文档库 最新最全的文档下载
当前位置:文档库 › 植物必需营养元素生理功能及缺乏症状

植物必需营养元素生理功能及缺乏症状

植物必需营养元素生理功能及缺乏症状
植物必需营养元素生理功能及缺乏症状

(1) 碳、氢、氧

碳、氢、氧三种元素在植物体内含量量多,占植物干重的90%以上,是植物有机体的主要组成,它们以各种碳水化合物,如纤维素、半纤维素和果胶质等形式存在,是细胞壁的组成物质。它们还可以构成植物体内的活性物质,如某些纤维素和植物激素。它们也是糖、脂肪、酸类化合物的组成成份。此外,氢和氧在植物体内生物氧化还原过程中也起到很主要的作用。由于碳、氢、氧主要来自空气中的二氧化碳和水,因此一般不考虑肥料的施用问题。但塑料大棚和温室要考虑施用CO2肥,但需注意CO2的浓度应控制在0.1%以下为好。

(2) 氮

氮是植物体内许多重要有机化合物的成份,在多方面影响着植物的代谢过程和生长发育。氮是蛋白质的主要成份,是植物细胞原生质组成中的基本物质,也是植物生命活动的基础。没有氮就没有生命现象。氮是叶绿素的组成成份,又是核酸的组成成份,植物体内各种生物酶也含有氮。此外,氮还是一些维生素(如维生素B1、B2、B6等)和生物碱(如烟碱、茶碱)的成份。

(3)磷

磷是植物体内许多有机化合物的组成成份,又以多种方式参与植物体内的各种代谢过程,在植物生长发育中起着重要的作用。磷是核酸的主要组成部分,核酸存在于细胞核和原生质中,在植物生长发育和代谢过程都极为重要,是细胞分裂和根系生长不可缺少的。磷是磷脂的组成元素,是生物膜的重要组成部分。磷还是其他重要磷化合物的组成成份,如腺三磷(ATP),各种脱氢酶、氨基转移酶等。磷具有提高植物的抗逆性和适应外界环境条件的能力。

(4)钾

钾不是植物体内有机化合物的成份,主要呈离子状态存在于植物细胞液中。它是多种酶的活化剂,在代谢过程中起着重要作用,不仅可促进光合作用,还可以促进氮代谢,提高植物对氮的吸收和利用。钾调节细胞的渗透压,调节植物生长和经济用水,增强植物的抗不良因素(旱、寒、病害、盐碱、倒伏)的能力。钾还可以改善农产品品质。

(5)钙、镁、硫钙能稳定生物膜结构,保持细胞完整性,在植物离子选择性吸收、生长、衰老、信息传递以及植物抗逆性方面有重要作用。镁是叶绿素的组成成份,叶绿素a和叶绿素b中都含有镁,对植物的光合作用、碳水化合物的代谢和呼吸作用具有重要意义。硫是构成蛋白质和酶的不可缺少的成份。

(6)微量元素

铁:是合成叶绿素所必需的,与光合作用有密切的关系。硼能促进碳水化合物的正常运转,促进生殖器官的形成和发育,促进细胞分裂和细胞伸长,提高豆科植物的固氮能力。

锰:在植物体内的作用主要是通过对酶活性的影响来实现的,所以锰又叫催化元素。

铜:是植物体内许多氧化酶的成份,或是某些酶的活化剂,参与许多氧化还原反应,它还参与光合作用,影响氮的代谢,促进花器官的发育。锌是某些酶的成分或活化剂,

锌:通过酶的作用对植物碳、氮代谢产生广泛的影响并参与光合作用,参与生长素的合成,促进生殖器官发育和提高抗逆性。

钼:是固氮酶和硝酸还原酶的成份,氮代谢和豆科植物共生固氮都少不了钼,钼还能促进光合作用。

氯:参与植物光合作用,调节气孔的开闭,增强作物对某些病害的

抑制能力。

镍:元素被确认为必需营养元素时间不长,很多人还很陌生,下面我们一起学习一下镍元素的常识。

(1)、植物体内镍的含量与分布

植物体内镍的含量一般在0.05-5.0ug/g之间,根据植物对镍的累积程度不同,可分为两类:第一类为镍超累积型,主要是野生植物,镍含量超过1000mg/kg;第二类为镍积累型,其中包括野生的和栽培的植物,紫草科、十字花科、豆科和石竹科。

(2)、植物吸收镍的形态:植物主要吸收离子态镍(Ni2+),其次吸收络合态镍如Ni-EDTA和Ni-DTPA)。植物体内镍的运输较为迅速。在木质部中镍可与有机酸或多种肽形成螯合物。

(3)、镍的营养功能

① 有利于种子发芽和幼苗生长

②催化尿素降解

镍是脲酶的金属辅基,脲酶是催化尿素,水解为氨和二氧化碳的酶

③镍的生理功能在豆科植物氮代谢中有重要功能。

低浓度的镍可促进紫花苜蓿叶片中过氧化物酶和抗坏血酸氧化酶的活性,达到促进有害微生物分泌毒素降解,从而增强作物的抗病能力。豆科植物和葫芦科植物对镍的需求最为明显,这些植物的氮代谢中都有脲酶参加。

(4)、镍中毒

过量的镍对植物也有毒,且症状多变,生长迟缓,叶片失绿、变形;有斑点、条纹,果实变小、着色早等。镍中毒表现的失绿症可能是由于诱发缺铁和缺锌所致。

(5)、缺镍引起的疾病

镍有可能是胰岛素分子中的一个成分,相当于胰岛素的辅酶。镍在

维持大分子结构稳定性、膜稳定性和细胞的超微结构方面有重要作用,据有关资料报道,镍对增强胰岛素分泌,有降低血糖作用,并可刺激造血功能,镍作为神经镇静剂治疗头痛、神经痛和失眠。

硅是稻、麦、甘蔗等禾本科植物所必需的,对番茄、黄瓜、菜豆、草莓等也有一定作用。缺硅会使植物生殖生长期的受精能力减弱,降低果实数和果重。

归纳植物必须营养元素的功能

(1)构成植物体的结构、生活和贮藏物质

构成这些物质的营养元素主要有碳、 氢、氧、氮、磷、钙、镁、硫等。植物体的结构物质包括纤维素、半纤维素、木质 素及果胶质等物质;生活物质有氨基酸、蛋白质、核酸、叶绿素、酶及辅酶等;贮藏物质有脂肪、淀粉、植素等。

(2)在植物新陈代谢中起催化作用

植物体内,酶是生化作用和代谢过程中的生 物催化剂,在酶的催化过程中需要某些元素作为活化剂,使之活化;也有不少必需 营养元素本身就是酶的组分,如磷是氮素代谢过程中硝酸还原酶等一些重要酶的组成成分。

(3)其他特殊功能

在植物体内,参与植物的转化和运输、信号传递、渗透调节、生殖、运动等,如钾对植物体内碳水化合物的转化和运输、植物细胞水势的调节有重要作用。

(五)植物缺素症状(PPT)

1 缺氮

缺氮时,作物蛋白质、叶绿素、生物碱合成受到抑制,使作物生长减缓,叶片细小直立,叶色淡绿,植株生长矮小,茎秆细长,分枝分蘖少,花果少且容易脱落,植株提前成熟。因氮素化合物在植株体内移动

性大,并可重复利用,有从老叶向新叶流动的特性,所以缺氮时先从老叶开始。某些作物如番茄、架豆表现症状为叶脉和叶柄上呈现深紫色,苹果缺氮时,老叶枯黄或变紫,叶脉和叶柄呈现红色,叶片提早脱落。氮素过多时易促进植株体内蛋白质和叶绿素大量形成,造成茎叶徒长,影响通风透光,茎秆软弱,抗病虫抗倒伏能力差延迟成熟,品质变差。

2 缺磷

作物缺磷时,各种代谢受到抑制,植株生长迟缓,根系不发达,籽实细小,叶色暗绿,缺乏光泽。禾谷类作物分蘖延迟或不分蘖,延迟抽穗、开花和成熟,穗粒少而不饱满,玉米果穗秃顶,果树和棉花落花、落蕾,马铃薯块变小。磷素过多时,增强作物的呼吸作用,使禾谷类作物无效分蘖、秕粒增加,生殖器官过早发育,引起植株早衰,并降低对硅、锌、铁、镁等元素吸收,表现失绿症状。

3 缺钾

作物缺钾时,一般是老叶和叶缘先发黄,严重时焦枯似灼烧状,但叶脉为绿色。叶片上出现褐色斑点,茎细弱,结实性差,籽粒不饱满,十字花科和豆科及棉花等叶片脉间失绿,呈花斑叶,植株早衰。果树缺钾时,叶缘变黄,果实小,着色不良,品质下降。小麦易倒伏,抗旱、抗寒性降低。钾过剩时,会抑制镁、钙的吸收。

4 缺钙

缺钙时,植株生长受阻,节间短,组织柔软,顶芽、侧芽、根尖易腐烂,幼叶卷曲畸形,从叶缘开始变黄坏死,果实发育不良,如白菜、甘蓝出现叶焦病,番茄、辣椒、西瓜等从幼果开始易发生脐腐病,苹果易患苦豆病或水心病,豆科作物空、秕粒增加。

5 缺硼

缺硼时作物顶端停止生长,叶色暗绿,根系不发达,植株矮化,茎及叶柄易开裂,花发育不全,蕾、花易脱落。如大豆芽枯病,小麦、油

菜花而不实,苹果缩果病,芹菜茎裂病等。同时作物顶端停止生长,常导致侧根侧芽大量发生形成簇生。

6 缺锌

植株表现叶小簇生,矮化,生长缓慢,中下部叶片失绿,叶脉两侧易出现不规则的棕色斑点和黄绿相间的条纹。玉米早期出现白芽,后期果穗缺粒秃尖,果树叶片呈莲座状或簇状,并明显窄小,称小叶病,以苹果、桃、葡萄等最明显。

7 缺铜

多数植株顶端停止生长或出现顶枯,叶片生长慢并呈蓝绿色。禾本科作物表现叶片尖端失绿、干枯和卷曲,分蘖多但抽穗少,且形不成饱满籽粒。果树常发生顶枯病,顶部枝条弯曲下垂,形成斑块和瘤状物,树皮粗糙出现裂纹,有时分泌棕色树胶。

8 缺铁

植株缺铁影响叶绿素的合成,引起失绿。明显症状是首先新叶脉间失绿,随后整个叶片为黄白色,因铁移动性小,所以下部叶片仍保持绿色。果树有时新梢顶叶脱落后形成枯梢。

9 缺镁

植株矮小,叶片脉间失绿,随发展失绿部分转变为黄色或白色,叶脉仍为绿色。这是与缺铁、氮、锌等元素症状的主要区别。在作物中镁是较易移动的元素,故症状在老叶特别是老叶尖先出现。果树缺镁时果实小,严重时不能发育。

10 缺钼

缺钼症状一般发生在豆科、十字花科植物上,首先中部和较老叶片上出现黄绿色症状,叶子边缘向上卷曲,叶子变小,因硝酸盐积累叶片出现坏死斑点。花椰菜等缺钼严重时,易发生尾鞭病,叶层不能形成,叶肉几乎丧失。

各元素在植物的作用

各元素在植物的作用 1. 氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2. 磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。 抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量(增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积,形成花青素(紫色) 3. 钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收;

抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变,减少病菌所需养分; 4. 钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5. 镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、Al3+、NH4+可引起Mg缺乏; 镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少6. 硫(S)的生理功能-----中量元素 生理功能:蛋白质和许多酶的组成成分,参与呼吸作用、脂肪代谢和氮代谢和淀粉合成。组成维生素B1、辅酶A和乙酰辅酶A等生理活性物质。 硫素缺乏:籽粒中蛋白质含量降低;影响面粉的烘烤质量; 蛋白质合成受阻,与缺氮症状类似,但是先出现在幼叶。 7.铁(Fe)生理功能:微量元素 生理功能:叶绿素合成所必需;参与体内氧化还原反应和电子传递; 参与核酸和蛋白质代谢;参与植物呼吸作用;还与碳水化合物、有机酸和维生素的合成有关。

微量元素对植物生长的作用

微量元素对植物生长的作用 汤美巧 (江西农业大学,江西南昌 330045) 摘要目前被世界公认的微量元素有Fe、Mn、Zn、Cu、B、Mo、Cl 7种元素。微量元素在作物体内含量虽少,但由于它们大多数是酶或辅酶的组成部分,与叶绿素的合成有直接或间接的关系。在作物体内非常活跃,具有特殊的作用,是其它元素不可替代的。 关键词微量元素植物体内叶绿素的合成不可替代 1 植物生长的必需元素 地球上自然存在的元素有82种,其余的为人工合成,然而植物体内却有60余种化学元素。植物必需的营养元素有16种:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca),镁(Mg)、硫(S)、铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(CL)。各必需植物营养元素在植物体内含量差别很大,一般可根据植物体内含量的多少而划分为大量营养元素和微量营养元素。大量营养元素一般占植物干物质重量的0.1%以上,有碳、氢、氧、氮、磷、钾、钙、镁和硫共9种;微量营养元素的含量一般在0.1%以下,最低的只有 0.lmg/kg(0.lppm),它们是铁、硼、锰、铜、锌、钼和氯7种。 2 微量元素的重要性 微量元素在作物体内含量虽少,但它对植物的生长发育起着至关重要的作用,是植物体内酶或辅酶的组成部分,具有很强的专一性,是作物生长发育不可缺少的和不可相互代替的。因此当植物缺乏任何一种微量元素的时候,生长发育都会受到抑制,导致减产和品质下降。当植物在微量元素充足的情况下,生理机能就会十分旺盛,这有利于作物对大量元素的吸收利用,还可改善细胞原生质的胶体化学性质,从而使原生质的浓度增加,增强作物对不良环境的抗逆性。 3 微量元素对植物生长的作用 3.1 硼 3.1.1 硼对植物生长的作用 土壤的硼主要以硼酸(H 3BO 3 或B(OH) 3 )的形式被植物吸收。它不是植物体 内的结构成分,但它对植物的某些重要生理过程有着特殊的影响。硼能参与叶片光合作用中碳水化合物的合成,有利其向根部输送;它还有利于蛋白质的合成、提高豆科作物根瘤菌的固氮活性,增加固氮量;硼还能促进生长素的运转、提高植物的抗逆性。它比较集中于植物的茎尖、根尖、叶片和花器官中,能促进花粉萌发和花粉管的伸长,故而对作物受精有着神奇的影响。 3.1.2 缺硼症状

植物必须的营养元素

植物生长所需的营养元素 1.必需营养元素: 营养元素在植物体内的含量不同,所引起的作用也不同,有些元素在植物体内含量很少,但是是不可缺少的,判断必需营养元素的三个依据: (1)如缺少某种营养元素,植物就不能完成生活史; (2)必须营养元素的功能不能由其它营养元素代替; (3)必需营养元素直接参入植物代谢作用. 2.目前已发现16种必需营养元素: (1)大量营养元素: C、H、O、N、P、K; (2)中量营养元素Ca、Mg、S; (3)微量营养元素: Fe Mn Cu Zn B Mo Cl(一般占植物干重的0.1%以下)。 3.有益元素: 在16种营养元素之外,还有一类营养元素,它们对一些植物的生长发育具有良好的作用,或为某些植物在特定条件下所必需,但不是所有植物所必需,人们称之为“有益元素”,其中主要包括: Si Na Co Se Ni Al等. 4.为什么大量施肥并不能获得高产? (1)各类元素的同等重要性 大量、中量和微量营养元素具有同等重要性,必需营养元素在植物体内不论数量多少都是同等重要的,作物的产量和品质是有最缺乏的营养元素决定的,要想节约肥料的投入成本又能获得高产,必须做的平衡施肥。 (2)常见土壤营养元素的缺乏状况表 土壤类型土壤pH<6.0 土壤pH 6.0-7. 0 土壤pH>7.0 沙土、氮、磷、钾、钙、镁、铜、氮、镁、锰、硼、铜、锌氮、镁、锰、硼、铜、锌、铁 锌、钼 轻壤土氮、磷、钾、钙、镁、铜、钼氮、镁、锰、硼、铜氮、镁、锰、硼、铜、锌 壤土磷、钾、钼锰、硼锰、硼、铜、铁 粘壤土磷、钾、钼锰硼、锰 粘土磷、钼硼、锰硼、锰 髙有机质土磷、锌、铜锰、锌、铜锰、锌、铜

植物元素的缺乏症

植物元素的缺乏症 摘要:环境中磷元素的多少必然使植物发生相应的生理生化并影响其生长发育而产生相应症状。磷素的缺乏会影响核蛋白形成,抑制细胞分裂与增殖,使作物生长发育延缓或停止。番茄缺磷,植株深绿色,并出现红或紫色,下部叶子发黄,叶柄短而纤细,从而影响到植物生长及结实状况。本实验以番茄种子为材料,运用培养液为基础进行植物溶液缺磷培养。以茎高,生长状况,叶绿素含量等确定植株的光和能力及生长情况。本实验表明:磷素在植物生长过程中是必不可少的元素,能促进植物的正常健壮生长,缺乏磷元素会导致植物生长缓慢或停滞,影响生长,若在缺磷的实验组中加入磷元素,该植株又恢复了生长。在实验中出现的症状可以指导实际生产合理施肥。 关键词:缺磷番茄缺素培养叶绿素缺素症状 番茄是人类的一种蔬菜,对人体的健康具有促进作用,缺磷是限制番茄正常生长的重要因素之一。磷作为植物生长发育所必需的大量元素之一,它不仅是核酸和生物膜的重要组分,而且在能量代谢、光合作用、呼吸作用、酶活性调节、氧化还原反应、信号传导和碳代谢等方面也扮演重要角色。环境中磷元素的多少必然使植物发生相应的生理生化并影响其生长发育而产生相应症状。为了使番茄可以正常生长不至于影响番茄的产量,在农业栽培技术和作物育种上开展各项研究的同时掌握作物个体发育对外界环境条件营养需求极为重要,磷是自然生态系统中存在的必需元素,它既是植物体内许多重要的有机化合物的组成成分,在结构和

生理上起着重要作用,同时又以多种方式参与植物体内的各种生理代谢过程,对促进植物生长发育和新陈代谢以及作物的早熟高产优质都起着重要作用。缺少磷元素时,植物生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,抗性减弱。本实验通对番茄幼苗在缺磷的生长状况,做出实验分析,以证明磷元素是玉米生长必需的重要元素,对玉米的生长有重要作用,也可通过番茄缺磷表现指导施肥。 1.实验材料与方法 1.1.1实验仪器量筒烧杯移液管瓷质培养瓶 1.1.2 实验试剂按配置表 1.1.3 实验材料番茄种子 1.2 实验方法 1.2.1 材料准备把番茄种子分散播种在土壤中培养,并定时浇水,等幼苗长出第一片真叶使待用。 1.2.2配制缺元素培养液如下表: 完全和缺磷培养液按下表配制 配制时先取蒸馏水900ml,然后加入储备液,最后配成1000ML,以避免产

植物必须元素及其缺素症状

植物营养元素的生理功能及缺素 一、营养元素种类 植物营养元素可分为必需营养元素和有益营养元素。 (一)、必需营养元素: 1、判定某种元素是不是植物生长所必需的,要看其是否具备以下三个条件: 1、这种元素是完成作物生活周期所不可缺少的; 2、缺少时呈现专一的缺素症,具有不可替代性,惟有补充后才能恢复或预防; 3、在作物营养上具有直接作用的效果,并非由于它改善了作物生活条件所产生的间接效果,也不是依照它在作物体内的含量的多少,而是以它对作物生理过程所起的作用来决定。 2、植物必需营养元素有十六种: 大量营养元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K); 中量营养元素:钙(Ca)、镁(Mg)、硫(S); 微量营养元素:铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(Cl)。 此外,有人认为,镍(Ni)元素是植物必需营养元素。 (二)、有益营养元素: 有益营养元素是为某些植物正常生长发育所必需而非所有植物所必需的元素。如硅(Si)、钠(Na)、钴(Co),它们可代替某种营养元素的部分生理功能,或促进某些植物的生长发育。如: 甜菜是喜钠植物,它可在渗透调节等方面代替钾的作用,并促进细胞伸长,

增大叶面积;硅是稻、麦等禾本科植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏;钴是豆科植物固氮及根瘤生长所必需。固植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏, (三)、稀土元素: 稀土元素是指化学周期表中镧系的15个元素和化学性质相似的钪与钇。镧系:镧La* 铈Ce* 镨Pr 铷Nd * 钷Pm 钐Sm* 铕Eu 钆Gd 铽Tb 镝Dy 钬Ho 铒Er 铥Tm 镱Yb 镥Lu* 和钪Sc 钇Y 。 其中的镧、铈、钕、钐和镥等有放射性,但放射性较弱,造成污染可能性很小。土壤中普遍含有稀有元素,但溶解度很低,有效性低。磷肥及石灰中往往含有较多的稀土元素。稀土元素在植物生理上的作用还不够清楚,现在只知道在某些作物或果树上施用稀土元素后,有增大叶面积、增加干物质重、提高叶绿素含量、提高含糖量、降低含酸量的效果。由于它的生理作用和有效施用条件还不很清楚,所以施用稀土元素不是总是有效的。 二、营养元素的生理功能与缺素症状 (一)、一般不需通过施肥补充的营养元素:碳、氢、氧 1、碳、氢、氧是植物体内各种重要有机化合物的组成元素,如碳水化合物、蛋白质、脂肪和有机酸等; 2、植物光合作用的产物-糖是由碳、氢、氧构成的,而糖是植物呼吸作用和体内一系列代谢作用的基础物质,同时也是代谢作用所需能量的原料; 3、氢和氧在植物体内的生物氧化还原过程中起着很重要的作用。 (二)、需要通过施肥补充的营养元素: 1.氮(N):

各元素在植物的作用(同名8940)

各元素在植物的作用(同名 8940) 各元素在植物的作用 1.氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2.磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳 水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量 (增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积, 形成花青素(紫色)

3.钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、 脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收; 抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变, 减少病菌所需养分; 4.钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5.镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、AI3+、NH4+可引起Mg缺乏;镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少 6.硫(S)的生理功能-----中量元素

植物缺素症

1、缺氮氮一般积集在幼嫩的部位和种子里。当氮素供应充足时,植物的茎叶繁茂、时色深绿、延迟落叶;反之,氮素不足,植株就矮小,下部叶片首先缺绿变黄,逐步向上扩展,叶片簿而黄。当然,如果缺氮,肥施得过多,尤其在磷、钾供应不足时,会造成徒长、贪青、迟熟、易倒伏、感染病虫害,特别是一次用量过多会引起烧苗,所以一定要注意合理的施肥。 2、缺磷磷参与植物体内的一系列新新陈代谢的过程,如光合作用、碳水化合物的合成、分解、运转等。磷能促进体内可溶性糖类的贮存,因而能增强植物的抗旱抗寒能力。磷素供应足时,特别在苗期能促进根系发育,使根系早生快发,促进开花,对球根作物能提高质量和产量。反之,磷素供应不足时,植物生长受到抑制,首先下部时片叶色发暗呈紫红色,开花迟,花亦小。 3、缺钾它不直接组成有机化合物,而参与部分代谢过程和起调节作用。主要以离子态存在,在休内移动性大,通常分布在生长最旺盛的部位,如芽、幼叶、根尖等处。钾供应充足时,能促进光合作用,促进植物对氮、磷的吸收,有利于蛋白质的形成,使茎叶茁壮,枝杆木质化、粗壮,不易倒伏,增强抗病和耐寒能力。缺钾时,休内代谢易失调,光合作用显著下降,茎杆细瘦,根系生长受抑制,首先者叶的尖端和边缘变黄直至桔死,严重时会使大部分叶片枯黄。 #氮~缺乏:植株矮小,全株叶色淡绿,老叶枯黄 种子或果实提早成熟但产量降低 过多:植株生长过於旺盛,叶色浓绿,叶大而软弱 延迟开花(甚至不开) 果实晚熟且容易被病虫害感染 #磷~缺乏:植株生长受阻,叶的宽度变窄,叶片较小 叶色暗绿无光泽 部分作物在老叶及茎呈现紫色 花芽分化及分蘖减少,果实甜味减低 过多:植株变矮,叶变肥厚,生育变坏 成熟提早,减少收量 #钾~缺乏:生长受阻,水溶性碳水化合物及溶性氮含量增加而蛋白质及淀粉含量降低 老叶的叶缘先端黄化,叶缘叶肉呈现焦枯褐斑 植株软弱,缺水时易萎凋 新叶变暗绿色,伸长抑制变小叶 根的伸长不佳,易腐烂 果实变小,糖酸度降低 过多:引起钙镁缺乏 #钙~缺乏:根的表皮形成木栓层,根变短而粗 根尖或生长点及幼嫩组织先呈水浸状而后坏死 茎的髓部细胞分解而呈中空状 生长旺盛的幼叶先端白化,之后褐变而枯死 过多:引起钾镁锰铁硼等缺乏

植物的元素缺乏症

植物的元素缺乏症 摘要:为探求各种主要元素对植物生长发育的作用,本次试验采用青瓜幼苗 为实验材料,用配制的各种缺乏某种矿质元素的培养液进行培养,根据2周的持续观察记录,进一步了解矿质元素的作用、特点及对植物生长发育的重要性。 关键词:青瓜幼苗、培养液配制、缺素培养。 植物的生长发育,除需要充足的阳光和水分外,还需要矿质元素,否则植物就不能很好地生长发育甚至死亡。应用溶液培养技术,可以观察各种营养缺乏症的典型症状,进而了解矿质元素对植物生长的必需性;用溶液培养做植物的营养实验,可以避免土壤里的各种复杂因素。近年来也已经应用溶液培养进行无污染蔬菜的栽培生产。 1材料与方法 1.1材料 1.1.1实验仪器:分析天平,培养口杯,鱼缸打气泵,移液管,量筒,烧杯,玻棒,海绵,光合蒸腾仪(如图1所示) 图1 1.1.2实验材料:青瓜幼苗 1.1.3实验药品: ⑴Ca(NO 3) 2 ⑵KNO 3 ⑶MgSO 4 ⑷KH 2 PO 4 ⑸CaCl 2 (6)KCl⑺NaH 2 PO 4 ⑻NaNO 3 ⑼Na 2 SO 4 ⑽MgCl 2?6H 2 O ⑾FeCl 3 ⑿EDTA-Na 2 ⒀FeSO4 ⒁H 3BO 3 ⒂MnCl 2 ?4H 2 O ⒃CuSO 4 ?5H 2 O ⒄ZnSO 4? 7H 2 O ⒅H 2 MoO 4 ?H 2 O 1.2实验方法 1.2.1先按表2-1分别配制贮备液(所有的药品均须分析试剂级),每种溶液1L 表2-1 药品的名称及用量 药品名称用量(g/L) Ca(NO 3) 2 82.07 KNO3 50.56 MgSO 4?7H 2 O 61.62 KH 2PO 4 27.22

钠元素对植物的危害和钾元素对植物的作用

钠元素对植物的危害和钾元素对植物的作用 以下是钠元素对植物的危害和钾元素对植物的作用详解。 一.钠离子对植物的危害 盐碱对植物可造成两种危害:一是毒害作用,当植物吸收进较多的钠离子或氯离子时,就会改变细胞膜的结构和功能。例如,植物细胞里的钠离子浓度过高时,细胞膜上原有的钙离子就会被钠离子所取代,使细胞膜出现微小的漏洞,膜产生渗漏现象,导致细胞内的离子种类和浓度发生变化,核酸和蛋白质的合成和分解的平衡受到破坏,从而严重影响植物的生长发育。同时,因盐分在细胞内的大量积累,还会引起原生质凝固,造成叶绿素破坏,光合作用率急剧下降。此外,还会使淀粉分解,造成保卫细胞中糖分增多、膨压增大,最终导致气孔扩张而大量失水。这些危害,都会造成植物死亡。二是提高了土壤的渗透压,给植物根的吸收作用造成了阻力,使植物吸水发生困难。结果植物体内出现严重缺水,光合作用和新陈代谢无法进行;同时,还会出现细胞脱水、植株萎蔫,最后导致植物死亡。 二.钾对植物的作用 1、酶类活化 在化学反应过程中,酶起着催化剂的作用。酶将各种分子聚集在一起,促成化学反应的进行。植物生长过程所涉及的60多种不同类型的酶均需要钾加以“活化”。钾可改变酶分子的物理构型,使适宜的化学活性位置暴露出来,参加反应。细胞的含钾量可决定酶的活化量,进而决定化学反应的速度,因此,钾进入细胞的速度可控制某一反应进行的速度。钾对酶的活化作用或许是钾在植物生长过程中最重要的功能之一。 2、水分利用 钾在植物根系内积累从而产生渗透压梯度,使水分吸入根系。缺钾植株吸水能力减弱,遇供水不足时,较易遭受胁迫。植株亦依靠钾素来调节其气孔(叶片与大气交换二氧化碳、水蒸汽和氧气的孔隙)的启闭。气孔作用的正常发挥有赖于供钾充足。当钾进入气孔两侧的保卫细胞时,细胞因充水而膨胀,孔隙张开,使气体能自由进出。当供水不足时,钾则被泵出保卫细胞外,孔隙关闭,以防水分亏损。若供钾不足,气孔将变得反应迟钝,造成水蒸汽逸损;反之,供钾充足的植株则不易遭受水分胁迫。 3、光合作用 利用太阳能将二氧化碳和水化合成糖分这一过程最初形成的高能物质是三磷酸腺苷(ATP),ATP 继而作为能源用于其他化学反应。钾离子可以使ATP生成位置的电荷保持平衡状态。当植株缺钾时,光合作用和ATP 生成速度均减慢,因而所有依靠ATP的过程都受到抑制。钾在光合作用中的作用较为复杂,但在调节光合作用方面,钾对酶的活化和在ATP制造过程的作 用比它对气孔的调节作用更为重要。 4 、糖分运输 植物通过韧皮部将光合作用产生的糖分运输到植物的其他部位供利用或贮藏起来。植物的运输系

初中生物植物生长所必需的营养元素一

初中生物植物生长所必需的营养元素(一) 初中生物植物生长所必需的营养元素(一) 在植物整个生长期内所必需的营养元素是:碳()、氢(H)、氧()、氮(N)、磷(P)、钾()、钙(a)、镁(g)、硫(S)、铁(Fe)、锰(n)、锌(Zn)、铜(u)、钼()、硼(B)、氯(L)十六种。 这十六种必须的营养元素又可分为大量营养元素、中量营养元素、微量营养元素。 大量营养元素,它们在植物体内含量为植物干重的千分之几到百分之几。有碳()、氢(H)、氧()、氮(N)、磷(P)、钾()。 中量营养元素有钙(a)、镁(g)、硫(S)。 微量营养元素,它们在植物体内含量很少,一般只有只占干重的十万分之几到千分之几。有铁(Fe)、锰(n)、锌(Zn)、铜(u)、钼()、硼(B)、氯(L)。氮(N)对作物的生理作用氮不仅是植物体内蛋白质、核酸以及叶绿素的重要组成部分,而且也是植物体内多种酶的组成部分。同时,植物体内的一些维生素和生物碱中都含有氮。在蛋白质中,氮的平均含量是16-18%,而蛋白质是构成原生质的基本物质。一切有生命的有机体都是处于蛋白质的不断合成与分解之中,如果没有氮素,就不会有蛋白质,也就没有生命。氮也是植物体内叶绿素的组成部分,氮素的丰缺与叶片中叶绿素的含量有着密切的关系,如果绿色植物缺少氮素,会影响叶绿素的形成,光合作用就不能顺利进行。氮素供应充足,植物可以合成较多的叶绿素。一般作物缺乏氮

时的症状是:从下部叶开始黄化,并逐渐向上部扩展,作物的根. 系比正常生长的根系色白而细长,但根量减少。磷(P)对作物的生理作用磷是植物体内许多重要有机化合物的成分(如核酸、磷脂、腺三磷等),并以多种方式参与植物体内的生理、生化过程,对植物 的生长发育和新陈代谢都有重要作用。核酸和蛋白质是原生质、细胞核和染色体的重要成分,在植物的生命活动和遗传变异中起重要作用。细胞分裂和新器官的形成都少不了他们。供给正常的磷营养,能加速细胞分裂和增殖,促进生长发育,并有利于保持优良品种的遗传特性。特别是作物的生育早期,充足的磷营养对促进作物的生长发育和早熟、优质高产有重要作用,否则,生长受到抑制,根系发育不良,而且这种影响即使以后大量补给也难于完全弥补。 在氮素代谢中,磷也是重要的,如果磷不足,就会影响蛋白质的合成,严重时蛋白质还会分解,从而影响氮素的正常代谢。所以在缺磷时单施氮肥效果不好,所以我们提倡氮磷肥配合使用。 如果供磷不足,能使细胞分裂受阻,生长停滞;根系发育不良, 叶片狭窄,叶色暗绿,严重时变为紫红色。大量事实表明,充足的 磷营养能提高植物的抗旱、抗寒、抗病、抗倒伏和耐酸碱的能力,能促进植物的生长发育,促进花芽分化和缩短花芽分化的时间,因而能促使作物提早开花、成熟。钾()对作物的生理作用钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。

各元素在植物的影响

各元素在植物的影响

————————————————————————————————作者: ————————————————————————————————日期:

各元素在植物的影响 1. 氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2.磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量(增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积,形成花青素(紫色) 3.钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收; 抗倒伏原理:促进维管束木质化,形成厚壁组织;

抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变,减少病菌所需养分; 4.钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5.镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、Al3+、NH4+可引起Mg缺乏; 镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少6.硫(S)的生理功能-----中量元素 生理功能:蛋白质和许多酶的组成成分,参与呼吸作用、脂肪代谢和氮代谢和淀粉合成。组成维生素B1、辅酶A和乙酰辅酶A等生理活性物质。 硫素缺乏:籽粒中蛋白质含量降低;影响面粉的烘烤质量; 蛋白质合成受阻,与缺氮症状类似,但是先出现在幼叶。 7.铁(Fe)生理功能:微量元素 生理功能:叶绿素合成所必需;参与体内氧化还原反应和电子传递; 参与核酸和蛋白质代谢;参与植物呼吸作用;还与碳水化合物、有机酸和维生素的合成有关。 缺乏症:顶端或幼叶失绿黄化,由脉间失绿发展到全叶淡黄白色。 中毒症状:水稻亚铁中毒“青铜病”

植物缺素症状形态诊断汇总

植物缺素症状形态诊断 一、缺素症的观察步骤 1.对比正常植株,首先观察症状出现的部位:症状主要发生在下部老叶,或在新叶或顶芽。 2.观察叶片颜色:叶片是否失绿变褐变黄,叶色是否均一,叶肉和叶脉的颜色是否一致,叶上有无斑点或条纹,斑点或条纹是什么颜色。 3.观察叶片形态:叶片是否完整,是否卷曲或皱缩,叶尖、叶缘或整个叶片是否焦枯。 4.症状发展过程:症状最先出现在叶尖、叶基部、叶缘或是主叶脉两侧,症状以后又怎样发展。 5.观察顶尖是否扭曲、焦枯或死亡。 二、主要农作物营养缺乏症状 1、水稻缺氮植株矮小,分蘖少,叶片小,呈黄绿色,从叶尖至中脉扩展到全部叶片发黄。结穗短小,成熟提早。 缺磷叶片细弱,叶色暗绿,严重时有赤褐色斑点。稻丛呈簇状。鞘叶比例失调,叶鞘长,叶片相对变短。根系发育不良,分蘖少。 缺钾叶色暗绿,呈青铜色,老叶软弱下垂,心叶挺直。分蘖期前易患胡麻叶斑病;分蘖期后,老叶叶面有赤褐色斑点,叶缘呈枯焦状,茎易倒状和折断,根部褐色有黑根,穗期提前。籽粒不饱,空秕粒多。容易感染病害,如纹枯病等。

缺锌一般在插后2-4周间发生,叶片中肋失绿,失绿区开始为黄白色,以后逐渐转为红褐色,植株明显矮缩,下位叶出现散生红棕色斑点,尖枯。附:氮过多叶片软弱下垂,无效分蘖增多,易倒伏,易感稻瘟病。 2、小麦 缺氮叶片稀少,叶色发黄,植株细长,分蘖少,穗短小。 缺磷叶色暗绿,无光泽,植株细小,分蘖少,次生根极少,前期生长停滞,出现缩苗。返青期叶尖紫红。抽穗成熟较迟。籽粒不饱满,千粒重低。 缺钾老叶尖及边缘黄焦,茎秆细,叶柄短而软弱,易倒伏。 3、玉米 缺氮老叶先褪色变黄,叶小,生长受阻碍,植株矮小,叶尖枯黄呈V形向下扩展。 缺磷生长明显受阻,茎细叶狭,大多出现较深的紫红色,果穗发育不良--秃尖、多空粒。 缺钾多在生育中后期出现,中、下位叶片前端发黄,尖端及边缘干枯呈烧灼状,节间明显缩短,叶色深绿;茎秆发育不良,细弱,易倒伏、折断;成熟延迟,果穗发育不齐。 缺硼植株矮缩,严重时幼芽及叶尖生长受阻甚至死亡,叶脉间出现白色条纹,果穗瘦弱,结实不良或穗而不实形成空秆。幼苗形成白色的芽,初期叶基部绿色减退,叶尖和叶缘变黄,呈明显的黄白色束状条纹,叶脉间失绿,下部叶严重,病斑渐大,最后叶子干枯坏死,

植物营养九问植物必需的营养元素有哪些

植物营养九问植物必需的营养元素有哪些 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

植物营养九问植物必需的营养元素有哪些 1、植物必需的营养元素有哪些 植物生长发育所必需的营养元素有: 碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、硼(B)、锌(Zn)、铜(Cu)、钼(Mo)、氯(Cl)16种,其中碳、氢、氧主要通过土 壤、农家肥获得,尤其是有机碳素,现在越来越需要了,可用嘉美红利进行补充。矿质营养学说理论中,氮、磷、钾需求量最大,称为大量元素;钙、镁、硫需求量适中,称为中量元素;铁、锰、硼、锌、铜、钼、氯等元素需要量少,称为微量元素。 2、植物对养分的吸收特性 ①最小养分律。德国化学家、现代农业化学的倡导者李比希提出最小养分律——木桶效 应,最小养分是随时间、地点和作物生长期而变化的最小养分律对科学合理施肥的指导意义:作物对养分的需求不是平均的,不是含量最高的养分影响产量,而是含量相对最小的养分制约着作物的产量。 ②报酬递减律。从一定土地上所得到的报酬随着向该土地投入的劳动和资本量的增大而有 所增加,但随着投入的增加,单位劳动和资本所获取的报酬却在减少。 报酬递减律对科学合理施肥的指导意义:肥料不是施越多越好,肥料施多了不仅成本高,还可能产生肥害,影响产量或绝收。 ③养分归还学说。由于人们在土地上种植作物并把这些产物连续不断地拿走,这就必然会 使土壤肥力逐渐下降,从而土壤所含的养分将会越来越少。 养分归还学说对科学合理施肥的指导意义:为了获得连续的丰产稳产,必需及时补充作物生长发育所需的各种养分。 ④同等重要定律。对农作物来讲,不论大量元素或微量元素,都是同样重要缺一不可的, 即使缺少某一种微量元素,尽管它的需要量很少,仍会影响某种生理功能而导致减产。同等重要律对科学合理施肥的指导意义:各种养分对作物都是同等重要的,微量元素、稀有元素和大量元素是同等重要的。 ⑤植物有机营养理论。矿物营养理论,植物为完成生命过程和繁衍后代合成多种有机物,形成组织构成物(纤维素、半纤维素、木质素);储藏物(淀粉、蛋白质、脂肪);生命活动能源(葡萄糖、磷脂、激素、维生素);抵御环境胁迫(生物碱、黄酮)。植物因为需

文档植物的十三种必需元素的作用及其缺乏症细胞中的元素和化合物生物人教必修1

植物的十三种必需元素的作用及其缺乏症 (一) 氮 根系吸收的氮主要是无机态氮,即铵态氮和硝态氮,也可吸收一部分有机态氮,如尿素。 氮是蛋白质、核酸、磷脂的主要成分,而这三者又是原生质、细胞核和生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶和辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还是某些植物激素(如生长素和细胞分裂素)、维生素(如B1、B2、B6、PP等)的成分,它们对生命活动起重要的调节作用。此外,氮是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂和生长。当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上。这是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏和被病虫害侵害。 (二) 磷 磷主要以H2PO-4或HPO2-4的形式被植物吸收。吸收这两种形式的多少取决于土壤pH值。pH<7时, H2PO-44居多;pH>7时, H2PO-4较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷是核酸、核蛋白和磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷是许多辅酶如、等的成分,它们参于了光合、呼吸过程;磷是AMP, ADP和A TP的成分;磷还参与碳水化合物的代谢和运输,如在光合作用和呼吸作用过程中,糖的合成、转化、降解大多是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD和FAD的参与,而磷酸吡哆醛和磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、A TP、CoA 和NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化和运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯和禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟

钙元素在植物中的作用

酸性土壤主要分布于南方地区,种类有:棕壤、褐土、娄土、灰褐土、灌淤土等。 碱性土壤多分布于北方地区,种类有:碱土、黄绵土、黑垆土、棕钙土、栗钙土等。 土壤的主要类型: 1.棕壤:棕壤又称棕色森林土,主要分布于半湿润半干旱地区的山地垂直带谱中,如秦岭北坡、吕梁山、中条山、六盘山等高山与洮河流域的密茂针叶林或针阔混交林的林下。在褐土分布区之上。 具有深达1.5-2m发育良好的剖面,有枯枝落叶层、腐殖质聚积层,粘化过渡层,疏松的母质层等。表土层厚约15-20cm,质地多为中壤。其下则为粘化紧实的心土层,粘粒聚合作用明显,厚约30-40,富含胶体物质和粘粒,有明显的核状或棱块状结构,在结构体表面有明显的铁锰胶膜复被。再下逐渐过渡至轻度粘化的底土层。K、Ca、Mg、Mn在表层腐殖质中有明显聚积。土壤胶体吸收性较强,土壤代换总量约5—25当量/100g土,土壤吸收性复合体大部分为盐基所饱和,盐基饱和度达80%以上。土壤呈微酸性反应,PH值6.5左右。发育在酸性基岩母质上的棕壤,PH值可达5.5-6,盐基饱和度也较低,约在60—70%。棕壤土养分释放迅速,因土壤质地粘重,结构和通透性差,水分不易入渗,在地势较高的山坡地,易受干旱威胁,在地势低洼地带,又易形成内涝。 2.褐土:褐土分布区为暖温带半干旱半湿润的山地和丘陵地区,在水平分布上处于棕壤以西的半湿润地区,在垂直分布上,位于棕壤带以下,在黄土高原地区主要分布于秦岭北坡、陇山、吕梁山、伏牛山、中条山等地形起伏平缓、高度变化不大的山地丘陵和山前平原以与河谷阶地平原。 褐土多发育在各种碳酸盐母质上,其成土过程,主要是粘化过程和碳酸钙的淋溶淀积过程。典型的褐土剖面包括暗灰色的腐殖质层(A层)、鲜褐土的粘化层(B层)、碳酸钙积聚的钙积层(BCa)和母质层(C层)。土体中的粘化现象明显,粘化层紧实而具有核状或块状结构,物理性粘粒含量一般在30—50%。钙积层碳酸钙含量20—30%。土壤上层呈中性或微酸性反应,下层呈中性或微碱性。土壤代换量较高,可达20—40mg当量/100g土,代换性盐基以钙、镁为主,粘粒矿物以水云母和蛭石为主。具有良好的渗水保水性能,但水分的季节性变化明显,表现为春旱明显。土壤胶体吸收能力强,盐基饱和度高。在自然植被下,有机质含量为1—3%,但由于褐土适于耕作,大部分已辟为农地,致使有机质含量逐渐减少(一般为1%左右),氮磷贮量少。褐土肥效反应快,但稳肥性差。由于粘化现象明显,土壤易板结,耕性较差。 3.碱土:分布面积很小,主要分布在银川平原西大滩一带的洼地。其主要特征是土壤胶体复合体吸收了大量的交换性钠,土壤呈碱性,PH值大于9,农作物和高等植物均无法生长。 4.娄土:主要分布在潼关以西、宝鸡以东的关中平原地区,在山西的南部,河南的西部也有一定面积的分布。 娄土是褐土经人为长期耕种熟化、施肥覆盖所形成的优良农业土壤。其剖面构型大体可分上

如何诊断微量元素在植物体内缺乏及过剩

如何诊断微量元素在植物体内缺乏及过剩 一、硅元素 当植物体内缺乏硅元素时,植株表现为:茎叶软弱,易受病虫害侵袭,易倒伏;水稻生长下降,抽穗延迟,影响结实。硅元素过剩时会出现土壤pH过高,将会导致植株各种生理性障碍。 二、氯元素 当植物体内缺乏氯元素时,植株经常表现为:新芽黄化;叶先端凋萎,接着引起缺氯,最终出现青铜色坏死。过剩时主要表现为:薯类纤维增多,品质下降;烟草叶品质下降;有些盐害并非氯过剩,而是由于食盐的浓度过高而引起。 三、锰元素 当植物体内缺乏锰元素时,植株表现为:禾本科植物幼叶发生条纹状黄化,进而引起坏死;阔叶植物出现斑点状黄化及坏死;叶片变小。锰元素过剩时会出现叶尖出现褐色或紫色小斑点,易发生于老叶;有时出现缺铁症;有的学说认为,果树异常落叶以及将腐殖质土壤开垦为水田发生的赤枯病是由于锰过剩所致。 四、钼元素 当植物体内缺乏钼元素时,植株表现为:阔叶植物叶缘向内卷曲,呈匙状,禾本科植物叶片扭曲;老叶首先出现症状,残留中央叶脉呈鞭状;植物体矮化等,因植物而多种多样。钼元素过剩时会出现叶片失绿;马铃薯小枝呈赤黄色,番茄则呈黄金色。 五、硼元素 当植物体内缺乏硼元素时,植株表现为:生长点停止生长,变脆弱,发生自封顶或心腐病;油菜不结实粒增多;叶柄木栓化,茎和根中心变黑;果实出现胶状物质或木栓化;根系生长受阻,须根减少。硼元素过剩时会出现叶缘黄化,褐变;容许范围小,易发生过剩症。 六、铁元素 当植物体内缺乏铁元素时,植株表现为:叶绿素的生长受阻,叶变黄白色,缺乏症先出现于上部叶片;叶面喷施硫酸铁或降低pH值即可恢复;吸收过多磷、锰、铜可促进铁缺乏。铁元素过剩将会增大磷的固定,减少其肥效,引起缺磷。

植物体内的微量元素及其缺乏症状

植物体内的微量元素及其缺乏症状科学研究和生产实践证明微量元素为有机体正常生命活动所必需,在有机体的生活中起着重要作用。土壤和植物中的微量元素都很低,并且这些微量元素在植物体中的缺乏量、适量及致毒量范围很窄,因此科学地、有效地施用微量元素肥料是很重要的。 铁:铁通常占干物重的干分之几,它是形成叶绿素所必需的。叶绿素本身不含铁,但缺铁叶绿素就不能形成,会造成“缺绿症”。铁在植物体中的流动性很小,老叶中的铁不能向新生组织中转移,因而它不能再度利用。植物体内适宜的含铁量约为50-250mg/Kg,过多过少都会影响植株的正常生长发育。缺铁时,下部叶片常能保持绿色,而嫩叶上会呈现网状的“缺绿症”。 硼:它不是植物体内的结构成分,但硼能促进碳水化合物的正常运转,促进生殖器官的正常发育、还能调节水分的吸收和氨化还原过程,植物体内适宜含硼量约为20-100mg/Kg,过多过少都会影响植株的正常生长发育。缺硼会影响花芽分化和发生落花落果现象,还会使茎杆裂开。 锰:锰是叶绿体的结构成分,参与光合作用、水的光解。它是多种酶的活化剂,对植物呼吸、蛋白质的合成与水解、硝酸态氮的还原都起重要的作用。植物体内锰的适宜含量约为10-300mg/Kg,过多过少都会影响植株的正常生长发育。缺锰会使植物体内硝酸态氮积累、可熔性非蛋白态氮素增多。 锌:锌是许多酶的组成成分。它能促进植物体内生长素的合成,对植物体内物质水解、氧化还原过程以及蛋白质的合成等有重要作用。植物体内锌的适宜含量约为25-150mg/Kg,过多过少都会影响植株的正常生长发育。缺锌,除叶片失绿外,在枝条尖端常会出现小叶和簇生现象,称为“小叶病”,严重时会使枝条死亡。

各种元素对植物的作用

各种元素对植物的作用 钾: 钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。钾能够促进光合作用。有资料表明含钾高的叶片比含钾低的叶片多转化光能50%-70%。因而在光照不好的条件下,钾肥的效果就更显著。此外钾还能够促进碳水化合物的代谢、促进氮素的代谢、使植物经济有效地利用水分和提高植物的抗性。由于钾能够促进纤维素和木质素的合成,因而使植物茎杆粗壮,抗倒伏能力加强。此外,由于合成过程加强,使淀粉、蛋白质含量增加,而降低单糖,游离氨基酸等的含量,减少了病原生物的养分。因此,钾充足时,植物的抗病能力大为增强。例如,钾充足时,能减轻水稻纹枯病、白叶枯病、稻瘟病、赤枯病及玉米茎腐病,大小斑病的危害。钾能提高植物对钾能增强植物对各种不良状况的忍受能力。 缺乏钾的症状是:首先从老叶的尖端和边缘开始发黄,并渐次枯萎,叶面出现小斑点,进而干枯或呈焦枯焦状,最后叶脉之间的叶肉也干枯,并在叶面出现褐色斑点和斑块。 镁: 镁是叶绿素的组成部分,也是许多酶的活化剂,与碳水化合物的代谢、磷酸化作用、脱羧作用关系密切。植物缺镁时的症状首先表现在老叶上。开始时,植物缺镁时的症状表现在叶的尖端和叶缘的脉尖色泽退淡,由淡绿变黄再变紫,随后向叶基部和中央扩展,但叶脉仍保持绿色,在叶片上形成清晰的网状脉纹;严重时叶片枯萎、脱落。 铁: 铁是形成叶绿素所必需的,缺铁时便产生缺绿症,叶于呈淡黄色,甚至为白色。铁还参加细胞的呼吸作用,在细胞呼吸过程中,它是一些酶的成分。由此可见,铁对呼吸作用和代讨过程有重要作用。铁在植物体中的流动性根小,老叶子中的铁不能向新生组织中转移,因而它不能被再度利用。因此缺铁时,下部叶片常能保持绿色,而嫩叶上呈现失绿症。 缺铁症状:缺铁时,下部叶片能保持绿色,而嫩叶上呈现失绿症。 铜: 铜是植物正常生长繁殖所必需的微量营养元素,是植物体内多种氧化酶的组成成分。植物中有许多功能酶,如抗坏血酸氧化酶、酚酶、漆酶等都含有铜。它还参与植物的呼吸作用,影响到作物对铁的利用,在叶绿体中含有较多的铜,因此铜与叶绿素形成有关。不仅如此,钢还具有提高叶绿素稳定性的能力,避免叶绿素过早遭受破坏,这有利于叶片更好地进行光合作用。铜能催化若干植物过程在氮的代谢中,缺铜能影响蛋白质的合成,使氨基酸的比例发生变化,降低蛋白质的含量;在碳水化合物的代谢中,缺铜可抑制光合作用的活性,使叶片畸形和失绿;在木质素的合成中,缺铜会抑制木质化,使叶、茎弯曲和畸形,木质部导管干缩萎蔫。缺铜时叶绿素减少,叶片出现失绿现象,幼叶的叶尖因缺绿而黄化并干枯,

相关文档
相关文档 最新文档