文档库 最新最全的文档下载
当前位置:文档库 › 直线电机的控制

直线电机的控制

直线电机的控制
直线电机的控制

直线电机的控制

摘要:直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。在本设计中用单片机的IO输出端口来控制两个电机工作模式(正转、反转),而每一个电机由两个继电器和LED来反映设计结果。

关键字:直线电机,旋转电机,单片机,正转,反转Abstract:The electrical machinery of straight line is that one kind changes electric energy into the mechanical energy of rectilinear motion directly, And does not need to change the transmission device of the organization in the middle of any. It can regard as one and rotate the electrical machinery to cut open according to the radial, and the exhibition became the level. The operation principle of the straight line motor is similar with the rotating motor. Take reaction motor of straight line as an example: Originally when one grade of windings was led to alternating current source, the wave magnetic field of the conduct emerged in the angry crack, secondary to expert at, under wave magnetic field cut , respond to EMF of producing and produce the electric current, electric current and the looks function of magnetic field in this electric current and angry crack produces electromagnetic thrust.Controls two electrical machinery working pattern in this design with single chip micrcomputes IO output port (Rotating,Overturn), but each electrical machinery reflects the design result by two relays and LED.

Keywords: Electrical machinery of straight line , Rotate the electrical machinery,SCM(Single Chip Micromputer), Rotating,Overturn

目录

1、前言1

2、总体方案设计2

3、单元模块设计3

3.1 各单元模块功能介绍及电路设计 (3)

3.1.1 单片机最小系统模块及显示 (3)

3.1.2电机传感器电压放大部分 (4)

3.1.3 RS232串行通信接口部分 (4)

3.1.4 继电器控制电路 (5)

3.3 器件介绍 (5)

3.3.1 MAX232 (5)

3.3.2 OP07 (6)

3.3.3 ADC0832CCN (7)

3.3.4 AT89S52 (8)

3.4各单元模块的连接 (10)

4、软件设计11

4.1 程序设计原理及设计所用工具 (11)

4.1.1 设计原理 (11)

4.1.2 软件硬件设计工具介绍 (11)

4.2 画出软件设计结构图、说明其功能 (11)

4.3 画出主要软件设计流程框图 (12)

5、系统调试13

5.1 硬件调试 (13)

5.1.1 各个功能模块分开调试 (13)

5.1.2 系统调试 (15)

5.2 软件调试 (15)

5.2.1编译程序的流程 (15)

5.2.2程序调试过程 (15)

6、结论19

7、总结与体会 20

8、参考文献21

附录一:程序代码

附录二:图1,图2

1

、前言

直线电机最初由英国人惠斯登1840年提出、实验,但不成功。随后,人们对它进行了深入研究,从理论到实践做了大量工作。1945年美国西屋公司首先研究成功以直线电机作为动力的飞机弹射器,但由于成本太高而未能推广。总体来说,当时由于自身理论上的不完善,加上其它相关技术的局限,同时,需求不

是很迫切,直线电机技术发展缓慢。

随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求。在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求。为此,从上世纪60年代开始,由于控制技术、材料技术的发展,基础研究的进步与突破,直线电机进入全面开发阶段。世界上许多国家下大力气在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。英国莱斯韦特教授1966年出版了比较系统地介绍直线电机的专著《Induction Machines for Spesial Purposes》,为直线电机的发展做出了突出贡献。一般电动机工作时都是转动的。但是用旋转的电机驱动的交通工具(比如电动机车和城市中的电车等)需要做直线运动,用旋转的电机驱动的机器的一些部件也要做直线运动。这就需要增加把旋转运动变为直线运动的一套装置。能不能直接运用直线运动的电机来驱动,从而省去这套装呢?几十年前人们就提出了这个问题.现在已制成了直线运动的电动机,即直

线电机。

直线电机是一种新型电机,近年来应用日益广泛。磁悬浮列车就是用直线电机来驱动的。直线电机除了用于磁悬浮列车外,还广泛地用于其他方面,例如用于传送系统、电气锤、电磁搅拌器等.在我国,直线电机也逐步得到推广和应用。直线电机的原理虽不复杂,但在设计、制造方面有它自己的特点,产品尚不如旋转电机那样成熟,有待进一步研究和改进。

2、总体方案设计

直线电机是一种通过将封闭式磁场展开为开放式磁场,将电能直接转化为直线运动的机械能,而不需要任何中间转换机构的传动装置。在本次设计中使用单片机来控制电机工作。单片机选用AT89S52系列,由于设计中没有提供电机,则用的是LED灯来观察电机的工作模式,在这次设计中电机共有两个,每一个电机分别由两个继电器来控制,而每个电机的工作方式有正转、反转。具体的设计思路:用AT89S52单片机P1口与按键相连,这8个按键用的IO口是P1_0到P1_7,数码管的显示部分是用的P2口,设计中面包板的接口用P0口。P0_0和P0_1控制电机1工作,P0_2和P0_3控制电机2。通过改变P0_0和P0_1的输出电平来控制电机1的正转反转,通过改变P0_2和P0_3的输出电平来控制电机2的正转反转。如当按下按键KEY0(与P1_0相接)时,P0_0=1,P0_1=0,电机1正转;按下按键KEY1时,p0_2=1,p0_3=0,电机2正转;按下按键KEY2时,P0_0=0,P0_1=1,电机1反转;按下按键KEY3时,P2_0=0,P3_1=1,电机1反转;如此下去,就可以显示电机的工作模式了。设计框图如下图2.1所示,其原理图参见附录二图1。

单片机AT89S52

LED指示灯

数码管显示

系统外扩部分

AD转换

电源部分

RS232串行通信接口电路

图2.1 总体设计框图

3、单元模块设计

3.1 各单元模块功能介绍及电路设计

3.1.1 单片机最小系统模块及显示

单片机的最小系统,一般包括单片机芯片,复位电路,时钟电路及数码管显示电路。在本次设计中,P0口的P0_0,P0_1,P0_2,P0_3为控制电机工作的接口,最小系统上的8个按键用的是P1口的P1_0~P1_7,上接上拉电阻和8个发光二极管和5V电压,当选择相应的按键时其所对应的发光二极管亮,而P2_0~P2_7作为输出接到LED数码管显示上。当程序下载到单片机最小系统图上后就可以通过按键来控制系统的功能,并显示出结果。如下图3.1所示:

图3.1单片机最小系统模块及显示

3.1.2电机传感器电压放大部分

在实际的牵引电机中通过传感器感知其牵引力的大小转换成电压信号,由于其电压信号很微弱为了便于控制要进行放大,所以我们将通过OP07电压放大器对腰牵引电机传感器电压进行放大。电压从2、3口输入,W2为变阻器,可通过调节来调节力与电压的比,R16为反馈电路中的电阻,提高电路的灵敏性,降低

误差。如下图3.2所示:

图3.2电机传感器电压放大部分

3.1.3 RS232串行通信接口部分

在电脑中运行的程序要下载到单片机上进行运行,则要通过串行口,用到的是RS232的通信接口,在图3. 3中用到了一个发光二极管D3用来对电路中是否通电进行显示,以指示芯片是否正常供电,便于程序的调试与分析。

图3.3 RS232串行通信接口部分电路图

3.1.4 继电器控制电路

本次设计中四个继电器分两组控制两个电机,两个继电器控制一个电机,电机的正传和反转可以由电压的正和负来决定正转工作模式和反转工作模式。程序下载到单片机之中,程序运行中通过检测按键闭合情况来控制继电器的吸合和断

开,吸合的时候表示电机正在运行,断开的时候表示电机已经停止运行。正转吸合的时候表示电机正在伸出去,闭合时电机伸出将停止。反转吸和的时候表示电机正在收回,断开表示收回的动作停止。继电器工作的时候指示灯发光二极管亮,表示正在工作,两组继电器相当于是两个并行的电机,互不影响。如图3.4

所示:

图3.4继电器控制电路

3.3 器件介绍

3.3.1 MAX232

MAX232CPE是在一个RS - 232驱动器/接收器适用于所有EIA/TIA-232E和V 28 /24通信接口,尤其是对那些申请凡+12 V是无法使用。该MAX232CPE特别有用电池供电的系统,因为其低功耗的停机模式,降低功耗小于5uW 。应用于便携式计算机、低功耗调制解调器、电池供电的RS - 232接口系统、多点RS - 232接口系统。具有特征有从+5 V 单电源供电、满足所有EIA/TIA-232E和五.28规格、两个驱动器和两个接收器、态输出驱动器和接收器、数据传输率120

(kbps)。

引脚配置如图3.5所示:

MAX232

1

2

4

9

3

11

10

13

15

14

12

16

8

7

5

C1+

V+

V-

C2-

R2OUT

C2+

R2IN

T1IN

C1-

R1IN

R1OUT

T1OUT

R2IN

GND

T2OUT

VCC

图3.5 MAX232引脚配置

3.3.2 OP07

OP07在非常低的输入失调电压( 75 μV最大值为OP07E )即获得了微调在晶圆阶段。这些低失调电压一般消除任何需要外部调零。该OP07还具有低输入偏置电流(± 4名词的OP07E )和高开环增益( 200第V /毫伏的OP07E )。

低偏移和高开环增益使OP07在高增益仪表的应用。

管脚配置如图3.6所示:

8

7

6

5

4

3

2

1

OP07

VO STRIM

V+

OUT

NC

V-

-IN

VOS TRIM

图3.6 OP07管脚配置

NC= NO CONNECT

3.3.3 ADC0832CCN

ADC0832是美国国家半导体公司生产的一种8为分辨率、双通道A/D转换芯片。由于他体积小兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经占有很高的普及率。学习并使用ADC0832可是我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。

(1)ADC0832的特点

八位分辨率;双通道A/D转换;输入/输出电平与TTL/MOS相兼容;单电源5V电压供电时电压范围0V -5V之间;工作频率为250KHZ,转换时间为32us;一般功耗仅为15Mv;8P、14P-DIP(双列直插),PICC多种封装;商用级芯片温宽为0℃-70℃,工业级芯片温宽为-40℃-85℃.

管脚配置如图3.7所示:

1

2

6

4

3

5

7

8

VCC

CLK

D0

D1

GND

CH1

CH0

CS

图3.7 ADC0832管脚配置图

芯片接口说明:

CS 片选使能,低电平芯片使能

CHO 模拟输入通道0,或作为IN+/-使用

CH1 模拟输入通道1,或作为IN+/-使用

GND 芯片参考零点位(地)

DI 数据信号输入,选择通道控制。

DO数据信号输出,转换数据输出

CLK 芯片时钟输出

Vcc/REF 电源输入及参考电压输入(复用)

(2)单片机对ADC0832 的控制原理

正常情况下ADC0832 与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI 并联在一根数据线上使用。当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。

3.3.4 AT89S52

AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价

比的解决方案。

AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。同步串行口可用于对温湿度信号的串行接收,异步发送/接收串口用于向上位机等进行串行通信。

管脚配置如图3.8所示:

图3.8 AT89S52管脚配置图

此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适

应不同产品的需求。

3.4各单元模块的连接

本实验即为用单片机控制直线电机的思路,即分为信号采集、信号输入、信号处理、信号的输出显示四个模块。信号采集部分电压信号输入进行电压放大后由ADC0832转换进行模数转换信号输入到单片机的内部,单片机的外围电路包括晶振,复位,和程序下载所用到的RS232串行通信接口部分(接单片机RXT,TXT 引脚),信号处理由单片机中程序进行处理,输出的信号在继电器模块进行显示,(由P0~P4管脚输入),按键输入由P0接入。

连接图如图3.9所示:

图3.9 个单元模块的链接总图

4、软件设计

4.1 程序设计原理及设计所用工具

4.1.1 设计原理

由系统图可知最小系统上有8个按键用的IO口是P1_0到P1_7,数码管的显示部分是用的P2口,设计中面包板的接口用P0口。P0_0和P0_1控制电机1工作,P0_2和P0_3控制电机2。通过改变P0_0和P0_1的输出电平来控制电机1的正转反转,通过改变P0_2和P0_3的输出电平来控制电机2的正转反转,若要改变正转反转的时间可以用一个for循环,或者一个时延delay函数。为便以控制P0电平的改变用最小系统板上的8个按键控制。在程序中对按键不同的定义写了两种程序,一种是按键扫描,第二种是直接通过按键判断。

4.1.2 软件硬件设计工具介绍

(1)软件设计工具

使用的软件是keil uVision2, Keil uVision2是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,使用接近于传统c语言的语法来开发,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用,而且大大的提高了工作效率和项目开发周期,他还能嵌入汇编,可以在关键的位置嵌入,使程序达到接近于汇编的工作效率。

(2)硬件设计工具

在设计过程中我们主要使用了Protel 99SE软件。Protel 99SE是ProklTechnology公司开发的基于Windows环境下的电路板设计软件。该软件功能强大,人机界面友好,易学易用,仍然是大中院校电学专业必学课程,同时也是业界人士首选的电路板设计工具。Protel 99SE 由两大部分组成:电路原理图设计(Advanced Schematic)和多层印刷电路板设计(Advanced PCB)。其中Advanced Schematic由两部分组成;电路图编辑器(Schematic)和元件库编辑器(Schematic Library)。

4.2 画出软件设计结构图、说明其功能

如下图所示:

宏定义

包含文件

函数声明

管脚定义

主函数

按键扫描子程序

或按键判断子程序

延时子程序

预编译处理

函数申明

定义管脚

执行块

按键扫描或判断

延时

图4.1 软件设计结构图图4.2 功能说明图

4.3 画出主要软件设计流程框图

宏定义

包含文件

函数声明

管脚定义

主函数

按键扫描子程序

延时子程序

图4.3按键扫描程序流程图图4.4按键判断控制程序流程图

宏定义

包含文件

函数声明

管脚定义

主函数

按键判断子程序

延时子程序

其程序见附录一:

5、系统调试

5.1 硬件调试

5.1.1 各个功能模块分开调试

(1)最小系统模块的上电源模块和按键模块的检测首先,给最小系统板加上5V的电源,观察发光二极管D5是否发光,若发光则确定最小系统板电源模块没问题,若有没发光则用万用表检测电源是否有输出5V,若有,则检测最小系统板的电源模块的电路是否有短路,断路的问题。

其次,确定电源没有问题之后,调试按键模块。按下按键,观察P1口的发光二极管是否对映发光,以确认按键没有问题。若不发光则对对映的模块进行检

测。

(2)串行口的调试

将编译好的HEX文件用ISP下载软件通过RS232串行口下载到单片机中,此时观察D3是否发光,发光,确定串行口没有问题,若不发光则对对应模块的芯片MAX232,电容进行检测,判断是否损坏,判断电路是否有连接出错之类的。

确定串行口没有错之后,看程序是否能成功下载到单片机中,若不能,检测

单片机是否损坏。

(3)数码管的调试

通过了以上调试,将编译好的按键扫描程序载到单片机之中,判断按键扫描无误,再将编译好的数码管显示程序下载到单片机中,观察数码管的显示情况,

看是否能按程序要求的功能显示。

(4)单片机最小系统调试

将编译好的最小系统检测程序下载到单片机中,观察发光二极管和数码管的

显示情况,具体程序如下:

#include

#define uint unsigned int

#define uchar unsigned char

void delay(uint z);

uchar numwe,numdu;

uchar code table[]={

0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};

uchar code tablewei[]={

0xfe,0xfd,0xfb,0xf7};

void delay(uint z);

void main()

{ P1=0;

numwe=0;

numdu=0;

while(1)

{

numdu++;

if(numdu==4)

numdu=1;

P2=table[numdu] ;

P0=tablewei[numwe];

numwe++;

if(numwe==4)

numwe=0;

delay(600);

}

}

void delay(uint z)

{

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--);

}

程序下载成功后,可以再数码管上显示数字0、1、2……,按下按键时,对应的发光二极管亮,这样就能够确认最小系统板无误。

5.1.2 系统调试

将电机的模块接在最小系统的P0端口,电源供电的部位接好电源,将编译好的电机控制程序下载到单片机中,根据程序中所定义的按键功能,按下按键控

制继电器的吸合情况,可以听见继电器吸合的声响,为了观察方便可以观察每个继电器对应的发光二极管的发光情况见附录二图2。其程序参见附录一中的按键

扫描方式控制程序。

5.2 软件调试

5.2.1编译程序的流程

编译软件是用的keil uVision2,打开keil新建一个工程文件cx,设置好器件选用的是atmel中AT89C52.output中将生成hex文件选上。新建一个文件text,写好程序代码以cx.c为名保存,在source group里面添加cx.c文件,再点击build all taget files编译生成.hex文件,若不能生成,调试程序,看错误报告,确定程序的出错类型,修正程序,直到无误的无警告的生成HEX 文件,将出现下载到单片机中,观察程序的运行情况,若是不能实现按预定的功

能则修改程序直到能实现程序功能。

5.2.2程序调试过程

在文本中输入如下程序:

#include (1)

#include

#define uchar unsigned char

#define TURE 1

#define FALSE 0

int del; (4)

void Tkey(void);

sbit p0_0=P0^0; (6)

sbit p0_1=P0^1;

sbit p0_2=P0^2;

sbit p0_3=P0^3;

sbit p0_4=P0^4;

sbit key0=P1^0;

sbit key1=P1^1;

sbit key2=P1^2;

sbit key3=P1^3;

sbit key4=P1^4;

sbit key5=P1^5;

sbit key6=P1^6;

sbit key7=P1^7;

void main(void) //主程序

{

void tkey(void);

void delay(int);

SCON=0x00;

TI=0;

while(TURE)

{

Tkey();

delay(2000);

}

}

void Tkey(void)

{ (2)

uchar readkey;

uchar x_temp,y_temp;

P1=0x0f;

x_temp=P1&0x0f;

if(x_temp==0x0f) goto keyout;

P1=0xf0;

y_temp=P1&0xf0;

readkey=x_temp|y_temp;

readkey=~readkey;

switch(readkey)

{

case 0x11:key0=P1^0; {

int i;

p0_0=1;p0_1=0;

for(i=0;i<10000;i++)

p0_0=1;p0_1=0;

}

break;//启动电机1正转

case 0x21:key1=P1^1; p0_2=1;p0_3=0; break;//启动电机2正转 case 0x41:key2=P1^2; p0_0=0;p0_1=1; break; //启动电机1反转 case 0x81:key3=P1^3; p0_2=0;p0_3=1; break; //启动电机2反转 case 0x12:key4=P1^4; p0_0=0;p0_1=0;break;//电机1停止 case 0x22:key5=P1^5; p0_2=0;p0_3=0; break;//电机2停止

case 0x42:key6=P1^6;

{

int i;

p0_0=1;

p0_1=0;

for(i=0;i<10000;i++)

p0_0=1;

p0_1=0;

}

break;

case 0x82:key7=P1^7;

{

int i;

p0_2=1;

p0_3=0;

for(i=0;i<10000;i++)

p0_2=1;

p0_3=0;

}

break;

}

keyout:_nop_();

} (3)

void delay(del) //******延时程序** (5)

{

for(del;del>0;del--);

}

在编写程序过程出现如下一些错误:

1)在程序中的(1)处曾出现过错误,那是因为在word中编写好复制到keil 中,编译时不通过,再在keil中英文半角状态重新输入,此错误得以更正。

2)编写程序时,首先在(2)处输入了一个“{”与之对应的“}”在(3)处,(2)和(3)相距很远,编译过程中提示missing“}“,但是找了很久才找与之对应的

大括弧。

3)在程序(5)处,延时函数是一个有返回参数的,对变量del的定义要注意

是在(4)处定义。

4)在程序(6)处,是对单片机端口的定义,软件keil中选用的52系列,而52系列得单片机对自己的端口有自己规定。由于没有参考52系列的端口管脚的

定义而表达错误。

所以说程序设计过程中,在程序书写的环节比较关键,软件认可的是英文半角状态下的输入,在确定输入程序无误的情况下,注意程序中容易犯的语法错误,比如说{}大括弧()小括弧一定要对应,为了在调试程序中避免这些难以查找的错误在书写程序的时候是应该注意成对的输入。

程序书写的顺序一般是包含文件、宏定义、函数声明,变量定义、管脚定义、主程序、各个子程序。函数注意先声明再用,变量先定义再用。遵循编织程序的

一般规则,减少语法错误。

6、结论

本设计综合了目前相关领域的多篇文献,对直线电机的工作原理和单片机的运用进行了介绍。详细介绍了设计的具体功能模块,如单片机的最小系统、继电器电路、LED指示灯、AD转换电路等;软硬件设计。

在设计中,由于没有提供电机,只能用LED指示灯来显示电机的工作。耦合电路是用来隔离单片机和继电器之间的干扰,具体做电路板的时候没有耦合芯片TPL521_4。因为实验室为我们提供的继电器是5V电压的器件,单片机也是工作在5V电源中,5V的继电器不会对单片机造成多大的干扰所以中间的光耦部分可

以节约下来。

在软硬件的调试过程中,首先进行的是硬件调试,调试的方法有很多,一般我们所用的是观察法和排除法。硬件的调试过程中,需要检测电源供电是否能正常,可以看发光二极管可以判断,检测串行口也可以观察发光二极管可以确定。最小系统上的按键的检测是观察与P1接的上拉电阻和发光二极管来确定。将无误的出现下载到单片中,可以观察数码管的显示情况,以确定数码管模块的无误。单片机是最核心的模块,硬件电路都是以单片机为核心,单片机的损坏没有被察觉其他模块不能正常工作是很难调试的,所以调试其他的时候一定要保证单片没有被损坏。软件的测试就是一定要遵循书写程序的一般习惯,逻辑要有条

理,思维清晰。

在不断的检查、调试和修正下,最终LED指示灯正确的显示了两个电机工作

的方式。

在设计中我们还可以再扩展一部分外围,比如:接上液晶显示部分,在液晶屏上显示每个电机的工作模式,正转、反转的时间等参数。接上传感器部分,直线电机的运转情况通过传感器的检测反馈到单片中进行参数计算。电机的工作情况便可以更智能化。由于时间和外设的关系,这部分是做考虑。

直线电机运用

直线电机主要应用于三个方面: 一是应用于自动控制系统,这类应用场合比较多; 二是作为长期连续运行的驱动电机; 三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。 本期讨论直线电机的运用 Linear motor: 直线伺服电机应用 昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me 工业之美

什么是直线电机特点 1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及 其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子 加速器、制造武器等。2.直线电机是如何工作的 下面简单介绍直线电机类型 和他们与旋转电机的不同,最 常用的直线电机类型是平板式, U型槽式和管式。线圈的典型组 成是三相,有霍尔元件实现无刷 换相,直线电机用HALL换相的 相序和相电流。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固 定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度) 和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙 (airgap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋 转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直 线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 3.直线电机分类 管状直线电机 圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以 增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力 线圈是圆柱形的,沿磁棒上下运动。 U型直线电机 U型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统 支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。 非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空 气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通 泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害 平板直线电机 有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选 择时需要根据对应用要求的理解。无槽无铁芯平板电机是一系列coils安装在一个铝板上。由 于FOCER没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有 助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度 平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨 具有高的磁通泄露。 无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片 结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸 力和电机产生的推力成正比,迭片结构导致接头力产生。 无槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。 铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可 以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。 加工产品对比

直线电机资料20110302

直线电机基础 编辑本段直线电机也称线性电机,线性马达,直线马达 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同. 最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流. 该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。 相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。 编辑本段圆柱形动磁体直线电机 圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成

日本直线电机地铁系统的发展与改进

doi:10.3969/j.issn.16726073.2012.01.005 都市快轨交通·第25卷第1期2012年2月热点研讨日本直线电机地铁系统的 发展与改进 曾根悟1,2 (1.日本东京大学东京;2.北京交通大学北京100044) 万传风编译 (北京交通大学北京100044) 摘要较为系统地介绍日本直线电机地铁的发展情况,指出日本直线电机地铁具有车辆断面小、建设成本低、爬坡能力强、转弯半径小、振动噪声低等特点,提出在满足安全舒适性要求、提高小半径曲线通过速度、提高直线电机地铁效率、减少或避免钢轨波磨方面需要继续改进的目标,最后总结了直线电机地铁的适用条件,并展望了直线电机地铁在中国重庆的应用前景。 关键词日本地铁;直线电机;适用条件;改进目标;应用前景;重庆 中图分类号TM359.4U12文献标志码A 文章编号16726073(2012)01001904 1902年,德国的A.Zehden提出了把直线电机定子安装在车辆上进行驱动的方案,而英国的H.Wilson 建议将直线电动机定子分段安装在地面驱动车辆。1908年,美国的Johnson提出用直线电机驱动单轨列车的设想。20世纪50年代,英国的Eric Laithwaite在曼彻斯特大学首次制成直线感应电机轨道车辆模型,并做了载人试验。当时的直线电机调速性能以及经济性、可靠性等与旋转电机相比还没有竞争力,因此很长时间内未得到实际应用。 20世纪60年代以来,随着电力电子技术、计算机控制技术的进步,采用交流调速技术、直线电机驱动的高速磁浮列车应运而生,列车不再通过黏着力牵引,而且爬坡能力更强。直线电机用于轮轨列车当然也具有 收稿日期:20111213修回日期:20111227 作者简介:曾根悟,男,日本东京大学荣誉教授,北京交通大学客座教授,长期从事直线电机地铁系统相关研究,sone0423@yahoo.co.jp 类似的优点。经过多年的不断完善,已经形成了较为成熟的直线电机轨道交通技术。目前,世界上采用直线电机轨道交通的城市和地区有日本的东京、大阪、神户、福冈、横滨和仙台,加拿大的温哥华、多伦多,马来西亚的吉隆坡,美国的底特律、纽约,韩国的龙仁以及中国的北京和广州。 1日本直线电机地铁 日本是1978年开始研究将直线电机牵引技术应用于城市轨道交通系统的。1981—1984年为基础研究阶段;1985—1987年为使用开发阶段。1990年,日本第1条直线电机地铁大阪7号线投入运营,轨面到车厢地板高度为850mm;1991年,第2条直线电机地铁东京12号线开通运营,这次地板高度稍作改进,距离轨面800mm,但仍然比目标值700mm差100mm。 在早期应用中,地铁的运营方、建设方和JSA(日本地铁协会)等所有参与者认为:直线电机地铁实现了小断面隧道就是成功的,关于系统性能和舒适性的改善就不再认真考虑。2001年,日本神户第3次应用直线电机系统时,采用了大阪技术规范。事实上,多年来该规范被默认为业界标准,只是最近几年,才由福冈来主导寻求系统性能的改善,其成果被应用到仙台。表1是日本早期采用直线电机地铁系统的主要技术参数和实例。 2日本直线电机地铁系统的优势 2.1车辆断面小 由于直线电机车辆不需要一系列传动机构,设备少,轴重轻,所以可使用小直径车轮、较小的转向架构架,车辆地板高度比原来可低60cm,在不损失车内空 91

直线电机发展应用综述 (1)(1).

直线电机在数控机床上的应用综述 所在学院:机械工程学院 学科专业:机械工程 学生:解瑞建 学号:12847920 指导教师:董颖怀 天津科技大学机械工程学院 二零一二年十二月二十七日

摘要 简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。 关键词:直线电机数控机床驱动控制高速机床 0 引言 数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。 图0 SUPT Motion公司生产的一种直线电机

直线电机位置控制算法及仿真

直线电机位置控制算法及仿真 1 绪论 1.1 研究背景及意义 随着工业机械自动化程度的不断升级,有力的带动了上游直线电机在中国的快速成长,国外品牌纷纷加大对中国市场的投入力度,永磁同步直线电机是一种将电能直接转化是动能的转化装置,省去了中间的转换机构,消除了机械转动链的影响,具有速度快,推力大,精度高等诸多优点,因此,广泛应用于精密和高速运行等领域。但是永磁同步直线电机是一个典型的非线性多变量系统,许多非线性因素的存在都会影响到永磁同步直线电机系统的控制性能,如没有知的负载和摩擦等。传统的PID控制方法已经不能满足于永磁机电动机的高精度场合,因此如何设计高性能的直线电机位置控制算法一直以来都是控制领域的热点问题之一。 因此,在传统PID控制方式下,针对多变量、非线性、强耦合的永磁同步直线电机系统设计了一种滑模位置控制器,弥补了常规PID控制跟踪精度不高的缺点。滑模控制具有控制精度高、抗干扰能力强、适用范围广的等优点,因此滑模控制方法已经成是永磁同步直线电机领域重点关注问题,相关研究人员对此进行了深入研究。 1.2 国内外研究现状 直线电机的研究现状 1840年Wheatsone开始提出与制作了略具雏形的直线电机。从那时至今,在160多年的历史记载中,直线电机经历了三个时期。 1840-1955年是探索实验时期: 从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确的提到直线电机文章的是1890年美国匹兹堡市的市长,在

他写的一篇文章中,首先明确的提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却没有能获得成功。 至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作是导弹发射装置,但其发展并没有超出模型阶段。 至此,从1930-1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。 从1940-1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW的直线电动机是动力,成功的用4.1s的时间将一架重4535kg的喷气式飞机在165m的行程内由静止加速的188km/h的速度,它的试验成功,使直线电动机可靠性好等的优点受到了应有的重视,随后,美国利用直线电机制成的、用作抽汲钾、钠等液态金属的电磁泵,是的是核动力中的需要。1954年,英国皇家飞机制造公司利用双边扁平型直流直线电机制成了发射导弹的装置,其速度可达1600km/h。在这个阶段中,尤需值得一提的是,直线电机作是高速列车的驱动装置得到了各国的高度重视并计划予以实施。 在1840-1955年期间,是直线电机探索实验和部分实验应用时期,在直线电机与旋转电机的相互竞争中,由于直线电机的成本和效率方面没有能够战胜旋转电机,或者说,直线电机还没能找到它的专属领域,以及直线电机在设计方面也没有突破性的成功,所以直线电机在这一时期始终没有能得到有效的推广。 1956-1970年是开发应用时期: 自1955年以来,直线电机进入了全面的开发阶段,特别是该时期的控制技术和材料的惊人发展,更加助长了这种势头。在这段时期,申请直线机的专利件数也开始急速增加,该时期直线电机专利的增长率超过了所有其他技术领域的平

直线电机的应用

直线电机的应用 直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。 直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每 小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。 直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。 直线电机能直接产生直线运动,这一点对直线运动机械设计者和使用者有很大的吸引力。不少直线运动的机械是由旋转电机传动的,必须配置由旋转运动变为直线运动的机械传动装置,使得整个装置机构庞大,成本较高和效率较低。采用直线感应电机,不但省去了机械

直线电机开发及应用研究

2009年第1期 唐丽婵,等:基于LabVIEW 的无线远程温度监控系统 25 文章编号:1674-540X(2009)01-025-07 收稿日期:2009-01-15 作者简介:王振滨(1973-),男,博士研究生,主要从事分数阶线性系统和电气传动方面的研究工作,E mail:wangzhenbing@https://www.wendangku.net/doc/ce17509389.html, 直线电机开发及应用研究 王振滨1, 余鹿延2, 周守国3 (1.上海电气集团股份有限公司中央研究院,上海200070; 2.上海赛科现代交通设备有限公司,上海200023; 3.上海捷晟电机有限公司,上海200075) 摘 要:介绍了直线电机国内外的发展现状,指出永磁同步直线电机将是直线电机今后的发展方向。阐述了永磁同步直线电机的磁阻力产生的原因及其造成的推力波动对永磁同步直线电机控制性能的影响,并归纳出减小磁阻力的方法。最后简要介绍了上海电气中央研究院在开展永磁同步直线电机研究及应用的情况。 关键词:永磁同步直线电机;磁阻力;控制;开发与应用中图分类号:T M 33 文献标识码:A The Development and Application Research of Linear Motors W A N G Zhenbin 1 ,YU L uyan 2 ,ZH O U S houguo 3 (1.Shang hai Elect ric Group Co.Lt d.Cent ral A cademe,Shang hai 200070,China;2.Shanghai SEC M odern Traffic Equipment Co.Ltd.,Shanghai 200023,China; 3.Shanghai Jie Sheng M ot or Co.,Ltd.,Shanghai 200075,China) Abstract:It intro duces the up to date researches o f linear mo to rs hom e and abro ad,and points out permanent magnet linear synchronous m otors (PMLSM )w ill be the development dir ectio n of linear motor s in the future.T he r easo ns orig inated fr om detent for ce of PM LSMs are illustrated as w ell as the influences of the thrust force r ipple caused by it on the control per for mances of PM LSMs,and the methods o f reducing detent force is summed up.Finally,a brief introduction is g iven of the researches and applications of PM LSM s made by Shanghai Electr ic Gr oup Co.Ltd.Centr al A cademe. Key words:PM LSM;detent force;contr ol;development and applicatio n 1 直线电机国内外研究现状 1.1 快速发展的永磁直线电机技术 永磁直线电动机具有结构简单、体积小、无电 励,效率高、单位推力大等优点,随着稀土永磁材料、电磁场数值计算与分析、智能控制理论以及计算机技术的不断发展,永磁直线电动机的发展越来越快,己成为学术研究和开发应用的热点。永磁直

一种微型直线电机及其驱动方式.

(10)授权公告号 CN 101630891 B (45)授权公告日 2011.08.17C N 101630891 B *CN101630891B* (21)申请号 200810012338.3 (22)申请日 2008.07.16 H02K 33/18(2006.01) H02K 1/34(2006.01) G05B 19/04(2006.01) (73)专利权人中国科学院沈阳自动化研究所 地址110016 辽宁省沈阳市东陵区南塔街 114号 (72)发明人苏刚 李洪谊 (74)专利代理机构沈阳科苑专利商标代理有限 公司 21002 代理人许宗富 周秀梅 US 6779982 B2,2004.08.24, CN 87200807 U,1987.11.04,CN 101051786 A,2007.10.10, CN 86204843 U,1986.12.24,(54)发明名称 一种微型直线电机及其驱动方式 (57)摘要 一种微型直线电机及其驱动方式,属于直线 电机技术领域。该电机结构包括端盖、内部铁心、 外部磁轭、线圈、线圈支架及两个磁钢,两磁钢同 极相对置于内部铁心两端,两磁钢外端分别安装 有端盖,在两端盖内,磁钢与内部铁心的外周置有 两对称的弧形磁轭,两弧型磁轭在内部铁心外周 大致成圆环型,在两弧形磁轭间形成滑道,磁轭与 内部铁心及磁轭与磁钢之间形成气隙,线圈置于 内部铁心与磁轭之间,线圈上固定有线圈支架,线 圈支架两端通过滑道穿出磁轭,线圈及线圈支架 可在磁轭间的滑道上滑动。本发明两磁钢同极相 对放置,磁路的封闭性比较好,在气隙中形成比较 均匀的磁场。本发明结构简单,适合作为微小型机 构的驱动器。 (51)Int.Cl.(56)对比文件 审查员 肖继军 (19)中华人民共和国国家知识产权局(12)发明专利 权利要求书 1 页 说明书 4 页 附图 5 页

直线电机驱动技术

直线电机驱动技术 直线电动机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起“直线电动机热”。 在机床进给系统中,采用直线电动机直接驱动与原旋转电动机传动的最大区别是取消了从电动机到工作台(拖板)之间的一切机械中间传动环节,把机床进给传动链的长度缩短为零。这种传动方式被称为“零传动”。正由于这种“零传动”方式,带来了原旋转电动机驱动方式无法达到的性能指标和一定优点。 (1)高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 (2)精度直线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 (3)动刚度高由于“直接驱动”,避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 (4)速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述零传动的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达(2~10)g(g=9.8m/s2),而滚珠丝杠传动的最大加速度只有(0.1~0.5) (5)行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

(6)动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 (7)效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。科尔摩根PLATINNM DDL系列直线电机和SERVOSTAR CD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、高的定位精度和平滑的无差运动。

直线电机的使用与维护

直线电机的使用与维护 概述 直线电机也称线性电机,线性马达,直线马达,推杆马达。最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换。 工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。随着自动控制技术与微计算机技术的发展,直线电机的控制方法越来越多。 对直线电机控制技术的研究基本上可以分为三个方面:一是

传统控制技术,二是现代控制技术,三是智能控制技术。传统的控制技术如PID反馈控制、解耦控制等在交流伺服系统中得到了广泛的应用。其中PID控制蕴涵动态控制过程中的信息,具有较强的鲁棒性,是交流伺服电机驱动系统中最基本的控制方式。为了提高控制效果,往往采用解耦控制和矢量控制技术。在对象模型确定、不变化且是线性的以及操作条件、运行环境是确定不变的条件下,采用传统控制技术是简单有效的。但是在高精度微进给的高性能场合,就必须考虑对象结构与参数的变化。各种非线性的影响,运行环境的改变及环境干扰等时变和不确定因素,才能得到满意的控制效果。因此,现代控制技术在直线伺服电机控制的研究中引起了很大的重视。常用控制方法有:自适应控制、滑模变结构控制、鲁棒控制及智能控制。主要是将模糊逻辑、神经网络与PID、H∞控制等现有的成熟的控制方法相结合,取长补短,以获得更好的控制性能。 应用 直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,世界许多国家都在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。 直线电机与旋转电机相比,主要有如下几个特点:一是

直线电机的PID控制器设计

基于MATLAB的直线电机PID控制器设计 摘要 随着现代工业的飞快发展,控制对象日益复杂,对其的性能控制要求也不断提高,致使人们寻找更好的控制方法,其中以改进PID控制最为典型。PID控制器具有结构简单、容易实现、控制效果好、鲁棒性强等特点,是目前最稳定的控制方法之一。它所涉及的参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。 直线电机是近年来国内外积极研究发展的新型电机之一,凭借自身的特性在以直线运动的工业控制中,有比旋转电机巨大的优越性。可广泛应用于交通运输、起重搬运、物流传输装置、国防及煤矿运输、车床进给等方面,发展前景十分广阔。 传统的比例积分微分( PID) 控制器参数往往因整定不良、性能欠佳,对运行状况的适应性很差。简单的控制又不能很好地适应对象系统特性变化时的最佳控制要求。因此,鉴于控制方法目前仍有广泛应用,对参数整定方法的研究将具有很好的应用价值。本文根据稳定边界法则及Ziegler-Nichol算法,以直线电机控制模型为例介绍如何在MATLAB 工具帮助下整定并验证PID 控制器参数,使参数的整定变得简单、易行,使整定效果更优化。 关键词:直线电机PID控制 MATLAB 控制系统参数整定系统仿真

Abstract: With the fast development of modern industry, more complicated control object, its performance control requirements improve continuously, cause people looking for better control method, which to improve PID control is the most typical example. The PID (Proportional-Integral-Derivative) control is one of the most common control methods at present. Its structure is simple and easy to implement, however, the control effect is perfect and it has a strong robust characteristics. The physical parameters is, meaning of ,theoretical analysis of system is integrity, and it is familiar by the engineering sector, which in the industrial process control has been widely used. Linear motor is one of the studied new motor. Because of its peculiarity, the linear motor performed better than rotary motor in the control systems when the moving route is linear. Its application range extends widely and widely. And it has been applied in many fields. However, the traditional parameter adaptability of proportion-integral-differential (PID) controller to the operating situation is very bad sometimes because the reduction and performance isn't good. Simple control and can't well adapt to changes in the system characteristics of the object of optimal control requirements. Therefore, in view of the control method is currently there are still widely used, to the study of the method of parameter setting will have a good application value. According to the stable boundary principle and Ziegler-Nichol algorithm, this paper introduces how to reduce and validate the PID controller parameter with the help of MATLAB tool taking the linear motor control model as an example. Making the parameters set becomes simple, easy to operate, and make the setting effect more optimization. Key words:Linear motor,PID control, Matlab, Control system, Parameters setting, System simulation

直线电机的结构及工作原理

直线电机的结构及工作原理 来源:本站整理作者:佚名2010年02月25日 17:43 分享 订阅 [导读]直线电机的结构直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相 关键词:直线电机 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 直线电机的特点 高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 位精度高线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 速度快、加减速过程短 行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。 动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 应用于自动控制系统,这类应用场合比较多; 作为长期连续运行的驱动电机; 应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。

直线电机和传统的旋转电机

直线电机和传统的旋转电机+滚珠丝杠运动系统的比较 在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。 1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控 制系统动态响应性能大大提高,反应异常灵敏快捷。 2. 精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系 统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 3. 动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反 向间隙造成的运动滞后现象,同时也提高了其传动刚度。 4. 速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在 机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有 问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。 5. 行程长度不受限制在导轨上通过串联直线电动机,就可以无限延长其行程长度。 6. 运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮 导轨(无机械接触),其运动时噪音将大大降低。

直线电机在城市轨道交通系统中的应用

直线电机在城市轨道交通系统中的应用 摘要:介绍了直线电机工作原理和直线电机电动车特点,以及日本利用直线电机的地铁和常导磁悬浮交通系统发展的概况。 城市交通在城市的发展过程中愈来愈重要,而城市轨道交通占据突出的位置。由于近年来科学技术的发展和进步,包括地铁、轻轨交通、单轨交通、新交通系统以及磁悬浮交通系统等城市轨道交通的形式变化多样。在改善城市交通的时候,各个城市根据自己城市的具体特点选择交通系统的范围也更宽。安全、舒适、高密度运行,通过引入新技术达到节能,保护环境,降低成本,从结构和性能上采取措施,不断进行改进,保持先进性是城市轨道交通存在的价值。在城市轨道交通系统中,根据车辆的特点,采用直线电机作为驱动电机又提供了一种新的选择。 1 直线电机的工作原理 通常,电动机是旋转型的。定子包围着圆筒形的转子,定子形成磁场,在转子中流过电流,使转子产生旋转力矩。而直线电机则是将两个圆筒形部件展开成平板状,面对面,定子在相应于转子移动的长度方向上延长,转子通过一定的方式被支承起来,并保持稳定,形成转子和定子之间的空隙。 直流电机、感应电机、同步电机等都可做成直线电机,但是,直流电机在结构上无法做成无整流子型,所以,直线电机一般为感应电动机和同步电动机。这些交流电动机的1次侧有作为定子侧的,也有作为转子侧即移动体侧的。例如,超导磁悬浮中,同步电动机的定子(地上)是1次侧,旋转磁场在地上移动;而地铁的直线电机,感应电动机的旋转磁场装在车上,2次侧固定在地上。前者的空隙靠左右导向线圈保持,而后者靠车轮保持。 产生推进力的原理与电动机产生力矩的原理一样,在直线电机地铁中,安装在转向架上的直线电动机沿前进方向产生移动磁场。让面对该磁场、安装在地上的反作用板(相当于2次线圈)中通过2次电流(涡电流),由这个2次电流切割磁场产生的力作为反作用力,安装在转向架上的直线电动机得到推进力。 直线电机的基本缺点是很难将定子与转子空隙做成象旋转式电机那么小,旋转式是无限循环的,而直线电动机是有端头的。为此,泄漏磁通多,电气—机械能量转换的效率低,如果要得到相同的输出,逆变器的容量需要比旋转式大。 2 直线电机电动车的特点 在使用旋转式电机的电动车中,一般是通过齿轮减速将旋转力矩转换为列车的牵引力,同时也受到轮轨间粘着的限制。 直线电机电动车的推进力和制动力都利用直线电机,如上所述,有1次侧在车上和地上2种。1次侧在车上时,要将VVVF逆变器和直线电机装载在车上,使车辆重量增加,车辆价格高;但在地面上的设备仅只有反作用板,又降低了建设费用。1次侧在车上的方式已在一部分地铁得到了实际应用。 在直线电机的电动车中,推进力由铺设在钢轨间的反作用板直接传递,所以不受粘着的限制,有可能从滑行和空转产生的各种问题中解脱出来,有利于通过大坡道(最大坡度可达60‰~80‰)和小半径曲线(最小半径为50 m)的线路。此外,由于直线电机无转动部件,所以不需要轴承和润滑机构,使之结构简单,延长寿命,这是其最大的特点。 在旋转电动机中,旋转力矩与其直径的平方成正比,所以要得到大的旋转力矩,电动机的直径就要增大,在直线电机中,这相当于将相应的部分在长度方向延长,而高度方向可以减小。在大型电机中,如果是1级齿轮减速,车轮直径也必须加大;而在直线电机驱动中,则不必如此,所以,可以减小车轮的直径,这将使车辆的地板面的高度降低。

GTHD直线电机调试方法总结-G

GTHD带直线电机的调试方法 GTHD参数设置和 调试流程.pdf

驱动器:GTHD-XXX-2A-AP-1-LM(LM表示直线电机,Linear motor)一定要选用支持直线电机的驱动 光栅尺:分辨率1um A+B无霍尔信号 电机:以划红线参数为例 1 通过驱动器的串口连接线连接驱动

按照电机表格中参数填写直线电机配置 电机名称:CE133B12 电机图片:可不填 电机峰值电流:Arms (注意单位) 电机持续电流:Arms (注意单位) 电机最大转速:3000 mm/s (注意单位) 电感:1 mH (电机参数没有提供先随便填写一个) 电机电阻:1 ohm (电机参数没有提供先随便填写一个) 直线电机扭矩常数:70N/Arms (注意单位) 转子线圈质量:10 KG(注意:表格中为24Kg,因为GTHD驱动最大可填写10KG 所以超过10KG的就填10KG即可,不影响使用。如果写入24KG会报错)

电机节距:48 mm (咨询电机厂商)相当于旋转电机旋转一圈所走的距离。 2 设置反馈参数

编码器类型根据实际应用选择,本例中如上图所示,没有霍尔信号所以选择A+B,在使能的时候进行寻相。 因为磁极距为48mm 根据光栅尺分辨率1um,所以1mm=1000um 48*1000=48000 线数/磁矩。 寻相方式:平滑启动 寻相电流:持续电流的30%~50% 初始化时间:10ms 初始化增益: 在写入电机参数时还需注意一个参数:thermode电机超温模式,需要设为3(忽略温控输入)。 最后把参数写入驱动器即可 (以下内容参考GTHD参数设置和调试流程说明文档,跟调试旋转电机方法一致) 3 进入反馈界面 寻找相位过程里面: 方式:4 平滑启动编码器初始化电流:2A 初始化时间:10 ms 编码器初始化增益: 设置好点击寻找相位角,正常电机会使能成功,如果失败则增大电流或者编码器初始化增益。

相关文档