:甲醇(A.R.);苯(A.R.);甲苯(A.R.);萘(A.R.)。 四、实验步骤 1. 色谱条件为 气相色谱柱: 流动相:氮气 进样量:10.0ul

薄层色谱中展开剂的选择

薄层色谱中展开剂的选择 2007-04-05 02:03 (一)有机合成中展开剂的选择 做有机合成时走板子是常有的事,展开剂的选择就至关重要了。 选择适当的展开剂是首要任务.一般常用溶剂按照极性从小到大的顺序排列大概为:石油迷<己烷<苯<乙醚

色谱分析实验教学大纲

《色谱分析》实验教学大纲 大纲制定(修订)时间:2017年6月 课程名称:《色谱分析》课程编码:080241006 课程类别:专业课课程性质:必修 适用专业:环境工程 课程总学时:32学时 实验(上机)计划学时:12学时 开课单位:环境与化学工程学院 一、大纲编写依据 1.环境工程专业2017版教学计划; 2.环境工程专业《色谱分析》理论教学大纲对实验环节的要求; 3.近年来《色谱分析》实验教学经验。 二、实验课程地位及相关课程的联系 色谱分析实验课程的建立有助于使学生加深对于理论课程的理解,是在色谱分析理论课基础上的综合实验能力训练,有助于对色谱分析课程的理解和掌握。 三、实验目的、性质和任务 1、了解色谱分析中常用的气相色谱、高效液相色谱、平面液相色谱的理论和方法。 2、训练学生综合运用所学理论和实验技能理解实验方案,完成实验操作,分析实验结果的能力。学生要学会使用气相色谱仪和高效液相色谱分析仪器。 四、实验基本要求 “气相色谱仪原理及应用”通过学习气相色谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 “高效液相色谱原理及应用”学习高效液相色谱仪的构成和使用方法,及其在定性、定量分析中的应用。 “薄层色谱原理及应用”实验了解薄层色谱的基本原理和应用,掌握薄层色谱的操作技术。 五、实验内容和学时分配

薄层色谱实验

薄层色谱实验 一、实验目的: 1、了解薄层色谱的基本原理和应用。 2、掌握薄层色谱的操作技术。 二、实验原理: 1、原理 薄层色谱(Thin Layer Chromatography) 常用TLC 表示,又称薄层层析,属于固-液吸附色谱。样品在薄层板上的吸附剂(固定相)和溶剂(移动相) 之间进行分离。由于各种化合物的吸附能力各不相同,在展开剂上移时,它们进行不同程度的解吸,从而达到分离的目的。 2、薄层色谱的用途: 1)化合物的定性检验。(通过与已知标准物对比的方法进行未知物的鉴定)在条件完全一致的情况,纯碎的化合物在薄层色谱中呈现一定的移动距 离,称比移值(Rf 值),所以利用薄层色谱法可以鉴定化合物的纯度或确定两种性质相似的化合物是否为同一物质。但影响比移值的因素很多,如薄层的厚度,吸附剂颗粒的大小,酸碱性,活性等级,外界温度和展开剂纯度、组成、 挥发性等。所以,要获得重现的比移值就比较困难。为此,在测定某一试样时,最好用已知样品进行对照。 溶质最高浓度中心至原点中心的距离 R f 溶剂前沿至原点中心的距离 2、快速分离少量物质。(几到几十微克,甚至0.01 μg) 3、跟踪反应进程。在进行化学反应时,常利用薄层色谱观察原料斑点的逐步 消失,来判断反应是否完成。

4、化合物纯度的检验(只出现一个斑点,且无拖尾现象,为纯物质。)

此法特别适用于挥发性较小或在较高温度易发生变化而不能用气相色谱 分析的物质。 三、实验装置 薄层板在不同的层析缸中展开的方式 四、实验操作步骤: 1、吸附剂的选择 薄层色谱的吸附剂最常用的是氧化铝和硅胶。 1)、硅胶: “ 硅胶H”—不含粘合剂; “ 硅胶G”—含煅石膏粘合剂; 其颗粒大小一般为260 目以上。颗粒太大,展开剂移动速度快,分离效 果不好;反之,颗粒太小,溶剂移动太慢,斑点不集中,效果也不理想。 化合物的吸附能力与它们的极性成正比,具有较大极性的化合物吸附较 强,因而R f 值较小。 酸和碱> 醇、胺、硫醇> 酯、醛、酮> 芳香族化合物> 卤代物、醚> 烯> 饱和烃 本实验选择的吸附剂为薄层色谱用硅胶G。 2、薄层板的制备(湿板的制备)

气相色谱法挥发性有机物测定实验报告

GC-MS测定挥发性有机物实验报告 专业:环境工程学号:1233351 姓名:刘鹏一、实验方法 进样器参数设定如下: 用预溶剂冲洗次数: 3 用溶剂冲洗次数: 3 用样品冲洗次数: 2 柱塞速度: 高粘度补偿时间: 0.2 sec 柱塞进样速度: 高进样器进样速度: 高注射模式: 一般抽吸次数: 5 进样口停留时间: 0.3 sec 尾部空气间隙: 否活塞吹扫速度: 高清洗体积: 8uL 注射器吸入位置: 1.0 mm 注射器注射位置: 0.0 mm 使用3个溶剂瓶: 1个瓶 [GC-2010] 柱箱温度:30.0℃进样温度:250.00℃进样模式:分流 流量控制模式:线速度压力:45.6 kPa 总流量:14.0 mL/min 柱流量:1.00 mL/min 线速度:35.9 cm/sec 吹扫流量:3.0 mL/min 分流比:10.0 高压进样模式:关载气节省器:关分流阻尼固定:关 柱温箱: 是SPL1: 是MS: 是 < 检测器(FTD)检查完毕> < 基线移动检查完毕> < 进样流量检查完毕> SPL1 载气: 是SPL1 吹扫: 是 < APC流量检查完毕> < 检测器APC流量检查完毕> 外部等待:否平衡时间: 2.0 min [GC 程序] [GCMS-QP2010 SE] 微扫描半峰宽:0.00 amu 离子源温度:200.00 ℃接口温度:250.00 ℃ 溶剂延迟时间:2.50 min 检测器增益方式:相对检测器增益:0.83 kv +0.00 kV

M 0 0 0 二、标准物质色谱图 三、实验结果 ①实验数据 浓度(ppm)保留时间(min)峰面积20 Chloroform 2.812 57512 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.383 49049 Methane, bromodichloro- 4.068 66435 Methane, dibromochloro- 5.687 75262 Methane, tribromo- (ISTD)7.409 138822 40 Chloroform 2.811 129095 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.376 111609 Methane, bromodichloro- 4.071 129212 Methane, dibromochloro- 5.694 182065 Methane, tribromo- (ISTD)7.414 162528 60 Chloroform 2.812 189860 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.373 151922 Methane, bromodichloro- 4.075 193871 Methane, dibromochloro- 5.702 254807 Methane, tribromo- (ISTD)7.419 155012 80 Chloroform 2.806 235776 Methane,tetrachloro-(CAS)Carbon tetrachloride 3.366 178609 Methane, bromodichloro- 4.072 244831 Methane, dibromochloro- 5.706 334295 Methane, tribromo- (ISTD)7.421 151093 100 Chloroform 2.812 350007 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.367 265810 Methane, bromodichloro- 4.08 354933 Methane, dibromochloro- 5.712 440660

白酒气相色谱分析方法

白酒气相色谱分析方法 白酒香味成份复杂,除乙醇和水外,还有大量芳香组分存在。构成白酒质量风格的是酒内所含的香味成分的种类以及其量比关系。应用气相色谱法能快速而准确地测出白酒中的醇类、酯类、有机酸类、碳基化合物、酚类化合物以及高沸点化合物等成分的含量。 一、填充柱DNP柱测定白酒中醇、酯等组分(一般酒厂需要,白酒) (一)DNP柱直接进样法测定白酒中主要醇、酯成份 白酒中醇和酯是主要香味成份。吸取原样品进行色谱分析,其优点是:操作简便,测定结果准确性高、快速;缺点是:极其微量的组分不易检出。 1样品的配制 ●2%内标的配制: 吸取2mL的内标--乙酸正丁酯于1OOmL的容量瓶中,(因内标物易挥发,可在瓶内先放少量酒精),用55%-60%的乙醇定容。 ●1-2%标样的配制: 分别吸取乙醛、甲醇、正丙醇、仲丁醇、乙缩醛、正丁醇、异戊醇、(正己醇)、(糠醛)各lmL,乙酸乙酯、丁酸乙酯、戊酸乙酯、乳酸乙酯、己酸乙酯、乙

酸异戊酯)各2mL一起加入1OOmL容量瓶中,用55%-60%(V/V)的乙醇定容,混匀后组成标样。(在容量瓶中先加少许乙醇,以防挥发) ●混标的配制: 分别用移液管吸取标样lOmL和内标5mL,用55%-60%(V/V)的乙醇定容到1OOmL,混匀后(可分装)待用。 混标中各组分i及内标含量计算公式: mi=ci×Vi×di×lO00 ms=cs×Vs×ds×lO00 式中:mi/ms—混标中各组分i/内标的含量(mg/l0OmL); ci/cs—混标中各组分i/内标的浓度(V/V) Vi/Vs—混标中各组分i/内标的体积(mL) ; di/ds—混标中各组分i/内标的密度(g/mL) ; 1000—算成以mg为单位的系数。 例:计算混标中正丁醇的含量 m正丁醇=1%×lOml×0.809g/ml×lO00=80.9mg/100ml混标样

实验报告-高效液相色谱法测定VE含量

实验四高效液相色谱法测定V E含量 1 实验目的 1.1了解高效液相色谱仪的基本操作; 1.2了解高效液相色谱仪测定V E的原理。 2 实验原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 V E(维生素E)又名生育酚或产妊酚,在食油、水果、蔬菜及粮食中均存在。有抗氧化作用,能增强皮肤毛细血管抵抗力,并维持正常通透性;有改善血液循环及调整生育功能、抗衰老作用等。V E通过高效液相色谱柱进行分离,PDA检测器检测,外标法定量。 3实验器材 3.1 实验样品 V E样品溶液 3.2 实验试剂 浓度为50μg/ml的V E标样 3.3 实验仪器 高效液相色谱仪附PDA检测器 4 色谱条件 色谱柱:C18柱;流动相速度:0.3ml/min; 进样量:5μl;柱温:30℃。

5 实验结果与讨论 5.1实验结果 本次实验采用的是单点法测定。实验结果见表1。 表1. 液相色谱仪测定苹果的VE含量 样品中VE的浓度=乙烯标样的总量×苹果的峰面积/乙烯标样的峰面积 =5μl×50μg/mL×17369/(5μl×42217)=20.57μg/mL 5.2实验讨论 本次实验中,测定标样溶液V E含量时,在指定的保留时间内并未出峰。讨论分析原因:样品溶液在上周实验后,一直置于离心管中,未避光低温保存,导致样品中V E氧化,液相测定时没有在相应的时间出峰。本次实验时间较短,且主要目的是了解高效液相色谱仪的基本操作,以及液相色谱仪测定V E的原理,故结合前组同学对V E含量的测定数据进行讨论与分析。 因时间有限,实验采用了单点法进行测量分析,且无平行重复,这样误差较大。我们以后实验时,V E标样可以选择5个浓度,每个浓度分别测定3-4次,取其峰面积的平均值后作标准曲线,这样误差更小。 6知识扩展 6.1高效液相色谱仪包括哪几个部分组成? 答:高效液相色谱仪主要由输液系统、进样系统、色谱分离系统、检测器这四个部分组成,其流程图见图1。 输液系统包括贮液槽和输液管道、高压泵和梯度洗脱装置。贮液槽,通常是由玻璃或不锈钢等材料制成的,用来存贮足够数量、符合分析要求流动相的容器。输液管道是管道内径很小的用于连接高效液相色谱仪各主要流路系统。高压泵是将流动相在高压下连续送入色谱柱,使样品在色谱柱内完成分离过程。高效液相色谱仪采用的是往复式恒流泵,是具有输出压力高、流量稳定、流量可调范围宽、泵内死体积小、具有梯度洗脱及耐酸碱腐蚀、溶剂更换迅速等性能。梯度洗脱装

醇系物的气相色谱分析——归一化法定量

江南大学实验报告 实验名称 醇系物的气相色谱分析——归一化法定量 一、实验目的 1、 了解气—固色谱法的分离原理。 2、 学习归一化法定量的基本原理及测定方法。 3、 掌握色谱分析的基本技术。 二、实验原理 气—固色谱法中的固定相是固体吸附剂,其分离是基于吸附剂对各组分气体的吸附能力不同。目前广泛使用的气—固色谱固定相是以二乙烯基苯作为单体,经悬浮共聚所得的交联多孔聚合物,国产商品牌号为GDX 。 醇系物系指甲醇、乙醇、正丙醇、正丁醇等以及这些醇试剂常含有的水分。用GDX —103做固定相,并使用热导池检测器,在一定操作条件下,可使醇系物中的各组分完全分离。 在一定条件下,同系物的半峰宽与保留时间成正比,即 Y 1/2∝t R Y 1/2 =b t R A =hY 1/2=hb t R 在做相对计算时,比例系数又b 可约去,这样就可用峰高与保留时间的乘积来表示同系物峰面积的大小。 使用归一化法定量,要求试样中的各组分都能得到完全分离,并且在色谱图上应能绘出其色谱峰,计算式为 ωi = ∑=n i i i i i A f A f 1 ωi = ∑=n i Ri i i Ri i i t h f t h f 1 归一化法的优点是计算简便,测定准确,结果与进样量无关,且操作条件不需严格控制。但若试样中的组分不能全部出峰,则不能应用此法;若只需测量试样中的一两个组分,应用此法也显得麻烦。

三、仪器和试剂 1、仪器:GC—7890Ⅱ气相色谱仪,秒表,微量进样器。 2、试剂:醇系物混合液。 四、实验步骤 1、色谱柱的准备 2、色谱操作条件 (1)色谱柱:内径:4mm,柱长:2m。 (2)固定相:GDX—103,60~80目。 (3)载气:氮气,流速:20 mL/min-1 (4)检测器:热导池检测器,桥电流:150A,温度:150℃(5)柱温:100℃ (6)气化室温度:150℃ (7)纸速:600mm/h-1 1、2步骤均有实验技术人员完成。 3、混合液进样 用微量取样器按规定量进样,同时测定各组分的保留时间。五、实验结果与分析

凝胶色谱实验讲义

凝胶渗透色谱在聚合物研究中的应用 一、目的要求 1. 掌握凝胶渗透色谱(GPC,gel permeation chromatography)的工作原理并了解其构造。 2. 掌握凝胶渗透色谱仪的基本操作及数据处理方法。 3. 利用凝胶渗透色谱仪测定聚合物的分子量及其分布。 二、原理及仪器构造 1.凝胶渗透色谱的工作原理。 GPC是一种特殊的液相色谱,所用仪器与高效液相色谱仪类似,但 是其色谱柱中的填充相与液相色谱不同,其填充相是具有不同比表面积,孔径分布和孔容的凝胶填料(如葡萄糖凝胶、聚丙烯酰胺凝胶、聚苯乙烯凝胶、琼脂糖凝胶等)。GPC的分离过程是基于分子筛效应而进行的。聚合物中分子量小的分子在溶液中的流体力学体积较小因而能够在凝胶颗粒内的孔隙中自由地扩散,但随着分子量的增加其在溶液中的流体力学体积也逐渐增大,当增大到与凝胶中孔隙的尺寸大小相当时,便不能顺利进入到凝胶的内部,分子量更大时便完全不能扩散到凝胶颗粒的内部。如图1所示: 根据这一分子筛效应,可以按照分子尺寸大小的差别来进行分离,

而有机聚合物的分子尺寸大小又与分子量成正相关,也就是说根据这一效应可以将聚合物分子按照分子量大小的差别来进行分离。 图 1 当一个聚合物样品被注入色谱柱时,试样溶液流经凝胶固定相颗粒,其中分子尺寸较大的不能进入凝胶孔隙,既被固定相排斥。因此这些分子便直接流出色谱柱,而他们的色谱峰便最先在色谱图上出现。另外,样品中尺寸最小的分子则能够进入固定相中所有的孔隙并浸入到整个颗粒内部,于是它们通过色谱柱最慢,保留时间最长,其色谱峰在谱图上出现最晚,而中等尺寸的分子只能够进入固定相中部分较大的孔隙,因而以中等流速流过色谱柱。这样便按照分子尺寸的大小,按从大到小的顺序实现了样品中各组分的分离。如图2所示: 图 2 GPC的实验方法是先利用同一组分已知分子量的窄分散性(/≤1.1)聚合物标准试样,在与未知试样相同的条件下得到一系列GPC谱图。然后以标准样的峰位置V e(V e被测标样的洗脱体积)对lgM作图,得到校正曲线,从而建立处理方法。然后根据未知样的V e得到对应的分子量信息。由于大多数的聚合物标样不易获得,通常情况下使用窄分散性的聚苯乙烯作为标准样来获得校正曲线,当被测样品与标准样具有相同或相近的化学结构组成时得到的分子量信息与真实值更为接近,当被测样品与标准样的化学结构组成有偏差时得到的分子量信息仅具有相对意义,且结构组成偏差越大分子量信息与真实值的偏差也越大。

实验报告-气相色谱法测定乙烯含量

实验三气相色谱法测定乙烯含量 1 实验目的 1.1了解气相色谱仪的基本操作; 1.2了解气相色谱仪测定乙烯的原理。 2 实验原理 气相色谱仪器是以气体为流动相。当某一种被分析的多组分混合样品被注入一起后,瞬间气化,样品由流动相载气所携带,经过装有固定相的色谱柱时,由于组分分子与色谱柱内部固定相分子间要发生吸附、脱附、溶解等过程,组分分子在两相间反复多次分配,使混合样品中的组分得到分离。被分离的组分顺序进入检测器系统,由检测器转换成电信号形成色谱图。 乙烯是植物生长过程中自然散发的一种激素,广泛存在于植物的各种组织器官中,具有促进果实成熟的作用。乙烯通过气象色谱柱进行分离,氢火焰离子化检测器检测,外标法定量。 3 实验试剂与仪器 3.1 实验样品:苹果。 3.2实验试剂:20ppm的乙烯标样。 3.3 实验仪器:气相色谱仪附氢火焰离子化检测器(FID)。 4 实验步骤 4.1样品处理:将苹果放入密封罐中,静置待乙烯气体释放并收集。 4.2测定:待仪器准备好后,将样品和标准注入气相色谱中进行分析,以标准溶 液峰的保留时间作为定性的依据,以其面积求出样品中被测定的乙烯的含量。 4.3色谱条件 色谱柱:毛细管柱;载气速度:1mL/min;进样量:5μL; 进样口温度:130℃;检测器温度:230℃;柱温:80℃ 5 实验结果与讨论 5.1实验结果 气相色谱仪测定样品苹果中的乙烯含量结果见下表1。本次实验采用的是单点法测定。 表1. 气象色谱仪测定苹果的乙烯含量 进样量保留时间峰面积 乙烯标样10μL 2.497min 181254 苹果20μL 2.682min 5868765.4 乙烯标样的浓度=20ppm 苹果的乙烯的浓度=乙烯标样的总量×苹果的峰面积/乙烯标样的峰面积

气相色谱分析方法的建立

气相色谱分析方法的建立

内标法与外标法 一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样

相关文档