文档库 最新最全的文档下载
当前位置:文档库 › 实验14 禁带宽度的测量教材

实验14 禁带宽度的测量教材

实验14 禁带宽度的测量教材
实验14 禁带宽度的测量教材

实验十四 禁带宽度的测量

应物0903 蔡志骏 u200910207 张文杰 u200910205

一、实验目的

1、学习紫外分光光度计的工作原理和使用方法。

2、学习用紫外分光光度计测量薄膜样品的透射(吸收)光谱

3、能根据吸收光谱推算出材料的光学禁带宽度。

二、实验原理

1、禁带宽度的涵义

(1)、禁带宽度表示晶体中公有化电子所不能具有的能量范围 (2)、禁带支付表示价键束缚的强弱 2、允许的带间直接跃迁

在跃迁过程中波矢改变量0k ?=,这种跃迁为允许带间直接跃迁。这种跃迁满足

g g E ω=

如果假定仅讨论导带底以上价带顶以下较小的能量范围内光吸收过程,对于导带与价带都是抛物线的并且非简并的情况有

()()14

12

210

g E cm αωω-≈?-

吸收系数与能量的关系服从1/2次方律。 3、禁戒的带间直接跃迁

在一些情况中,0k =的跃迁被选择定则1L ?=±禁止,而0k ≠的跃迁允许,这种跃迁为禁戒的直接跃迁。虽然在0k =徙的跃迁几率为0,但是0k ≠处仍存

在一定的的跃迁几率,且跃迁几率正比于2

k ,此时的吸收系数为

()()4

11.310

g E cm ωαωω

--=?

由上式可知吸收系数主要由3/2次方律决定

4、导带底和价带顶位于波矢空间不同位置的带间直接跃迁和间接跃迁 这种情况是指导带底的最低能量状态和价带的最高能量状态不在k 空间同一位置而发生直接跃迁。

(1)、当g p E E ω>-时,只能伴随着声子的吸收过程,吸收系数为

()()2

exp 1

g p p B c E E E k T αωαω-+=

??- ???

(2)、对于g p E E ω>+时,既可伴随着声子的发射,也可伴随着声子的吸

收。其中伴随一个声子发射的吸收光谱为

()()

2

1exp g p e p B c E E E k T ωαω--=

??- ?

??

以上两式表明间接跃迁系数与入射光子的能量有二次方关系。 5、透射率、吸光度与吸收系数之间的关系

吸光度A 与透射率T 的关系为

1lg A T

=

光吸收规律

()0exp I I x α=-

α为吸收系数,x 为光的传播距离,根据朗伯—比尔定律,A 正比于α。

三、实验装置

本实验用到的主要仪器是双光束紫外—可见分光光度计。其透射率或吸光度的测定是通过比较两束光强相同的光经过参比池和样品池后光强的变化得到的。 另外,还有ZnO 和2TiO 薄膜样品(各有1,3,5,7,9层五种),普通玻璃与石英玻璃。

四、实验方法

1、打开分光光度计运行软件,将光谱扫描范围设为190-700nm ,扫描步长为1nm ,扫描方式为透射率。

2、将两片没有镀膜的干净基片分别放置于参比池和样品池,先做基线扫描,然后将样品池的基片换成镀了腊的基片,进行光谱扫描,从而得到透射光谱。

3、通过软件自带的功能将透射率转换成吸光度。

4、根据吸光度与吸收系数的正比关系以及吸收系数与光子能量的关系,拟合出

各样品的光学带隙,并与理论值比较。(ZnO 的禁带宽度理论值为3.37eV ,

2TiO

的禁带宽度为3.2eV)

五、实验内容

1、用紫外分光光度计测量不同厚度的ZnO 和2TiO 薄膜的透射光谱

2、用不同的拟合关系计算出ZnO 和2TiO 样品的光学禁带宽度,并与理论值比较,定它们的跃迁类型

3、2TiO 样品在可见光范围内的透射率为什么会出现极大极小的变化,根据

这一变化推算出薄膜的厚度

六、实验数据

由实验仪器可直接测得透射率T ,因为1

lg A T

=,可得吸光度A ,正比于吸收系数α。

又6/ 1.24210/hc ωλλ-==?,即可得出ω与x α的关系。

将所得数据导入科学绘图软件Origin8.0,即得一下数据图像:

(说明:由于实验原始数据过多,为了不影响老师查看实验报告,在此就不将原始数据放入本实验报告了)

1、2TiO 样品数据(2TiO 光学带隙理论值为3.2eV )

(1)、一层2TiO 样品

11

2

ωα与的关系

0.3

0.6

0.9

a

^

(

1

/

2

)

hw

a^(1/2)

按第一种跃迁方式计算,一层

2

TiO样品的光学带隙为3.36eV,误差为4.9%。○2

3

2

ωα

与的关系

0.4

0.8

1.2

a

^

(

3

/

2

)

hw

a^(3/2)

按第二种跃迁方式计算,一层

2

TiO样品的光学带隙为3.71eV,误差为15.8%。○32

ωα

与的关系

0.0

0.5

1.0

a

^

2

hw

a^2

按第三种跃迁方式计算,一层

2

TiO样品的光学带隙为3.77eV,误差为17.7%。

(2)、三层

2

TiO样品

○1

1

2

ωα

与的关系

0.3

0.6

0.9

a

^

(

1

/

2

)

hw

a^(1/2)

按第一种跃迁方式计算,三层

2

TiO样品的光学带隙为3.48eV,误差为8.8%。○2

3

2

ωα

与的关系

0.0

0.5

1.0

a

^

(

3

/

2

)

hw

a^(3/2)

按第二种跃迁方式计算,三层

2

TiO样品的光学带隙为3.72eV,误差为16.3%。○32

ωα

与的关系

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

禁带宽度的测量

实验十四 禁带宽度的测量 一、实验目的 1、学习紫外分光光度计的工作原理和使用方法 2、学习用紫外分光光度计测量薄膜样品的透射光谱 3、能根据吸收光谱推算出材料的光学禁带 二、实验内容 1、用紫外分光光度计测量不同厚度的ZnO 和2TiO 薄膜的透射光谱 2、用不同的拟合关系计算出ZnO 和2TiO 样品的光学禁带宽度,并与理论值比较,定它们的跃迁类型 3、2TiO 样品在可见光范围内的透射率为什么会出现极大极小的变化,根据这一变化推算出薄膜的厚度 三、实验原理 1、禁带宽度的涵义 (1)、禁带宽度表示晶体中公有化电子所不能具有的能量范围 (2)、禁带支付表示价键束缚的强弱 2、允许的带间直接跃迁 在跃迁过程中波矢改变量0k ?= ,这种跃迁为允许带间直接跃迁。 这种跃迁满足 g g E ω= 如果假定仅讨论导带底以上价带顶以下较小的能量范围内光吸

收过程,对于导带与价带都是抛物线的并且非简并的情况有 ()()14 12 210g E cm αωω-≈?- 吸收系数与能量的关系服从1/2次方律。 3、禁戒的带间直接跃迁 在一些情况中,0k = 的跃迁被选择定则1L ?=±禁止,而0k ≠ 的跃迁允许,这种跃迁为禁戒的直接跃迁。虽然在0k = 徙的跃迁几率为0,但是0k ≠ 处仍存在一定的的跃迁几率,且跃迁几率正比于2k ,此时的 吸收系数为 ()()4 1 1.310 g E cm ωαωω --=? 由上式可知吸收系数主要由3/2次方律决定 4、导带底和价带顶位于波矢空间不同位置的带间直接跃迁和间接跃迁 这种情况是指导带底的最低能量状态和价带的最高能量状态不 在k 空间同一位置而发生直接跃迁。 (1)、当g p E E ω>- 时,只能伴随着声子的吸收过程,吸收系数为 ()()2 exp 1g p p B c E E E k T αωαω-+= ??- ??? (2)、对于g p E E ω>+ 时,既可伴随着声子的发射,也可伴随着声子的吸收。其中伴随一个声子发射的吸收光谱为 ()()2 1exp g p e p B c E E E k T ωαω--= ??- ? ?? 以上两式表明间接跃迁系数与入射光子的能量有二次方关系。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

半导体带隙宽度测量

半导体带隙宽度测量 实验目的 1.当通过纯的锗晶体的电流是恒定时,晶体两端的电压降是温度的函数,以此原理设定 实验来计算锗晶体电导率s与温度的关系。 2.确定锗的带隙宽度Eg 实验原理 "根据欧姆定律,电流密度和电场E 的关系是" "j =σE" 系数σ被称为电导率,由于此参数强烈依赖于材料本身性质,因此可以依其将材料按照导电性分为导体、半导体和绝缘体。例如,对半导体固体而言,在低温下不产生电流,而在较高温度下可测得其电导率。其电导率由温度决定的原因是半导体具有特定的电子能带结构。对于这种价电子带,全部或部分填充在基态的最高带,导电带和下面 未""被填充的带之间被带隙Eg 所分割。两个带之间是不被电子填充的,未掺杂的,称为禁区。而在高温下,越来越多的电子从价电子带被激发到导电带,它们会在价电子带留下像正电荷一样移动的“空穴”,因此可以像电子一样形成电流。

这种由价电子带的电子激发到导电带而形成的导电性称为内传导。由于热平衡状态下,价电子带“空穴”的数量与导电带中电子的数量相等,内传导情形下的电流密度可以写作下述式子 ()i i i i p j e n v en v =-+ 其中:电子或空穴的密度 i n 电子的平均漂移速度Vn 和穴的平均漂移速度Vp 和电场强度E 成正比,有: n n E νμ=-和()i i i n p e n μμσ=+ n μ和p μ取正值 ()i i i n p j E e n μμ=+ 对比可以导出: ()i i i n p e n μμσ=+ 因此有: a I bc U σ= 32 2 22( ) n m kT N h π=和 32 2 22( ) p m kT P h π= 以上两式是导电带和价电子带中的有效状态密度,m n 和m p 也取决于温度,在低温下,近似为m 正比于T 32 ,而在高温下较为精准。 由指数函数式,电导率可以近似表示为 20g E KT e σσ= 或者 ln s i =ln s 0-E g 2kT 在电流恒定情况下 I jbc =

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

【CN109932356A】一种半导体载流子类型判断及禁带宽度的测量方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910214536.6 (22)申请日 2019.03.20 (71)申请人 福建师范大学 地址 350108 福建省福州市闽侯县上街镇 大学城福建师范大学科技处 (72)发明人 陈越 黄志高 林应斌  (74)专利代理机构 福州君诚知识产权代理有限 公司 35211 代理人 戴雨君 (51)Int.Cl. G01N 21/71(2006.01) (54)发明名称 一种半导体载流子类型判断及禁带宽度的 测量方法 (57)摘要 本发明公开一种半导体载流子类型判断及 禁带宽度的测量方法,利用开尔文探针法测量非 本征半导体材料不同温度下的功函数,得到材料 费米能级随温度的变化规律,判断其载流子类 型;在此基础上,结合非本征半导体材料功函数 随温度变化的关系,分析电子热激发引起的费米 能级与导带、价带的相对位置变化关系,求出禁 带宽度。本发明测量方法基于半导体能带理论, 相比于传统光学带隙测量方法,在准确度大幅提 高的同时,也可对非透光半导体材料的禁带宽度 进行测量。权利要求书1页 说明书5页 附图2页CN 109932356 A 2019.06.25 C N 109932356 A

1.一种半导体载流子类型判断及禁带宽度的测量方法,其特征在于:其包括以下步骤:步骤1,将半导体材料均匀设置于导热良好的金属样品台上,并于基底形成良好的欧姆接触,该“材料-基底”即为测量样品; 步骤2,将样品置于配有开尔文探针的真空控温腔内并抽真空,记录样品初始温度T 0,并 量测此温度下样品材料的功函数功函数即真空能级E Ψ与费米能级E f 之差; 步骤3,逐步提高半导体材料温度使之发生热激发,并利用开尔文探针测量获取升温过程中不同温度下样品的功函数; 步骤4,根据非本征半导体材料费米能级和功函数随温度变化图判断样品类型;当样品功函数随温度升高而减小,则为P型半导体; 当样品功函数随温度升高而增大,则为n型半导体; 步骤5,继续提高半导体材料温度直至开尔文探针所测材料功函数不随温度变化时,获取此时半导体材料发生饱和本征激发时的“饱和温度”T S ; 步骤6,利用升温过程中不同温度下的费米能级位置和“饱和温度”值计算分析得到半导体材料的禁带宽度E g ; 具体计算公式为: 其中,k B 为玻尔兹曼常数,T s 为饱和温度,为T s 温度下的费米能级,为0K温度下的费米能级,c为半导体材料性质相关的常数。 2.根据权利要求1所述的一种半导体载流子类型判断及禁带宽度的测量方法,其特征在于:,步骤1中半导体材料为半导体材料薄膜或半导体材料粉末。 3.根据权利要求1所述的一种半导体载流子类型判断及禁带宽度的测量方法,其特征在于:步骤1中半导体材料在金属样品台的厚度不低于200nm。 4.根据权利要求1所述的一种半导体载流子类型判断及禁带宽度的测量方法,其特征在于:步骤6中半导体材料性质相关的常数c的计算步骤如下: 步骤6.1,选择10个温度点并获取对应的样品功函数,两两代入公式5分别计算得到多 组半导体材料性质相关的常数c, 其中,E V 价带能级,k B 为玻尔兹曼常数,T 1为第一个温度点温度,为T 1温度下的费米能级,为T 1温度下的样品功函数,T 2为第二个温度点温度,为T 2温度下的费米能级,为T 2温度下的样品功函数; 步骤6.2,利用逐差法求出多组半导体材料性质相关的常数c的平均值,并将c的平均值作为该半导体材料性质相关的常数c。 权 利 要 求 书1/1页2CN 109932356 A

光催化剂禁带宽度值计算方法

光催化剂光催化剂禁带宽度值禁带宽度值Eg 计算计算方法方法方法 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm),利用公式 Eg=1240/λg (eV) 计算禁带宽度。 方法2: 利用 (Ah ν)2 对 h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 (Ah ν)0.5 对h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度吸光度 吸光度。 方法3:利用 (αh ν)2 对h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 (αh ν)0.5 对 h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。α (Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数吸收系数 吸收系数。α与A 成正比。 方法4:利用 [F(R ∞)h ν]2 对 h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 [F(R ∞)h ν]0.5 对h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。 F(R ∞) 即为Kubelka-Munk 函数函数,,简写为K-M 函数函数,∞∞∞?=R R R F 2/)1() (2 R ∞ 即为相对漫反射率即为相对漫反射率,,简称漫反射率简称漫反射率,)(/)(''参比样品∞∞∞=R R R R ‘∞ 即为绝对漫反射率绝对漫反射率,,常用参比样品为BaSO 4,其绝对漫反射率R ‘∞约等于1。 漫反射吸光度A 与漫反射率R ∞ 之间关系为之间关系为::A=log(1/ R ∞)

霍尔效应实验报告(DOC)

大学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日

? (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议

霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N型半 导体材料),它沿着与电流s I 相反的X负向运动。 由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y轴负方向的B 侧偏转,并使B侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。 设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B 式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。 同时,电场作用于电子的力为 l eV eE f H H E /-=-= 式中H E 为霍尔电场强度,H V 为霍尔电压,l 为霍尔元件宽度

半导体物理-禁带宽度的测量

半导体物理-禁带宽度 的测量 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

半导体物理论文 ——半导体禁带宽度的测量方法 姓名 学号 单位六院六队

摘要 禁带宽度是半导体的一个重要特征参量,本文先介绍了禁带 宽度的意义,它表示表示晶体中的公有化电子所不能具有的能量范围;表示表示价键束缚的强弱;表示电子与空穴的势能差;是一个标志导电性能好坏的重要参量,但是也不是绝对的等等。 其测量方法有利用S u b n i k o v2d e H a s s效应、带间磁反射或磁吸收、回旋共振和非共振吸收、载流子浓度谱、红外光吸收谱等等。 其中本文介绍了二种常见的测量方法:利用霍尔效应进行测 量和利用光电导法进行测量。

一,引言:关于禁带宽度 禁带宽度是半导体的一个重要特征参量,用于表征半导体材 料物理特性。所谓禁带是指价带和导带之间,电子不能占据的能量范围,其间隔宽度即是禁带宽度E g.其涵义有如下四个方面:第一,禁带宽度表示晶体中的公有化电子所不能具有的能量 范围:即晶体中不存在具有禁带宽度范围内这些能量的电子,即禁带中没有晶体电子的能级。这是量子效应的结果。注意:虽然禁带中没有公有化电子的能级,但是可以存在非公有化电子(即局域化电子)的能量状态——能级,例如杂质和缺陷上电子的能级。 第二,禁带宽度表示价键束缚的强弱:半导体价带中的大量 电子都是晶体原子价键上的电子(称为价电子),不能够导电;对于满带,其中填满了价电子,即其中的电子都是受到价键束缚的价电子,不是载流子。只有当价电子跃迁到导带(即本征激发)而产生出自由电子和自由空穴后,才能够导电。因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度、或者价键强弱的一个物理量,也就是产生本征(热)激发所需要的平均能量。 价电子由价带跃迁到导带(即破坏价键)的过程称为本征激发。一个价电子通过热激发由价带跃迁到导带(即破坏一个价键)、而产生一对电子-空穴的几率,与禁带宽度E g和温度T有指数关系,即等于e x p(-E g/k T)。S i的原子序数比G e的小,则S i的价电子束缚得较紧,所以S i的禁带宽度比G e的要大一些。 G a A s的价键还具有极性(离子性),对价电子的束缚更紧,所以G a A s的禁带宽度更大。绝缘体的的价电子束缚得非常紧,则禁带宽度很大。金刚石在一般情况下就是绝缘体,因为碳(C)的原子序数很小,对价电子的束缚作用非常强,价电子一般都摆脱不了价键的束缚,则不能产生出载流子,所以不导电。 实际上,本征激发除了热激发的形式以外,还有其它一些形式。如果是光照使得价电子获得足够的能量、挣脱共价键而成为自由电子,这是光学本征激发(竖直跃迁);这种本征激发所需要的平均能量要大于热学本征激发的平均能量——禁带宽度。如果是电场加速作用使得价电子受到高能量电子的碰撞、发生电离而成为自

讲义_霍尔效应测量

变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1. 了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2. 掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3. 掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲线,了解霍尔系数和电导率与温度的关系。 4. 了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部分硅原子组成共价键时,从邻近硅原子价键上夺取一个电子成为负离子,而在邻近失去一个电子的硅原子价键上产生一个空穴。这样满带中电子就激发到禁带中的杂质能级上,使硼原子电离成硼离子,而在满带中留下空穴参与导电,这种过程称为杂质电离。产生一个空穴所需的能量称为杂质电离能。这样的杂质叫做受主杂质,由受主杂质电离而提供空穴导电为主

霍尔效应及磁场的测定

霍尔效应及磁场的测定 近年来,在科研和生产实践中,霍尔传感器被广泛应用于磁场的测量,它的测量灵敏度高,体积小,易于在磁场中移动和定位。本实验利用霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正比,从而掌握霍尔效应的物理规律;用通电螺线管中心点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;用霍尔元件测螺线管内部的磁场沿轴线的分布。 【实验目的与要求】 1.了解霍尔传感器的工作原理,学习测定霍尔传感器灵敏度的方法; 2.掌握用霍尔传感器测量螺线管内磁感应强度沿轴线方向的分布。 【实验原理】 一、霍尔效应 图8-1 霍尔效应原理图 把矩形的金属或半导体薄片放在磁感应强度为B 的磁场中,薄片平面垂直于磁场方向。如图8-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。(图8-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。由于洛伦兹力B v e F m ?-=的作用,电子向一侧偏转,在半导体薄片的横 向两端面间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。电子在霍尔电场H E 中所受的电场力为H H E e F -=,当电场力与磁场力达到平衡时,有 ()()0=?-+-B v e E e H B v E H ?-=

若只考虑大小,不考虑方向有 E H =vB 因此霍尔电压 U H =wE H =wvB (1) 根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为 I=nevwd (2) 式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。由式(1)和式(2)可得 IB K IB d R end IB U H H H =?? ? ??== (3) 即 I K U B H H = (4) 式中en R H 1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔 元件的灵敏度。在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。对于一定的霍尔元件,K H 是一常数,可用实验方法测定。 图8-2 SS95A 型集成霍尔传感器结构图 虽然从理论上讲霍尔元件在无磁场作用(B =0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。随着科技的发展,新的集成化(IC)器件不断被研制成功,本实验采用SS95A 型集成霍尔传感器(结构示意图如图8-2所示)是一种高灵敏度传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。其特点是输出信号大,并且已消除剩余电压的影响。SS95A 型集成霍尔传感器有三根引线,分别是:“V +”、“V -”、“V out ”。其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于SS95A 型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。在实验时,只要在磁感应强度为零(B =0)条件下,“V out ”和“V -”之间的电压为2.500V ,则传感器就处于标准工作状态之下。

紫外可见分光光度计测量ZnO的光学禁带宽度

紫外可见分光光度计测量ZnO的光学禁带宽度 【实验目的】 1)了解紫外课件分光光度计的结构和测试原理; 2)理解半导体材料对入射光子的吸收特性; 3)掌握测量半导体材料的光学禁带宽度的方法。 【实验内容】 1)测试半导体光电探测材料的透射光谱; 2)分析半导体材料的光学禁带宽度。 【实验器材】 紫外-可见光分光光度计一台(岛津uv2600);ZnO薄膜;空白基片。 【实验原理】 1.紫外可见分光光度计 当物体受到入射光波照射时,光子会和物体发生相互作用。由于组成物体的分子和分子间的结构不同,使入射光一部分被物体吸收,一部分被物体反射,还有一部分穿透物体而继续传播,即透射。 为了表示入射光透过材料的程度,通常用入射光通量与透射光通量之比来表征物体的透光性质,称为光透射率。常用的紫外可见分光光度计能精确测量材料的透射率,测试方法具有简单、操作方便、精度高等突出优点,是研究半导体能带结构及其它性质的最基本、最普遍的光学方法之一。 紫外可见分光光度计通常由五部分组成: 1)光源:通常采用钨灯或碘钨灯产生340nm到2500nm的光,氘灯产生160-375nm的紫外光。

2)单色器:单色器将光源辐射的复色光分解成用于测试的单色光。通常包括入射狭缝、准光器、色散元件、聚焦元件和出射狭缝等组成。色散元件可以是棱镜,也可以是光栅。光栅具有分辨本领高等优点被广泛使用。 3)吸收池:用于盛放分析试样,有紫外、玻璃和塑料几类。测试材料散射时可以使用积分球附件;测试固体样品的透射率等可以使用固体样品支架附件。 4)检测器:检测器的功能是检测信号、测量透射光的器件。常用的有硅光电池和光电倍增管等。光电倍增管的灵敏度比一般的硅光电池高约200倍。 5)数据系统:多采用软件对信号放大和采集,并对保存和处理数据等。2. 禁带宽度 对于包括半导体在内的晶体,其中的电子既不同于真空中的自由电子,也不同于孤立原子中的电子。真空中的自由电子具有连续的能量状态,原子中的电子是处于分离的能级状态,而晶体中的电子是处于所谓能带状态。能带是由许多能级组成的,能带与能带之间隔离着禁带,电子就分布在能带中的能级上,禁带是不存在公有化运动状态的能量范围。半导体最重要的能带就是价带和导带。导带底与价带顶之间的能量差即称为禁带宽度(或者称为带隙、能隙)。禁带中虽然不存在属于整个晶体所有的公有化电子的能级,但是可以出现杂质、缺陷等非公有化状态的能级—束缚能级。例如施主能级、受主能级、复合中心能级、陷阱中心能级、激子能级等。 禁带宽度是半导体的一个重要特征参量,用于表征半导体材料物理特性。其涵义有如下四个方面:第一,禁带宽度表示晶体中的公有化电子所不能具有的能量范围。第二,禁带宽度表示价键束缚的强弱。当价带中的电子吸收一定的能量后跃迁到导带,产生出自由电子和空穴,才能够导电。因此,禁带宽度的大小

霍尔效应及霍尔元件基本参数的测量

霍尔效应及霍尔元件基本参数的测量 086041B班D组何韵 摘要:霍尔效应是磁电效应的一种,利用这一现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面.霍尔效应是研究半导体材料性能的基本方法.本实验的目的在于了解霍尔效应的原理及有关霍尔器件对材料的要求,使用霍尔效应试验组合 仪,采用“对称测量法”消除副效应的影响,经测量得到试样的V H —I M 和V H —I S 曲线,并通 过实验测定的霍尔系数,判断出半导体材料试样的导电类型、载流子浓度及载流子迁移率等重要参数. 关键词:霍尔效应hall effect,半导体霍尔元件semiconductor hall effect devices,对称测量法symmetrical measurement,载流子charge carrier,副效应secondary effect 美国物理学家霍尔(Hall,Edwin Herbert,1855-1938)于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应.这个电势差也被叫做霍尔电势差.霍尔的发现震动了当时的科学界,许多科学家转向了这一领域,不久就发现了爱廷豪森(Ettingshausen)效应、能斯托(Nernst)效应、里吉-勒迪克(Righi-Leduc)效应和不等位电势差等四个伴生效应. 在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍耳效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖.之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert https://www.wendangku.net/doc/ce10647000.html,ughlin,1950-)、施特默(Horst L. St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理

霍尔效应的应用实验报告

一、名称:霍尔效应的应用 二、目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作 电流Is,磁场应强度B及励磁电流IM之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 三、器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 四、原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电

流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)()(N 0)(型型?>?

半导体禁带宽度

半导体禁带宽度 (1)能带和禁带宽度的概念: 对于包括半导体在内的晶体,其中的电子既不同于真空中的自由电子,也不同于孤立原子中的电子。真空中的自由电子具有连续的能量状态,即可取任何大小的能量;而原子中的电子是处于所谓分离的能级状态。晶体中的电子是处于所谓能带状态,能带是由许多能级组成的,能带与能带之间隔离着禁带,电子就分布在能带中的能级上,禁带是不存在公有化运动状态的能量范围。半导体最高能量的、也是最重要的能带就是价带和导带。导带底与价带顶之间的能量差即称为禁带宽度(或者称为带隙、能隙)。 禁带中虽然不存在属于整个晶体所有的公有化电子的能级,但是可以出现杂质、缺陷等非公有化状态的能级——束缚能级。例如施主能级、受主能级、复合中心能级、陷阱中心能级、激子能级等。顺便也说一句,这些束缚能级不只是可以出现在禁带中,实际上也可以出现在导带或者价带中,因为这些能级本来就不属于表征晶体公有化电子状态的能带之列。 (2)禁带宽度的物理意义: 禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。 半导体价带中的大量电子都是价键上的电子(称为价电子),不能够导电,即不是载流子。只有当价电子跃迁到导带(即本征激发)而产生出自由电子和自由空穴后,才能够导电。空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。 Si的原子序数比Ge的小,则Si的价电子束缚得较紧,所以Si的禁带宽度比Ge的要大一些。GaAs的价键还具有极性,对价电子的束缚更紧,所以GaAs的禁带宽度更大。GaN、SiC等所谓宽禁带半导体的禁带宽度更要大得多,因为其价键的极性更强。Ge、Si、GaAs、GaN和金刚石的禁带宽度在室温下分别为0.66eV、1.12 eV、1.42 eV、3.44 eV和5.47 eV。 金刚石在一般情况下是绝缘体,因为碳(C)的原子序数很小,对价电子的束缚作用非常强,价电子在一般情况下都摆脱不了价键的束缚,则禁

霍尔效应实验报告

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要 方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】

1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 图1. 霍尔效应原理示意图,a )为N f e f m v -e E H A / A B C I S V mA B ? a +e E H f e f m v I S B ? b l d b

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告 大学 本(专)科实验报告 课程名称:姓名:学院: 系: 专业:年级:学号: 指导教师:成绩:年月日 (实验报告目录) 实验名称 一、实验目的和要求二、实验原理三、主要实验仪器 四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议 霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。 3、学习利用霍尔效应测量磁感应强度b及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔 效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴) 被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的 聚积,从而形成附加的横向电场。 如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流 is(称为控制电流或工作电流),假设载流子为电子(n型 半导体材料),它沿着与电流is相反的x负向运动。 由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并 使b侧形成电子积累,而相对的a侧形成正电荷积累。与此同时运动的电子还受到由于两种 积累的异种电荷形成的反向电场力fe的作用。随着电荷积累量的增加,fe增大,当两力大 小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。这时在a、b两端面之间建立 的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。 设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为 fl=-eb 式中e为电子电量,为电子漂移平均速度,b为磁感应强度。 同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为 霍尔电压,l为霍尔元件宽度 当达到动态平衡时,fl??fe ?vh/l (1) 设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl? ib1isb ?rhs (3) nedd

相关文档
相关文档 最新文档