文档库 最新最全的文档下载
当前位置:文档库 › 乙肝HBV转基因小鼠模型

乙肝HBV转基因小鼠模型

乙肝HBV转基因小鼠模型
乙肝HBV转基因小鼠模型

HBV转基因小鼠模型资料

~ 270 bp

Southern blot鉴定结果

上海南方模式生物科技发展有限公司

2008年11月

HBcAg positive cells are sparsely dispersed in the liver.

Liver HBsAg two positive staining cells are shown distributed near the central vein.

(推荐)乙型肝炎病毒耐药基因及分型检测

乙型肝炎现状如何? 乙型病毒性肝炎是由乙肝病毒(hepatitis B virus,HBV)感染引起的、以肝脏炎性病变为主,并可引起多器官损害的一种疾病,主要存在于肝细胞内,可引起肝细胞炎症、坏死和纤维化。 乙型肝炎病毒(HBV)感染呈世界性分布,全球约有3.6亿感染者,每年约有100万人死于与HBV相关的肝脏疾病。我国属于感染的高发区,现有的慢性HBV感染者约9300万例。 乙型肝炎病毒(HBV)基因分型的临床意义 HBV根据DNA差异可分为A、B、C、D、E、F、G、H八种类型,不同型别在流行特征,致病性,对药物治疗反应等方面存在差异,其中,我国以B型和C型为主,感染HBV基因型B的患者发生肝纤维化及肝细胞癌的平均年龄要比感染HBV基因型C的患者的年龄大。 通过分型检测,可判断病毒复制活跃程度及突变发生率情况。研究表明,与HBV-B型相比,C型复制较活跃,不易发生HBeAg血清转换;HBV-B型易产生前C区突变,C型核心启动子区变异发生率更高,与重型肝炎发病机制密切相关,可作为肝癌高危指标之一。同时,HBV-B、C型患者易产生拉米夫定耐药突变,通过分型检测,可指导临床治疗方案制定,有针对性进行临床治疗,更大程度上提高患者的生活质量。 乙肝的治疗方式有哪些? HBV感染主要的治疗方法是抗病毒治疗,国内外普遍使用的药物有干扰素和核苷(酸)类。由于干扰素需要反复注射,且副作用较多,近年来,核苷(酸)类似物(NA)已成为抗HBV感染的主要方法之一,NA因其抑制病毒复制能力强、使用方便、耐受性好且疗效确切,适用于不同阶段的肝病患者,是长期治疗的合理选择。但随着治疗时间的延长,往往会出现病毒耐药株,从而需要监测乙型肝炎病毒耐药基因型,指导临床用药。 乙肝病毒产生耐药的机理是什么? HBV对某种药物的耐药性一般是指由HBV基因组上某些位点的变异导致这种药物对HBV的抑制作用减弱或无作用。通常分为以下几种: (1)原发性耐药变异:指药物作用靶位的基因及其编码的氨基酸发生变异,导致变异病毒株对治疗药物的敏感度下降; (2)继发性耐药变异(又称补偿性耐药变异):指由于原发性耐药变异病毒株复制能力下降,在原发性耐药变异的基础上,病毒株也可在其他位点发生变异,这些变异可部分恢复变异病毒的复制能力或可导致变异病毒对药物敏感度的进一步下降; (3)基因型耐药:指检测到已在体外的表型分析研究中被证实与抗病毒药物耐药相关的HBV变异; (4)表型耐药:通过体外复制系统证实检测到的HBV变异会降低其对抗病毒药物的敏感度。 HBV属于嗜肝DNA病毒科,基因组长约3.2kb,是部分双链环状DNA结构。HBV基因组含有4个部分重叠的开放读框(open reading frame,ORF),分别为S基因区、C基因区、P基因区和x基因区。产物为含末端蛋白、间隔区、逆转录酶区和RNA酶H区4部分的HBV聚合酶。 HBV虽然属于DNA病毒,但其复制过程并非DNA—DNA的直接复制过程,而是经过前基因组RNA的中间过程,即DNA—RNA—DNA的复制过程。在前基因组RNA逆转录为负链DNA的过程中,HBV逆转录酶由于缺乏严格的校正机制,导致HBV复制过程中核苷酸错配率较高,发生变异的频率为每年(1.4~3.2)X105核苷酸替换/位点。HBV复制的这种过程和特点,决定了同一患者体内不同的HBV株基因序列之间也存在差别。 核苷(酸)类药物主要通过抑制HBV聚合酶的逆转录酶区活性,阻止HBV复制过程中以HBV的前基因组RNA为模板逆转录生成新的病毒DNA,从而发挥抑制病毒复制的作用,HBV前基因组RNA是以HBV的cccDNA 为模板合成的,即NA的药效靶点在cccDNA的下游,所以NA不能直接清除已经存在的cccDNA。

丙型病毒性肝炎基因分型及临床意义

第48卷 第5期2012年10月 青岛大学医学院学报 ACTA ACADEMIAE MEDICINAE  QINGDAO UNIVERSITATISVol.48,No.5October 2 012[收稿日期]2012-04-12; [修订日期]2012-08-09[基金项目]青岛市卫生科技发展计划资助项目(2010WSZD08)[作者简介]黄艳秋(1979-),女,硕士研究生,主治医师。[通讯作者]史昌河(1963-) ,男,副主任医师,硕士生导师。丙型病毒性肝炎基因分型及临床意义 黄艳秋,史昌河 (青岛大学医学院传染病学教研室,山东青岛 266071 )[摘要] 丙型病毒性肝炎病原体为丙型肝炎病毒(HCV),以输血为主要传播途径。HCV基因组为单股正链RNA病毒,有较高的复制率及变异率,在人体内呈准种分布。目前根据Simmonds命名系统可将其分为6个基因型。HCV基因分型在丙型病毒性肝炎的流行病学研究、病毒载量、病情转归及抗病毒治疗等方面均有重要意义。特别在抗病毒治疗方面,HCV基因分型是制定抗病毒治疗方案, 预测抗病毒疗效的重要依据。[关键词] 肝炎, 丙型;基因分型;综述[中图分类号] R512.6 [文献标志码] A [文章编号] 1672-4488(2012)05-0468- 03 丙型病毒性肝炎是临床工作中较为常见的一种病毒性肝炎,病原为丙型肝炎病毒(HCV),感染后可引起肝脏急、慢性炎症,极少数发展为重症肝炎。输血及血制品曾是丙型病毒性肝炎最重要的传播途径,但近年来,随着筛查方法的改进, 此种传播方式已得到明显控制,目前注射、器官移植、血液透析、性传播及母婴传播亦较常见。人类对HCV普遍易感,而且感染后高达80%的病人转为慢性感染,如果不进行及时和正确的抗病毒治疗,有相当比例的病人会发展为肝硬化、肝癌和肝衰竭,产生严重的临床后果。丙型病毒性肝炎在全球感染率为3%,因此全世界约有1.7亿人曾感染过 HCV[1] ,但各国的感染率不尽相同,我国HCV感染率约为 3.2%,属于高流行区。1 HCV基因组的结构和功能1.1 HCV基因组的基本结构 HCV基因组为单股正链RNA,可分为3′非编码区、5′非编码区及编码区(ORF)3个区域,ORF可编码一个病毒蛋白前体, 在宿主和蛋白酶裂解的共同作用下该蛋白前体可生成至少10种蛋白。根据所编码蛋白的功能不同,编码区又分为结构基因和非结构基因,其中结构基因编码的4种蛋白包括核心蛋白、包膜蛋白1(E1)、E2、P7,这些蛋白参与病毒的组装,又被称为结构蛋白。非结构基因翻译编码的蛋白有非结构蛋白2(NS2)、NS3、NS4A、NS4B、NS5A、NS5B,这些蛋白主要参与病毒复制,故又称非结构蛋白或功能蛋白。HCV基因组的变异率高,这一特点使之在人体内呈现准种分布,基因组中E1和E2区是变异率最高的区域,而5′及3′非编码区则是最保守的区域。 1.2 HCV各区段基因组的结构和功能 ①5′UTR:它是HCV基因组中最保守的区域。HCV 5′UTR包括4个保守的结构区域,其中结构域Ⅱ~Ⅳ构成内部核糖体进入位点(IRES),IRES能够在不依赖于HCV蛋 白作用的前提下启动下游HCV编码区基因的翻译,因而抗病毒药物的靶向定位点常为丙型病毒性肝炎病毒的IRES。②3′UTR:3′UTR位于HCV 3′末端,由200~235个核苷酸组成。其中可变区具有基因型的特异性,在此区域内不同基因型之间存在核苷酸序列的差异。不同的基因型其HCV多聚U区的长度亦不相同。部分研究结果显示,不同的HCV型甚至同型不同株型之间3′UTR的交换都会导致HCV不能复制。因而得出结论,只有当病毒具有完整的3′UTR才能发挥其正常的作用。另有研究结果显示,宿主细胞内部所固有的多聚嘧啶束结合蛋白或自身抗原若与HCV基因组中的3′UTR结构部分(尤其是X尾)结合,丙型病毒性肝炎病毒核糖核酸的翻译效率和稳定性均可增强。③核心蛋白:丙型病毒性肝炎病毒基因组的342~914核苷酸位点系核心蛋白基因的位点。编码核心蛋白,核心蛋白的功能之一是与糖蛋白作用组装出完整的HCV病毒颗粒。在核心蛋白的氨基端内,高度保守的抗原表位含量非常丰富。核心蛋白在与病毒RNA靶向结合的前提下可调节HCV基因组的翻译, 并且核心蛋白的基因调节作用与原发性肝癌的发生关系密切,主要因为核心蛋白可抑制P53启动因子这一重要肿瘤抑制基因的活性。核心蛋白在人体感染HCV后通过对大量基因的调控作用抑制了机体的免疫应答,从而促进了HCV对肝细胞及外周血单核细胞等人体细胞的持续感染,此外核心蛋白能加速感染细胞内脂质小体的形成,诱导肝细胞变性。④包膜区:在HCV结构中,病毒的外膜常由包膜蛋白构成。第915~1490nt位点和1491~2789位点共同构成了包膜区基因,分别编码E1和E2蛋白。其中,E2氨基端具有高度变异性,HVR1和HVR2均为E2氨基端的两个高变区。丙型病毒性肝炎病人的E2突变增加常由干扰素治疗诱发,HVR1序列也会在慢性感染的形成过程中不断改变。E2结构中还含有若干个中和抗体表位,至少有一个中和抗体表位位于HVR1。由此可知,免疫反应常以E2为主导靶向目标。此外,病毒受体、CD81、低密度脂蛋白等物质的受体均可与E2蛋白发生相互作用,故E2蛋白具备的另一个重要作用就是介导病毒附着和进入感染细胞内部。因此,在研究和开发HCV疫苗这一方向上, 深入地研究膜

转基因小鼠的鉴定

转基因小鼠的鉴定集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转基因小鼠的鉴定 一、剪鼠尾 1.剪鼠尾的时间当新生的小鼠年龄达到两到三周(耳朵已经长开)时剪鼠尾较好, 此时鼠尾剪起来比较容易且小鼠的生命力比较强。 2.分辨小鼠的年龄 a当小鼠整个身体较红且腹部无奶时,此小鼠当天出生或前一晚出生; b当小鼠腹部有奶(腹部有一小团白色物质),此小鼠出生2~3天; c当小鼠背部长出皮毛时,此小鼠出生3~4天; d当小鼠毛长全,但眼未开时,此小鼠出生10天左右; e当小鼠眼刚开,耳未开时,此小鼠出生12天左右; f当小鼠耳刚开时,此小鼠出生14天左右。 3.剪鼠尾后对小鼠的标记:打耳孔法 二、从鼠尾中提取DNA 采用鼠尾基因组DNA提取试剂盒(康为世纪:cw2094)提取DNA,操作如下: 1.剪取小鼠长度为的尾巴,放入灭菌后的离心管中,加入180μL Buffer GTT。震荡混 匀。 2.加入20μL proteinase K,涡旋震荡,彻底混匀。 3.置于56℃水浴,直到组织溶液完全清澈,一般需消化6-8h,赋予过程中涡旋震荡, 使样品均匀分离。 注意: 1)如果赋予和涡旋震荡后仍然有胶状物质,必要时过夜消化再加入20μl proteinase K消化,不会影响后续操作。

2)如需去除RNA,可在上述步骤完成后,加入4μl浓度为100mg/μl的RNase A 溶液,震荡混匀,室温放置5-10min。 4.14000rpm 离心 1min,以消除未消化的类似于鼠毛等组织,将上清转移到一个新的灭过菌的离心管中。 5.加入200μl Buffer GL,涡旋震荡,充分混匀,加入200μl 无水乙醇,涡旋振荡,充分混匀,短暂离心,使管壁上的溶液收集到管底。 注意: 1)加入Buffer GL 和无水乙醇后要立即涡旋震荡混匀。 2)如果多个样品一起操作,Buffer GL 和无水乙醇可以等比例混匀后一起加入样品。 3)加入Buffer GL 和无水乙醇后可能会产生白色沉淀,不会影响后续操作。 6.将步骤5中所得到的溶液全部加入到已装入收集管的吸附柱中,若以此不能加完溶液,可分多次转入。10000rpm 离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。 7.向吸附柱中加入500μl Buffer GW1(使用前检查是否已加无水乙醇),10000 rpm 离心 1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。 8.向吸附柱中加入500μl Buffer GW2(使用前检查是否已加无水乙醇),10000 rpm 离心 1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。如需进一步提高DNA纯度,可重复步骤8。 9.12000rpm 离心 2min,倒掉收集管中的废液,将吸附柱置于室温数分钟,以彻底晾 干。

Dicer1转基因小鼠模型的建立

2008年8月 第16卷 第4期中国实验动物学报ACT A LABORAT ORIUM ANI M A LIS SCIE NTIA SINICA August ,2008V ol.16 N o.4 研究报告 Dicer 1转基因小鼠模型的建立 郑志红1,高峰2,杨葳1,汪瑛1,于洋1,周生来1,李兆阳1 , 吕相川1,张梅英1,王禄增 1(1.中国医科大学实验动物部,沈阳 110001;2.中国医科大学附属第一医院,沈阳 110001) 【摘要】 目的 建立Dicer 1转基因小鼠模型。方法 构建pcDNA3112Dicer1转基因构件,经酶切、纯化后通过显微注射方法导入BDF1小鼠受精卵原核并移植到同期受孕的ICR 受体母鼠输卵管内。出生后仔鼠用PCR 和S outhern 方法检测鼠尾DNA 鉴定基因型,通过免疫组化检测Dicer 1基因表达。结果 显微注射172枚卵,移植119枚卵于3只受体输卵管中,2只怀孕,共产仔15只,经PCR 检测获得6只阳性鼠,S outhern 检测6只均为阳性。对S outhern 检测阳性转基因小鼠子代进行RT 2PCR 检测和免疫组化分析证明Dicer1基因在肝脏、肾脏、肺内均有表达。对腹腔肿胀的转基因阳性1号鼠解剖发现肝脏、脾脏明显增大,胚胎发育异常。结论 成功建立Dicer 1基因表达的转基因小鼠模型,该模型为进一步研究DICER 1基因功能及miRNA 的表达及功能等奠定基础。 【关键词】 Dicer 1;显微注射法;转基因小鼠 【中图分类号】R -33 【文献标识码】A 【文章编号】100524847(2008)0420258203 Establishment of a Dicer 1Transgenic Mouse Model ZHE NG Zhi 2hong 1,G AO Feng 2,Y ANG Wei 1,W ANG Y ing 1,Y U Y ang 1,ZH OU Sheng 2lai 1,LI Zhao 2yang 1 , LU X iang 2chuan 1,ZH ANG Mei 2ying 1,W ANGLu 2zeng 1(https://www.wendangku.net/doc/cf7805821.html,boratory Animal Center ,China Medical University ,Shenyang 110001,China ; 21The First A ffiliated H ospital of China Medical University ,Shenyang 110001,China ) 【Abstract 】 Objective T o establish a Dicer 1transgenic m ouse m odel.Methods pcDNA3112Dicer1construct was constructed ,linearized ,purified and then injected into superovulated pronuclear zyg otes to produce transgenic mice.The injected zyg otes were transplanted into the oviduct of pseudopregnant mice.The genotype of transgenic founders were identified by PCR and S outhern blot.The expressions of human Dicer 1protein in the tissues of the transgenic mice were detected by immunohistochemistry.R esults 172zyg otes were injected and 119zyg ote cells were transplanted into oviducts of 3recipients.15viable offsprings were born from 2of the 3recipients.G enomic DNA from baby tails was extracted.PCR and S outhern blot were used to identify transgenic founders of Dicer 1,and showed 6of the 15offsprings were positive transgenic mice of Dicer 11Dicer 1was expressed in the liver ,kidney and lung.Conclusion Dicer 1transgenic mice have been established success fully.The m odels will contribute to the research of Dicer gene function and the expression of miRNA. 【K ey w ords 】 Dicer1;M icroinjection ;T ransgenic mice [基金项目]国家自然科学基金:30571836;辽宁省重点实验室专项资金:辽科发[2005]36号。 [作者简介]郑志红(1969-),女,研究方向:实验动物转基因与 基因敲除。E -mail :zhihongzheng @1631com [通讯作者]王禄增。E 2mail :wanglz @1631com DICER 1基因与表观遗传调控密切相关,是 2000年被克隆的,定位于人染色体14q32113,编码 蛋白属于RNA 酶Ⅲ家族[1],在许多组织中广泛表 达。其功能是将具有颈环结构的RNA 或双链RNA 剪切成长约21个碱基的成熟miRNA (或siRNA )[1]。 DICER 1蛋白是成熟miRNA 产生所必需的酶, DICER 1基因异常可导致不同组织、不同发育阶段miRNA 表达异常,DICER 1基因敲除的小鼠在胚胎发育过程中就发生死亡[2],无法通过敲除来详细研究该基因的功能。由于DICER 1基因是发育过程中重要的调控基因,建立DICER 1转基因小鼠模型对研究该基因的功能具有重要的意义。1 材料方法 111 Dicer 1基因克隆及转基因构件制备按Dicer 1mRNA 序列设计正、反向引物,以

转基因小鼠肿瘤模型的研究进展_百替生物

转基因小鼠肿瘤模型的研究进展 沈富毅,潘隽玮,郁嘉伦,余昂,侯晓骏 [摘要]动物模型在肿瘤病因的揭示,发病机理的探索以及治疗措施的评估中有着不可替代的重要作用。继常规转基因方法之后,可诱导表达转基因、基因打靶、条件性基因打靶以及基因捕获等技术的出现及其在肿瘤模型建立中的应用为我们提供了大量能较好模拟人体相应肿瘤的动物模型,极大地深化了我们对肿瘤生物学行为的认识,并有助于人们找到攻克肿瘤的办法。 [关键词]肿瘤,小鼠模型,转基因 肿瘤是一类严重危害人类健康及生命的重大疾病,动物模型在肿瘤病因、发病机理的揭示以及治疗措施的评价中发挥着不可替代的作用。肿瘤动物模型最早源自小鼠自发突变系或经致癌剂诱变而得,对它们的研究使我们对环境致癌物及其代谢活动机理有了一定的认识;但自发突变频率在自然状态下通常很低,而诱发模型也因其不可精确控制性而限制了它们的应用。在过去的二十多年里,随着人们对癌基因激活或抑癌基因失活在肿瘤发生发展中作用的认识日益深入,以及近年发展起来的小鼠生殖系引入可诱导或精细调控突变技术的应用,小鼠肿瘤模型的建立工作取得了突破性进展,本文就此作一简要综述。 1.常规转基因(transgenic) 上世纪80年代初发展起来的原核显微注射技术,使我们可以将外源DNA直接导入小鼠生殖系以构建转基因动物模型。目的基因在合适启动子驱动下表达,可赋予转基因动物新的表型,通过其表型分析可识别研究基因的功能。转基因动物技术在肿瘤研究中的主要作用就是建立转基因的肿瘤动物模型,该研究始于1974年,Jaenisch等1用显微注射法将多瘤病毒SV40的DNA导入到小鼠的囊胚(blastocyst)中,在子代小鼠的肝、肾组织中检测到了SV40的DNA。这一结果证明,将外源基因导入胚胎细胞中并实现整合是可能的。以后相继有人用同样的方法实现了外源基因向小鼠受精卵的转移,并能遗传给后代。在基因转移的方法上相继出现了逆转录病毒载体法、电脉冲法等。1985年,Adams2等用转基因方法首次构建了B淋巴瘤myc癌基因易位的小鼠模型,此后10年,陆续发展了针对各种类型恶性肿瘤的转基因小鼠研究。如今这项技术运用较为成熟的是,利用免疫球蛋白启动子调控的c-myc基因在转基因小鼠中的表达,导致早期淋巴瘤的发生3。在LTR/c-myc转基因小鼠模型中,利用哺乳类动物肿瘤病毒长末端重复序列(LTR)驱动c-myc广谱的表达,可造成多种组织形成肿瘤,如睾丸、乳腺和淋巴系。1984年Stewart把小鼠乳腺癌病毒(MMTV)的增强子与myc基因或ras基因连接,形成的MMTV-myc转基因小鼠和MMTV/V-Ha-Ras转基因小鼠都有高的乳腺癌发生率4。近年来,这项技术更多的运用于肿瘤发生机制的探索上。Li等5构建了乳腺癌WAP-Tag转基因小鼠模型,该模型由小鼠乳清酸蛋白WAP启动子和SV40大T抗原构建而成,可用于乳腺癌变过程中细胞的增殖与凋亡、DNA突变及修复机制等方面的研究。在慢性粒细胞性白血病(CML)的研究中,Heisterkamp等6构建的bcr-abl和crkl双转基因小鼠发病潜伏期及存活期均大大缩短,直接证明了crkl参与

乙型肝炎病毒分型(B型、C型、D型)和耐药突变基因检测.doc

乙型肝炎病毒分型(B型、C型、D型)和耐药突变基因检测 一.检验项目:乙型肝炎病毒分型(B型、C型、D型)和耐药突变基因检测 二.检验目的:在进行抗病毒治疗前和抗病毒治疗中进行乙型肝炎病毒分型和耐药突变基因检测,能够:1). 区分中国和其他亚洲国家常见的HBV-B、C、D基因型; 2). 检测HBV抗病毒药物5个热点突变位点的6种突变类型; 3). 对HBV实行动态监控,辅助确定个性化的临床诊疗方案,进行HBV流 行病学研究。 三.临床意义: HBV基因型分为9种(A-I),其分布具有地域性,中国乃至亚洲流行的乙型肝炎病毒几乎都是B、C型,此外还有少量D型,不同的基因型易发生的突变类型不同,与病情转归也密切相关,如基因型C较B更容易引起严重的肝炎或肝癌,对干扰素的应答率A型高于D型,B型高于C型,C型高于D型。与C型患者相比,B型患者较早出现HBeAg血清学转换,较少进展为慢性肝炎,肝硬化和原发性肝细胞癌。 核苷(酸)类似物,如拉米夫定(Lamivudine,LMV),替比夫定(Telbivudine,LdT),阿德福韦酯(Adefovir,ADV)和恩替卡韦(Enticavir,ETV)等是抗HBV常见药物。但这些药物都无法彻底清除大多数乙肝病人体内的HBV,患者需要长期维持治疗。HBV在宿主体内感染以及抗病毒治疗的过程中会发生基因变异,并在宿主体内免疫系统的压力下和在治疗干预过程中进行变异的优势选择,以达到逃逸免疫、对抗药物、实现物种生存的目的,进而发生耐药。乙肝病人一旦出现耐药突变,其肝功能恶化的比例将显著增高,甚至快速进展至肝衰竭。 四.标本送检要求:4ml黄色帽血清管,空腹采集后立即送检,室温放置不宜超过2小时,如不能立即送检可于4℃保存一周,如需长期保存请放入-20℃冻存,运输过程中请注意保持低温。 五.开单名称:乙型肝炎病毒分型和耐药突变基因检测 进入本科室“医生工作站”→选择开单病人“姓名”→选择“项目类别”→选择“检验” →选择“乙型肝炎病毒分型和耐药突变基因检测”→确定 或进入本科室“医生工作站”→选择开单病人“姓名”→选择“项目类别”→选择“检验”→选择“实验室”→选择“乙型肝炎病毒分型和耐药突变基因检测”→确定六.收费:570元/例 七.送检时间:周一至周日8:00am-12:00am 八.送检地点:检验科三楼服务台 九.报告时间:抽血后,7个工作日后进入我院计算机检查报告系统,查看检测结果。 联系电话:84206146 检验科

62例丙型肝炎病毒基因分型结果分析

62例丙型肝炎病毒基因分型结果分析 发表时间:2017-07-13T15:16:33.613Z 来源:《世界复合医学》2017年第4期作者:张威威[导读] 所以在病毒学研究特别是病毒基因表达谱研究、病毒感染的诊断、病毒流行病学研究等方面有广泛应用前景。 牡丹江市肿瘤医院黑龙江牡丹江 157011 【摘要】目的:对慢性丙型肝炎患者的丙型肝炎病毒(HCV)基因分型情况进行分析,为HCV诊断和治疗地区提供有力的依据。方法:利用门诊及住院患者血清HCV抗体阳性标本,经荧光定量PCR检测HCV RNA阳性的62例标本用基因芯片进行不同基因分型检测。结果:检测HCV感染标本62例,共检出7种基因亚型,分别为1b、6型、2a、1b+ 2a、1b+ 3a、3a和3b,其中1b占72.6%,6型占8.8%,2a 占7.8%,1b+ 2a占5.9%,1b+ 3a占2.9%,3a占1.0%,3b占1.0%。结论:HCV基因型主要为1b与中国南方地区HCV基因型分布比较一致。按照年龄分组20岁以下4例,占6.45%,20~ 30岁12例,占28.6%,30~ 40岁15例,35.7%,40~ 50岁5例,占11.9%,50~ 60岁8例,占19.5%,60岁以上18例,占42.8%。青壮年和有吸毒史、外伤手术史、输注血液制品史的人群阳性率较高。【关键词】丙型肝炎病毒;基因芯片;基因分型【中图分类号】R512.6+3【文献标识码】A【文章编号】1276-7808(2017)04-146-01 Analysis of Hepatitis C Virus Genotyping in 62 Cases Abstract:Objective:To analyze the genotype of hepatitis C virus(HCV)in patients with chronic hepatitis C,and to provide a strong basis for HCV diagnosis and treatment. Methods:62 samples of HCV RNA positive were detected by fluorescence quantitative PCR. The genotypes were detected by cDNA microarray. RESULTS:A total of 62 HBV subtypes were detected,including 1b,6,2a,1b + 2a,1b + 3a,3a and 3b,of which 1b accounted for 72.6%,type 6 accounted for 8.8%,2a 7.8%,1b + 2a 5.9%,1b + 3a 2.9%,3a 1.0%,3b 1.0%. Conclusion:HCV genotype is mainly consistent with the distribution of HCV genotype in southern China. According to the age group under the age of 20 in 4 cases,accounting for 6.45%,20 to 30 years old in 12 cases,accounting for 28.6%,30 to 40 years old in 15 cases,35.7%,40 to 50 years old in 5 cases,11.9% Cases,accounting for 19.5%,over 60 years of age in 18 cases,accounting for 42.8%. Young adults and the history of drug addiction,trauma surgery history,infusion of blood products in the history of the positive rate of high population. Key words:hepatitis C virus;gene chip;genotyping 前言:丙型病毒性肝炎的发病率比较高,非常容易造成慢性病毒性肝炎、肝硬化等疾病,而这些病变的形成与其病原丙型肝炎病毒(HCV)的某些重要生物学特性有关。我国感染丙型肝炎病毒及新发患者数是非常多的,大部分HCV患者会逐步演变为慢性感染,并根据病程轻重发展为肝硬化或肝癌。HCV病毒基因有较强的变异性,变异位点可以发生在基因组的各个区域,根据变异位点的不同将HCV分为不同型别。由于HCV基因型别不仅与疾病严重性存在相关性,而且与抗病毒治疗和肝细胞癌的发生也密切相关。 1.资料与方法1.1一般资料本次研究采用的是我院2015~ 2017年门诊及住院患者血清HCV抗体阳性标本,荧光定量PCR检测HCV RNA阳性的62例标本(其中男31例,女31例,年龄8~81岁)进行基因分型检测。阴性对照为10例健康体检者血清。仪器用的是ABI7300型全自动PCR扩增仪,美国1285REL#6生物安全柜,日本三洋VIP SERIES- 86℃超低温冰箱。试剂用的是丙型肝炎病毒HCV RNA荧光定量检测试剂盒,购于中山大学达安基因股份有限公司,丙型肝炎病毒基因芯片检测技术由中科院上海微系统与信息技术研究所和瑞芯生物科技有限公司提供。 1.2方法 方法用到的是HCV RNA定量检测法,医护人员严格按照丙型肝炎病毒HCV RNA荧光定量检测试剂盒说明书进行操作,先进行RNA提取;逆转录;PCR扩增及荧光检测;然后再对检测结果进行分析,HCV基因分型检测也需要严格按照HCV基因检测芯片说明书进行操作,RNA提取与逆转录;PCR扩增;HCV芯片杂交与显色。 2.结果 62例HCV RNA荧光定量检测阳性结果与HCV基因分型检测结果相符合,10例健康体检者血清检测结果均为阴性,说明基因芯片结果可靠。检测HCV感染标本62例,共检出7种基因亚型,分别为1b、6型、2a、1b+ 2a、1b+ 3a、3a和3b,其中1b占72.5%,6型占8.8%,2a 占7.8%,1b+ 2a占5.9%,1b+ 3a占2.9%,3a占1.0%,3b占1.0%,1b为主要的流行型别,基因型6型已经取代2a成为第二常见亚型,混合基因型感染较多。 3.讨论HCV是一种全球性传染病、给人类健康带来极大威胁的病原体,HCV以血液和性传播为主要传播手段,发病隐匿,症状不典型,加之公众对其认知水平较低,因此病毒的传播不易控制,患者也容易因不能及时诊断而错过治疗的最佳时机。HCV基因型主要为1b与中国南方地区HCV基因型分布比较一致。按照年龄分组20岁以下4例,占6.45%,20~ 30岁12例,占28.6%,30~ 40岁15例,35.7%,40~ 50岁5例,占11.9%,50~ 60岁8例,占19.5%,60岁以上18例,占42.8%。青壮年和有吸毒史、外伤手术史、输注血液制品史的人群阳性率较高。国内外研究表明,HCV不同的基因型对肝脏损伤的程度不同,1b型对肝脏的损伤要比其他型严重得多。HCV对干扰素的应答率也不同,Kandi等,报道HCV 1b型感染多为慢性活动性肝炎,2a型比1b型对干扰素敏感。已证明HCV的基因型能影响抗病毒治疗的效果,感染HCV基因1型或基因4型的患者对使用干扰素和病毒唑的标准治疗反应较差,至少需延长治疗期1年,而且感染基因1型和基因4型的患者比其他基因型者能更快地发展成慢性肝病。HCV是引起人类慢性肝炎、肝硬化及肝癌的主要病原之一。基因分型芯片法,又称基因微矩阵,这种方法是近年来分子生物学及医学诊断技术发展的重要产物,具有非常明显的优点,比如说准确性好,灵敏度高,特异性强,而且简便快速,不需要荧光标记。由于基因芯片可以一次性对大量序列进行检测分析,具有高通量、并行、快速等特点,解决了传统核酸印迹杂交技术操作繁杂、自动化程度低、检测序列少、效率低的缺点,所以在病毒学研究特别是病毒基因表达谱研究、病毒感染的诊断、病毒流行病学研究等方面有广泛应用前景。参考文献:

转基因小鼠的制备

转基因小鼠的制备 【实验目的】 1.了解转基因小鼠制备的原理和方法。 2.学习转基因小鼠制备的流程。 3.掌握对转基因小鼠进行筛选的方法。 【实验原理】 转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 转基因动物是指染色体基因组中整合有外源基因并能遗传给后代的一类动物。整合到动物染色体基因组的外源基因称为转基因。转基因技术则是指制备转基因动物所需的一套技术,它涉及外源基因的构建、载体和受体的筛选、基因导人技术、供转基因胚胎发育的体外培养系统和宿主动物等许多方面。 1974年,Rudolf Jaenisch通过将SV40病毒的DNA注射到小鼠的囊胚中,创造了第一只携带外源基因的小鼠。后来又有研究人员把Murine leukemia病毒注射到小鼠胚胎得到了能通过生殖系统稳定遗传的小鼠,并且外源基因能在后代中稳定表达。这些能稳定遗传且表达外源基因的小鼠即我们现在一般意义上所说的转基因小鼠。 【实验步骤】 一、显微注射法 1.受精卵的采集 可育雌鼠注射孕马血清与绒毛膜促性腺激素促使超排卵。处理后与可育雄鼠交配,次日从输卵管内收集受精卵备用。 2.目的基因的导入 用显微操作仪将目的基因溶液导入受精卵的细胞核内。 3.受体母鼠的准备 将雄鼠输精管结扎,然后与可育雌鼠交配,刺激雌鼠发生一系列妊娠变化而得到假孕母鼠作为受精卵转基因后的养母。 4.胚胎移植 将已转入目的基因的受精卵从背部植入假孕母鼠的输卵管或子宫内(视胚胎发育的状况而定),使胚胎在养母体内发育成熟。 5.对幼鼠的鉴定 幼鼠发生断乳后自尾部提取DNA,与目的基因探针作分子杂交鉴定外源基因是否整合到幼鼠的染色体上。 二、胚胎干细胞囊胚显微注射法 1.囊胚期受精卵的采集 可育雌鼠注射孕马血清与绒毛膜促性腺激素促使超排卵。处理后与可育雄鼠交配,交配后第四天上午从子宫中冲取受精卵备用。 2.目的基因的导入

浅析乙肝病毒基因突变检测及治疗(一)

浅析乙肝病毒基因突变检测及治疗(一) 一、概况 由于我国人民生活水平低和卫生资源溃乏,造成乙肝泛滥。据统计:我国有乙肝病毒携带者约1.5亿、慢性迁延性肝炎约2500万、慢性活动性肝炎约1000万、重症肝炎约150万、肝硬化约100万和肝癌16~30万。肝硬化和肝癌80%以上是由乙肝病毒引起,而且80%左右来源于家族性垂直传播、与病人接触而感染机率很少。乙肝传染病已被国家疾病预防控制中心列为重点监控的疾病之一。 乙型肝炎病毒(HBV)属嗜肝病毒科,基因结构复杂,根据HBV-DNA核苷酸序列异质性≧8%为一种基因型的规定,HBV目前分为A~H8个基因型,其中A、B、C、F4个基因型存在不同的亚型,且分布呈区域性。由于其在复制过程中HBV-DNA聚合酶缺乏校正功能,导致易于变异,有报导HBV的基因型与基因型变异可能与HBV相关性肝癌的发生发展有关。HBV 变异给疾病的预防、诊断、治疗和预后带来了新问题,不同基因型的基因变异、临床表现及对抗病毒、肝移植等的治疗反应存在差异。 二、变异及区域 HBV受自然压力、个体免疫力和药物治疗作用出现变异。HBV有四个开放阅读框架(ORE)即S、C、P、X区。 1、C区变异:用基因芯片检测HBV前C区和C基因启动子(BCP)区4位点突变,发现前C 区A1896、前C区A1814、BCP区nt176 2、BCP区nt1764突变检出率分别是58.57%、12.86%、54.29%、52.86%。突变的发生依次是慢重肝、慢乙肝重度、中度、轻度,血清病毒标志是HBeAg(-)HBeAb(+)、HBV-DNA定量在104-106copy/ml之间的突变发生率最高。可以解释小三阳DNA阳性之原因:HBeAg前C区A1896位的G变异成A,密码子UGG变为终止UAG,使HBeAg不能合成,但不影响病毒复制。 2、S区变异:前S1有识别功能,前S2是介导受体进入功能。前S区的变异可能是病毒逃避宿主免疫的一种方法,前S区的变异决定不同的HBV亚型。124、131位变异或122-124间插入变异可改变S抗原决定簇的构型,致HBsAg假阴性。145、141、126、133位氨基酸的改变,用常规试剂仍可检出HBsAg,但可能削弱HBsAg的无免疫性,使高效价的乙肝免疫球蛋白或接种诱生的HBsAb难与变异株的HBsAg结合,缺乏中和特性,使HBsAg与HBsAb 同时阳性。在HBV-DNA阳性时,无论是乙肝病毒基因变异株或野毒株,前S1抗原是判断乙型肝炎病毒复制的重要指标。 3、P区变异:用微孔板核酸杂交法检测乙肝病毒P基因区变异,突变位点主要位于HBV-DNA 聚合的区域(YMDD),M1(蛋氨酸)可被VC(缬氨酸)或IC(异亮氨酸)替代。研究用拉米夫啶(LMV)治疗慢性乙肝而发生耐药的有关变异可见:LMV本身可引起HBV的变异即YMDD变异,用LMV四周后50-70%的病人出现YMDD变异。 4、X区变异:HBV-X蛋白对信号转导通路及细胞凋亡有影响,X蛋白对核转运影响和对线粒体直接作用。X区变异引起X蛋白(HBXAg)过度表达,激活体内癌基因和抑制抑癌基因,导致肝癌的发生。有报导:用聚合酶链反应检测原发性肝细胞癌(HCC)患者癌组织及癌周组织中HBV-X基因,检出率分别为68%和77%。

乙型肝炎病毒基因分型方法简述

乙型肝炎病毒基因分型方法简述 邵 玲 张 男 【摘要】乙型肝炎病毒是一种嗜肝脱氧核糖核酸病毒,属于一种复合体DNA病毒。乙型肝炎病毒可按两种方法分型:血清型和基因型。随着分子生物学的发展以及对乙型肝炎病毒研究的深入,乙型肝炎病毒血清分型法已不能适应对该病毒感染研究的需要,而出现的基因分型法则引起广泛的重视。 【关键词】乙型肝炎病毒;基因分型方法 H epatitis B virus gene minute method summ ary S HA O L in Z HA N G N an 【Abstract】The hepatitis B virus is one kind is addicted to the liver deoxyribonucleic acid virus,belongs to one kind of complex DNA virus.The hepatitis B virus may according to two method minutes:Blood serum and genotype.Along with molecular biology’s development as well as to hepatitis B virus research’s thorough,a hepatitis B virus blood serum minute law has not been able to adapt to this virus infection research need,but appears a gene minute principle brings to the widespread attention. 【K ey w ords】Hepatitis B virus;Gene minute method 乙型肝炎病毒是一种嗜肝脱氧核糖核酸病毒,属于一种复合体DNA病毒。乙型肝炎病毒可按两种方法分型:血清型和基因型。随着分子生物学的发展以及对乙型肝炎病毒研究的深入,乙型肝炎病毒血清分型法已不能适应对该病毒感染研究的需要,而出现的基因分型法则引起广泛的重视。1988年Ok2 mamoto[1]对18株不同亚型的HBV基因序列两两进行比较后,根据核苷酸序列异源性>8%的原则,将18株HBV DNA序列分为A~D4个基因型,提出了HBV基因型的概念。1992年Norder[2]发现ayw4和adw4q-两旧亚型之间及基因型A~D 之间S基因差异>4%,提出了两种新的基因型E,F,1994年Norder通过全基因序列P3测定加以证实。2000年Stuyver[3],在研究来自法国和美国的慢性乙肝病人血清样本时,发现有13株病毒无法归入A~F型,命名为G型。随后,日本和德国也相继发现了G基因型。2002年Arauz~Ruiz[4]对10株HBV进行基因型研究,发现其中3株虽与F型相近,但与F型又有明显的不同,进而命名为H型。截止现今,HBV基因型可分为A~H八型。 目前,国内外对HBV进行基因分型主要有“基因序列测定法、聚合酶链反应———限制性片段长度多态性分析法、基因型特异性表位单克隆抗体的EL ISA、基因型特异性线形探针检测法、基因型特异性引物PCR法和基因芯片技术”。 1 基因分型原理 1.1 全基因序列测定。全基因序列测定是根据HBV所有病毒核苷酸异源性>8%进行分型的。Okamoto对从日本及印度尼西亚adw2慢性携带者中分离出的3株HBV进行全序列测序及比较,其核苷酸的异质性为3.9%~5.6%,而与美国2株相同血清亚型HBV序列比较,异质性达8.3%~9.3%,达到甚至超过不同血清亚型HBV的异质性,从而说明血清学分型不能真正反映HBV基因变异。再经对18株HBV DNA进行两两比较分析,根据同源性<92%、异质性>8%,将其分为A, B,C及D4个基因型,初步建立了基因分型体系。12年后Stuyver使用该方法,发现了一种新的3248bp的HBV基因型G 。 1.2 S基因序列测定。由于乙型肝 炎病毒基因可分为p基因、前s基因、编 码HBs4的s基因、C基因及X基因(如 图),可分别对它们进行研究,从而找出各 个基因型在各个基因之间的差异。Nor2 der[5]对32例HBV患者s基因测序结果 进行分析,并建立进化树,基因型间异质 性>4%。除证实了Okamoto的A~D分型外,还发现了2个新的基因型E和F,使HBV基因型达到6个(A~F)。在其后对28例HBV全基因组、p基因、前s基因、编码HBs4的s基因、C 基因及X基因分别比较并建立进化树,进一步证实根据s基因序列分型最接近全基因组,从而证明了单独使用S基因进行分型的可靠性。目前,此法尚在使用,主要有SSP和SSO[6],即基因型特异性引物PCR法和基因型特异性线形探针检测法。 2 基因分型方法 2.1 序列测定法。即直接测定核苷酸序列,根据差异分型。自Okamoto据HBV基因型之间的全序列异质性8%进行分型以来,测序由于方法直接、可靠而成为主要鉴定HBV基因型的方法。同全序列进化树图比较,发现S基因的序列变化同全基因序列的变化一致,可用S基因序列代替全基因序列进行分型,界限为核昔酸序列的异质性4.0%。该法虽较为可靠但操作繁琐、费用昂贵,不适于临床大量标本检测。 2.2 聚合酶链反应———限制性片段长度多态性分析法(PCR~RFL P)。目前常用的基因分型方法,通过PCR扩增出目标基因片段(通常为S基因或Pres/s基因),用特定的限制性内切酶进行酶切,根据酶切图谱进行基因分型。Mizokami[7]通过分子进化方法对已知基因型的68例HBV患者全基因、106例HBV患者s基因序列进行分析,发现并确认基因型特异性酶切位点区域。Lindh[8]对不同基因型S基因的特异酶切位点进行分析,设计使用限制性内切酶Trp509I和Hinf I使S基因PCR产物产生不同长度的酶切片段,成功地将166/180例患者HBV实现A-F基因分型。RFL P敏感性高,但酶切位点易受基因变异影响,且遇混合感染或酶切不完全,会出现复杂条带,影响分型结果判断。 2.3 基因型特异性表位单克隆抗体的酶联免疫吸附法(EL ISA)PreS2多肽有多组抗原表位。基因型不同抗原表位也不同,从而可以鉴定不同基因型。Usuda[9]等用此法制备前S2区域基因型特异性表位的单克隆抗体,并用辣根过氧化酶进行标记,对68例HBV阳性患者血清检测,分型结果与S基因测序分型完全一致。在后期实验中发现,适用于大规模的流行病学调查,使较大范围的HBV的研究成为可能。 2.4 基因型特异性线形探针检测法。该方法是设计型特异的探针,检测HBV扩增产物,以产物的不同长度或与探针的反应性来区分不同型别。Kato[10]利用G基因型的病毒在核心区有36个核苷酸的插入,设计引物用PCR的方法可以对G基因型进行特异的筛查。早在1983年Wu用酶切的方法研究血清型的酶切图谱,来区分不同的血清型。王虹[11]等采用PCR2核酸杂交/EL ISA检测,主要是联合利用PCR、核酸杂交和酶联免疫技术,设计前C和C区的探针,可以快速准确的区分HBV的基因型。另外Van G eyt[12]根据A~F基因型的保守序列设计了18种型特异性探针与HBV S (下转12页)

相关文档