文档库 最新最全的文档下载
当前位置:文档库 › 浅析汽车零部件疲劳试验

浅析汽车零部件疲劳试验

浅析汽车零部件疲劳试验
浅析汽车零部件疲劳试验

浅析汽车零部件疲劳试验

疲劳是汽车零部件的基础属性之一,各类部件的疲劳上限和下限很大程度上影响着汽车性能,了解其疲劳问题、试验方法是对零部件疲劳属性进行优化的基础。基于此,本文以汽车零部件疲劳破坏过程作为切入点,从宏观和微观角度展开分析,再以此为基础,分别就汽车零部件疲劳分析计算、汽车零部件疲劳试验设计、汽车零部件疲劳试验过程与结果展开论述,为后续工作的开展提供参考。

标签:汽车零部件;疲劳试验;循环载荷;塑性应变;弹性应变

零部件疲劳强度是其质量的核心指标,是指材料经无限多次交变载荷作用而不会产生破坏的最大应力,称为疲劳强度或疲劳极限。通常情况下,任何金属材料都不可能做无限多次交变载荷试验,当其作为汽车零部件投入使用后,会在长期工作中出现种种形变,损伤零部件功能,当这种损伤积累达到一定限度,就会出现破坏。疲劳试验可对零部件的疲劳强度进行测试,了解参数并寻求改进。

一、汽车零部件疲劳破坏过程

汽车零部件的疲劳破坏可分为多种类型,但其基本原理是相同的,即零部件在循环载荷作用下,在局部最高应力处的晶粒上形成微裂纹,然后发展成较大裂纹,裂纹继续扩展,最终导致疲劳断裂。换言之,零部件的疲劳破坏分为裂纹形成、扩展和瞬断3个阶段。对常规的疲劳破坏进行分析,可以发现大部分零部件的初始破坏往往出现于亚表面,即从大晶粒处穿晶断裂,形成亚微观的疲劳裂纹,这种裂纹可能十分微小,无法得到发觉,在零部件持续工作中,受到外荷载的影响,裂纹会沿切应力方向持续扩大,造成较大的裂纹,使零部件严重破损。

宏观上看,可着眼于零部件的塑性应变和弹性应变两个指标。在汽车零部件工作过程中,循环荷载是持续存在的,其应力水平随工作态势的变化存在差异,当应力处于较低水平时,零部件的弹性应变起主导作用,随着应力水平的持续提升,塑性应变不断积累,渐渐成为主导疲劳破坏的核心因素。因此,单纯以塑性应变/弹性应变的应力水平进行疲劳寿命的描述,都是不科学的。综合对两类应变进行考虑,可明确一个关键指标,即“过渡寿命点”,过渡寿命点P的右侧,表示低应力水平循环区,是弹性应变为主导的区域,过渡寿命点P的左侧,表示高应力水平循环区,是塑性应变为主导的区域,塑性应变(线条1)、弹性应变(线条2)和总应变(线条3)的寿命曲线如图1所示。

汽车零部件可靠性常用测试标准

汽车零部件可靠性常用测试标准 1.振动试验目的: 正弦振动以模拟陆运、空运使用设备耐震能力验证以及产品结构共振频率分析和共振点驻留验证为主。 随机振动则以产品整体性结构耐震强度评估以及在包装状态下之运送环境模拟。 参考的测试标准: GMW3172 6.6.2, GMW3431 4.3.12, GM9123P 9.4, GME3191 4.26 2.复合环境试验(三综合)目的: 是一种利用温度和振动环境应力进行产品品质管制的程序,其主要作用为利用特定且低于产品设计强度的环境应力,使产品潜在缺陷提早暴露出来而加以剔除,避免在正常使用时因这类疵病的存在而发生失效。参考的测试标准: GMW3172 4.2.8/5.5.3/5.5.4, GMW3431 4.4.10, GM9123P 10.2.2, IEC60068-2-13/40/41, GB2423.21/22/25/26, SAEJ1455, MIL-STD-202G Method 105C, MIL-STD-883E Method 1001, MIL-STD-810F Method 500.4, GJB150.2. 3.机械冲击试验目的: 产品在生命周期中通有在两种情况下会遭受到冲击,一种为运输过程中因为车辆行走于颠坡道路产生碰撞与跳动或因人员搬运时掉落地面所产生之撞击。 参考的测试标准:GMW3172 5.4.2, GMW3431 4.3.11, GM9123P 9.2, VW80101 4.2, Etl_82517 8.2.2, MGRES6221001 9.4.2, SES E 001-04 6.13.1, FORD DS000005 10.8.20, FORD_WDS00.00EA_D11 4.6.3, PSA B21 7090 5.4.5, IEC60068-2-27, GB2423.5/6, GJB150.18, EIA-264, SAEJ1455, MIL-STD-202G Method 213B, MIL-STD-810F Method 516.5 4.温湿度试验目的: 温湿度测试方法是用来评估产品有可能储存或者使用在高温潮湿环境中的功能。 参考的测试标准: BMW GS95003-4, GMW3172 5.5.1/5.5.2/5.6, GMW3431 4.4.1/4.4.5/4.4.6, GM9123P 9.6/9.11/9.12, GME60202_0181, VM80101 5.1.2/5.1.3/5.3/5.5.2, FORD DS00005 10.9.1/10.9.2/10.9.3/10.9.8/10.9.9/10.9.10, FORD_WDS 00.00EA_D11 4.5.1/4.5.2/4.5.3/4.5.4/4.5.5/4.5.8/4.8.1/4.8.4, MGRES6221001 9.3, MGRES6221001 11, SES E 001-04 6.1/6.2/6.3/6.4/6.5/6.8/6.9/6.11, IEC60068-2-30, SAEJ1455, JESD22-A103C, JESD 22-A100B,EIA-364,GB2324.1/2/3/4/9/34/4, GJB 150.3/4/9, MIL-STD-810F 507.4, MIL-STD-202G 103B/106G, MIL-STD-1004.1 5.温度试验目的: 使用温度试验来获得数据评价温度对装备安全和性能的影响,效应如:使材料硬化、因不同收缩特性而使零件变形、电阻电容功能改变、缩短寿命、润滑剂失去粘性等。

汽车零部件的失效模式及分析

汽车零部件的失效模式及 分析 专业: 班级学号: 姓名: 指导教师: 年月

摘要 汽车零件失效分析,是研究汽车零件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,其目的在与分析零部件失效的原因,找出导致失效的责任,并提出改进和预防措施,从而提高汽车可靠性和使用寿命。

目录 第一章汽车零部件失效的概念及分类 (1) 一、失效的概念 (1) 二、失效的基本分类型 (1) 三、零件失效的基本原因 (2) 第二章汽车零部件磨损失效模式与失效机理 (3) 一、磨料磨损及其失效机理 (3) 二、粘着磨损及其失效机理 (4) 三、表面疲劳磨损及其失效机理 (5) 四、腐蚀磨损及其失效机理 (5) 五、微动磨损及其失效机理 (6) 第三章汽车零部件疲劳断裂失效及其机理 (8) 第四章汽车零部件腐蚀失效及其机理 (9) 第五章汽车零部件变形失效机理 (10) 参考文献 (11)

第一章汽车零部件失效的概念及分类 一、失效的概念 汽车零部件失去原设计所规定的功能称为失效。失效不仅是指完全丧失原定功能,而且功能降低和严重损伤或隐患、继续使用会失去可靠性及安全性的零部件。 机械设备发生失效事故,往往会造成不同程度的经济损失,而且还会危及人们的生命安全。汽车作为重要的交通运输工具,其可靠性和安全性越来越受到重视。因此,在汽车维修工程中开展失效分析工作,不仅可以提高汽车维修质量,而且可为汽车制造部门提供反馈信息,以便改进汽车设计和制造工艺。 二、失效的基本分类型 按失效模式和失效机理对是小进行分类是研究失效的重要内容之一。失效模式是失效件的宏观特征,而失效机理则是导致零部件失效的物理、化学或机械的变化原因,并依零件的种类、使用环境而异。 汽车零部件按失效模式分类可分为磨损、疲劳断裂、变形、腐蚀及老化等五类。 汽车零件失效分类 一个零件可能同时存在几种失效模式或失效机理。研究失效原因,找出主要失效模式,提出改进和预防措施,从而提高汽车零部件的可靠性和使用寿命。

汽车零部件强度试验和评价

汽车零部件强度试验和评价  周 炜 上海大众汽车有限公司  【摘要】 汽车零部件的强度试验和评价是一项比较复杂的工作,必须考虑各方面的影响因素,载荷的复杂性、零件强度的离散性、以及影响这些参数的外部和内部因素。本文从所涉及的力学和统计学的概念和理论入手,介绍了在强度分析中所用到的基础知识。随后对载荷分析和测量、零部件强度试验、强度评价等一些在实际工作中采用的方法进行了阐述,最后通过一个应用实例进一步希望能起到抛砖引玉的作用。 关键词:强度 汽车零部件 疲劳耐久性试验 1. 概述 汽车的结构设计是一项综合性的工程,从时间上讲,它几乎贯穿整个产品开发阶段;从开发的对象来分,可以大致分成发动机、底盘、车身和电器部件;而从所涉及的专业上讲,又包括造型、振动和噪声、结构强度、整车性能等方面。 在这些专业领域中,强度是一个比较重要的问题。一方面,为了满足在整个使用寿命内可靠性和耐久性要求,所有零部件、乃至整车需要有足够的强度;而另一方面,由于产品成本的要求,又要将零部件的材料用得最省。强度设计的目标就是要在这两个相矛盾的要求间找到一个平衡点,使得零部件达到轻量化的同时,满足可靠性的要求。与此同时,为了缩短整个产品开发过程的周期和降低开发费用,往往在样车还没有制成的开发初期阶段就需要强度设计的介入。因此,强度设计要回答的问题就是:设计的零部件是否能够在使用寿命内不发生破坏? 进行汽车零部件强度设计主要的手段包括:载荷测量,零部件试验和模拟计算。本文结合作者的工作实际,重点从试验的角度出发,对汽车零部件的强度设计和评价进行阐述。 2. 概念和理论 载荷和强度 金属的疲劳理论经过近百年的发展历史,已自成体系,对实际工作具体较好的指导意义。我们在进行强度设计时,实际上只需要关注两个参数:一是所研究的零部件在整个使用过程中将会受到的各种各样的载荷,其表现形式是多种多样的,可以是零部件上所受的力,也可 以是某处的应变,也可以是某个物体的振动加 速度,等等;二是零部件本身能够承受这些载荷的能力有多强,也即俗称的“强度”,它是由零部件的结构、材料、加工工艺等因素决定的,是零部件本身的特性。对一个零部件来说, 载荷和强度两者都是随 机变量,它们符合一定log p 图1 载荷和强度的概率密度分布

汽车零部件物理性试验

汽车零件物理性能基础试验 总结

一、环境试验 环境试验是为了保证产品在规定的寿命期间,在预期的使用,运输或贮存的所有环境下,保持功能可靠性而进行的活动.是将产品暴露在自然的或人工的环境条件下经受其作用,以评价产品在实际使用,运输和贮存的环境条件下的性能,并分析研究环境因素的影响程度及其作用机理。 环境试验设备是模拟各类环境气候,运输、搬运、振动、等条件下,是企业或机构为验证原材料、半成品、成品质量的一种方法。目的是通过使用各种环境试验设备做试验,来验证材料和产品是否达到在研发、设计、制造中预期的质量目标 环境试验设备能按IEC、MIL、ISO、GB、GJB等各种标准要求进行高温、低温、温度冲击(气态及液态)、浸渍、温度循环、低气压、高低温低气压、恒定湿热、交变湿热、高压蒸煮、砂尘、耐爆炸、盐雾腐蚀、气体腐蚀、霉菌、淋雨、太阳辐射、光老化等。 1、气候环境试验的意义与作用 随着科学技术经济贸易的迅猛发展,自然资源海洋宇宙开发与利用,各种产品在贮存、运输和使用过程中遇到的环境越来越复杂,越来越严酷。从热带到寒带,从平原到高原,从海洋到太空等等,这就使得用户和生产者双方都关心产品在上述环境中得性能、可靠性和安全性,以保证产品能满意地工作,这就必须要进行环境试验。 所谓环境试验,就是将产品暴露在自然环境或人工模拟环境中,从而对它们实际上会遇到的贮存、运输和使用条件下的性能做出评价。通过环境试验,可以提供设计质量和产品质量方面的信息,是质量保证的重要手段。 A、环境试验的意义 对产品的评价不能只看其功能和性能是否优秀,还要综合其各方面条件,例如在严酷环境中,其功能和性能的可靠程度以及维修、成本高低等。在提高产品可靠性方面,环境试验占有重要位置,说的极端一些,没有环境试验,就无法正确鉴别产品的品质、确保产品质量。 在产品的研制,生产和使用中都贯穿着环境试验,通常是设计一—环境试验——改进——再环境试验——投产。环境试验越真实准确,产品的可靠性越好。 B、环境试验的作用 1) 用于产品研究性试验: 研究性试验主要用于产品的设计、研制阶段,用于考核所选用的元器件、零部件、设计结构、采用的工艺等能否满足实际环境要求以及存在的问题。为了节省时间和充分暴露产品的薄弱环节,一般都采用加速环境试验方法。 2) 用于产品定型试验: 定型试验是用来确定产品能否在预定的环境条件下达到规定设计技术指标和安全要求。定型试验是最全面的试验,产品可能遇到的环境因素都必须考虑到。 3) 用于生产检查试验: 生产检查试验主要用于检查产品的工艺质量及工艺变更时的质量稳定性。 4) 用于产品的验收试验: 验收试验是指产品出厂时,为了保证产品质量必须进行的一些项目的试验,验收试验通常是抽样进行的。 5) 用于安全性试验: 用环境试验可以检查产品是否危害健康及生命问题,用恒加速度来检查产品安装、连接的牢固性,以防止在紧急情况下被甩出而造成人身伤亡事故或撞坏其它设备。安全试验通常采用较正常试验更严酷的试验等级进行。 6) 用于可靠性试验: 可靠性试验是由环境试验、寿命试验、现象试验和特殊试验等组成,环境试验是其中的主要组成部分。美国MIL-ZTD-781D中明确规定:环境试验是可靠性试验的必要补充内容,也是提高产品可靠性的重要手段。

JIS_D1601-1995_汽车零部件振动试验方法(中文版)

IDC 629.113.01 : 620.173.5 D 1601 汽车零件振动试验方法 JIS D 1601 平成7年2月1日修改 日本工业标准调查会审议 (日本标准协会发行)

日本工业标准JIS 汽车零件振动试验方法D1601-1995 1.适用范围 本标准规定了汽车零件(以下称零件)的振动试验方法。 2.试验种类 试验种类分以下几类。 ⑴ 共振点检测试验 求零件共振振动频率的试验 ⑵ 振动性能试验 研究施振时零件性能的试验 ⑶ 振动耐久试验 研究以一定的振动频率激振,相对于振动的零件耐久性的试验 ⑷ 扫描振动耐久试验 研究按同样的比例连续增减振动频率激振,相对于振动的零件耐久性的试验 3.振动条件分类 振动性能试验及振动耐久试验的振动条件分以下几种。 ⑴ 零件的振动条件,按被安装的汽车的种类分: 1种 主要指轿车系列 2种 主要指公共汽车系列 3种 主要指货车系列 4种 主要指二轮汽车系列 ⑵ 零件振动条件按,被安装的状态分: A种 安装在车体或悬架装置的弹簧上,振动较小时 B种 安装在车体或悬架装置的弹簧上,振动较大时 C种 安装在发动机上,振动较小时 D种 安装在悬架装置的弹簧下和安装在发动机上,振动较大时,振动条件分类及相应产品示例如参考表1。 4.试验条件 4.1试验顺序 试验按共振点检测试验,振动性能试验,振动耐久试验或扫描振动耐久试验的顺序 进行。不过,共振点检测试验和振动性能试验,或共振点检测试验和振动性能试验及扫描振动耐久试验同时进行也可以。 4.2 零件的安装 零件安装在振动试验台上的状态原则上应接近于零件的使用状态。 4.3 零件的动作 试验原则上要按零件的动作状态进行。 4.4 施振方法 相对于零件的安装状态,按顺序施加上下、左右、前后垂直的简谐振动。但是,简谐振动的高次谐波含有率⑴,原则上在振动加速度的25%以内。 注⑴:简谐振动的高次谐波含有率的计算如下: ⑴以正弦波振动的振动加速度±a(m/s2),按下式计算: a=Kf2A×10-3 其中,K=2π2≈19.74 f:振动频率(Hz) A:全振幅(mm)

qc t 17—92 汽车零部件耐候性试验一般规则.doc

qc t 17—92 汽车零部件耐候性试验一般规则汽车零部件耐候性试验一般规那么 1主题内容与适用范围 本标准规定了汽车零部件耐候性试验旳内容、方法、条件及设备。 本标准适用于塑料、橡胶、人造革、纤维等制成旳汽车零件和汽车金属件。 本标准不适用于电线、轮胎、防振橡胶、空气弹簧等零部件。 2引用标准 GB250染色牢度褪色样卡 GB2410透明塑料透光率及雾度试验方法 GB2918塑料试样状态调节和试验旳标准环境 GB2941橡胶试样停放和试验旳标准温度、湿度及时刻 GB3511橡胶大气老化试验方法 GB3681塑料自然气候曝露试验方法 GB9754色漆和清漆不含金属颜料旳色漆漆膜元20°、60°和85°镜面光 泽旳测定 GB9277.2色漆涂层老化旳评价第二部分起泡等级旳评定 GB9277.3色漆涂层老化旳评价第三部分生锈等级旳评定 GB9277.4色漆涂层老化旳评价第四部分开裂等级旳评定 GB9277.5色漆涂层老化旳评价第五部分剥落等级旳评定 GB1767漆膜耐候性测定法 3术语 3、1耐候性:试样在日光、臭氧、雨雪、湿度、温度等自然气候条件下抵抗老化旳能力。 3、2耐光性:试样表面在光旳作用下,对老化旳抵抗性。

3、3老化:试样暴露于自然或人工环境条件下,性能随时刻变坏旳现象。 3、4曝露面:试样直截了当与日光、臭氧、雨雪等接触旳表面。 3、5有效面:零部件在工作中起作用旳表面。 A、使用状态下直截了当可见旳表面, B、由于表面状况变化直截了当阻碍零部件性能旳表面。 3、6标准样件:在规定条件下保存旳作为定期观看与对比用旳样件。 3、7退色:试样在试验过程中,颜料色度、亮度变化及其他组分劣化造成旳 变色。 3、8接触污染:不同材料接触中相互作用产生旳变化。 3、9污垢:空气中有害气体、有机物等粘附或渗透到曝露面上,且不能除去旳 污迹。 3、10剥落:试样表面防护膜或粘接部分脱落或膨胀。 3、11适用基准:由零部件旳使用条件和重要程度所确定旳试验规范。 例:ES2、IG3见表2和表3。 3、12光照量:曝露面同意日光旳照耀量,用kcal/cm2表示。 3、13光泽度:以60°镜面光泽度区分如下 无光20%以下 半光20~80% 有光20%以上 3、14试样:按试验目旳预备旳零件或试片。 3、15直截了当曝晒试验:试样直截了当置于日照、风雨等自然环境中,表面涂层随时间变化产生老化程度旳试验。 3、16隔玻璃曝晒试验:试样置于玻璃板覆盖旳试验箱内曝晒,检查其随时刻 变化产生老化程度旳试验。 3、17遮蔽曝晒试验:试样置于遮蔽构造物旳下面,在幸免日光、雨雪直截了当影 响旳状态下,表面涂层随时刻变化而产生老化程度旳试验。

车外饰塑料零部件的耐温性试验2011.8.18

车外饰塑料零部件的耐温性试验 引言 近年来,随着汽车轻量化的呼声越来越高,塑料制品在汽车中的用量持续增长。目前,北美汽车中塑料的用量为平均每车118 kg左右,约占整车质量的10%,预计2010年将达到136 kg。如图1所示,是美国汽车使用的塑料品种比例分布,从图上可以看出,美国汽车工业应用较多的塑料有PU、PP、PVC、ABS、PA和PE等,主要用来制造前后保险杠、空调进气隔栅、底部导流板、前后灯、后视镜护罩、车轮护罩和车身饰条等,据了解,世界每年在汽车领域的聚丙烯消费量约在45万t左右,95%的欧洲汽车的前后保险杠是以聚丙烯为原材料制造的。这些塑料零部件除了满足汽车轻量、舒适、美观外的要求外,还必须满足汽车性能试验的要求。 耐温性能是评判塑料零部件质量与功能的重要指标之一,也是汽车零部件试验必检项目之一,特别是在一些环境比较恶劣、温度变化范围大、光照强烈的地区,如北美、北欧、热带赤道附近等,塑料零部件一旦失效,会对车辆的性能造成很大影响,所以车辆的耐温特性就更显重要。 本文讨论汽车塑料外饰件的耐温性能试验,其试验项目一般包括4种:耐寒性试验,耐热性试验,高低温循环试验,老化试验,介绍了这4种测试的机理、方法和性能要求,以期为后续的试验研究提供参考。 [快车下载]图1.gif: 1温度对塑料件的影响机理 温度影响材料性能主要是因为温度影响了材料的化学反应速率和光化学反应速度。材料在太阳光照射下,温度对日光的射线效应就会显现,化学反应总是随着温度的升高而加速。材料的温度每升高10℃,化学反应的速度就会翻倍。热化学反应会在较高温度下发生,而在低温下这种反应则很慢或不会发生。 塑料的耐热性表示在温度升高时材料抵抗自身物理或化学变化引起的变形,软化,尺寸改变,强度下降的能力。由于塑料材料大部分属于高分子材料,其耐热温度不高,不同材料的软化温度不同,而且塑料

汽车零部件失效分析

汽车零部件失效分析 摘要:随着汽车的不断普及和机械设备事故的频发,汽车的安全性和可靠性逐渐成为人们关注的焦点。论文通过研究汽车零部件失效的类型,丧失功能的原因、特征和规律,提出相应的改进和预防措施,为汽车制造部门提供便于改进制造工艺和汽车设计的反馈信息,进而提高汽车可靠性、使用寿命和维修质量。 关键词:汽车零部件;失效模式;磨损 1.汽车零部件失效的概述 1.1汽车零部件失效的概念 所谓失效是指汽车零部件失去原设计所规定的功能,导致汽车技术状况变差,包括完全丧失原定功能,功能降低和严重损伤等,如果继续使用将会失去安全性和可靠性。因为汽车零部件的技术状况会随着零部件的使用过程逐渐发生变化,因此通过分析汽车零部件的性能恶化过程,然后有针对性的采取改进措施,对于维持汽车的技术水平具有非常重要的作用。 1.2汽车零部件失效的分类 汽车零部件按失效模式分类可以分为:一是磨损,包括粘着磨损、表面疲劳磨损、磨料磨损、微动磨损、腐蚀磨损,如齿轮表面和滚动轴承便面的麻点、曲轴“抱轴”等。二是疲劳断裂,包括低应力高周疲劳、高应力低疲劳周疲劳、热疲劳、腐蚀疲劳,如齿轮轮齿折断、曲轴断裂等。三是腐蚀,包括化学腐蚀、穴蚀、电化学腐蚀,如湿式汽缸套外壁麻点。四是变形,包括过量弹性变形、过量塑性变形和蠕变,如曲轴弯曲、基础件变形等。五是老化,如橡胶轮胎、塑料器件龟裂、变硬等。失效模式是研究汽车零部件失效的关键,同一个零件可能同时存在集中失效模式。 2.汽车零部件失效的原因 2.1设计制造方面的原因 汽车零部件的设计制造不合理是造车汽车零部件早期失效的主要原因之一。如汽车零部件的材料选择方面,我国GB5216标准规定的齿轮钢淬透性带宽为12HRC,而美国休斯通用公司为8HRC,日本小松为5HRC,远远不及国外汽车生产企业的标准要求。如汽车零部件的设计方面,轴的台阶处直角过渡、过小的圆角半径、尖锐的棱边等造成的应力集中处,都会成为汽车零部件破坏的成因。 2.2工作条件方面的原因 汽车零部件失效工作条件方面的原因主要包括:一是工作环境,由于汽车零

汽车试验

1.按实验特征的不同,汽车试验可以分为室内台架试验,汽车试验场试验和实际的道路实验三种。 2.按实验对象的不同,汽车试验可以分为整车试验,总成与大系统实验,零部件实验三类。 3.按实验目的的不同,汽车实验可以分为质检实验,新产品定型试验和科研试验三类。 4.汽车试验设备通常分为两大类,即室内台架实验设备和道路实验设备。 5.汽车道路试验最常用的仪器系统,由数据采集数据处理系统和各种不同类型的传感器设备组成。 6.汽车台架试验系统通常比道路实验系统复杂,除具有汽车道路试验系统中的数据采集与数据处理系统及各种传感器外,还必须配置模拟汽车运行工况的装置及控制该装置按要求运行的电控系统。 7.复杂的汽车整车及零部件的性能参数测试问题,往往需要由传感器,信号调理设备,信号记录仪,数据采集设备,数据处理与显示设备等所组成的复杂系统才能完成。 8.若被测量x(t)不随时间变化或随时间缓慢变化时,系统的输出y(t)与输入x(t)之间的关系,称为试验系统的静态特性;若被测量x(t)随时间变化而变化,则系统的输出y(t)与输入x(t)之间的关系,称为实验系统的动态特性。 9.评价实验系统静态特性的指标有灵敏度,分辨率,重复性,漂移,回程误差和线性度等。 10.漂移有两类,即零点漂移和灵敏度漂移。无论哪种漂移,都是由温度的变化及元器件性能的不稳定引起的。 11.动态系统的性质有:叠加性,比例性,微分性,积分性,频率保持性。 12.线性系统的频率保持性对研究汽车的震动及仪器系统十分有用。(1)可以利用线性系统的频率保持特性消除干扰。(2)可以利用线性系统的频率保持性判断系统的属性。 13.直到输出与输入的相位差ψ=90°,此时输入信号的频率ω即为系统的固有频率。这种测试系统固有频率的方法称为频率共振法。 14.单位阶跃响应函数的积分便是单位斜坡响应函数。 15.获取试验系统动态特性的办法有很多种,主要有频率响应法和脉冲响应法。 16.H(s)≠H1(s)·H2(s)。原因是:在两个串联的一阶系统之间有能量交换所带来的负载效应,欲避免此负载效应。 17.若将此二阶系统互联后,系统的固有频率不再是原两个系统的固有频率,而是向两端偏移,即一阶固有频率比互联后的频率要低,二阶固有频率比互联前的高频要高。欲提高测量精度就必须尽可能的减少包括传感器在内的测量系统对系统动态特性的影响。 18.解决测试中“失真”问题的常用方法有:取稳态值;状态判断;将被测试转换为脉冲数再读取;变动态测量为静态测量。 19.测试结果与被测量值的真实值不可避免的会存在一定的差异,这种差异称为测试误差。 误差性质{随机误差 系统误差 过失误差 测试误差{

汽车零部件总成

招专业人才上一览英才汽车车身总成范围 车身(驾驶室):油漆工艺前的车身本体(白车身),不包括车身附件及装饰件。主要由车身结构件及覆盖件(非承载式车身)焊接组成。 M1类包括前围、侧围、后围、顶盖、车身地板、翼子板、车门、发动机罩盖、行李箱盖(或背门总成)等。 M1以外的其它类包括前围、侧围、后围、顶盖、车身地板、地板盖板(金属件)、顶盖通风窗、翼子板、车门、发动机罩盖、车身骨架(非承载式车身) 汽车车身损失的确定 车辆的车身,尤其是轿车和客车的车身更是车辆的主体结构部分,在碰撞、刮擦和倾翻等交通事故或意外事故中,车身是受损最严重的部分,其车身覆盖件及其他构件会发生局部变形,严重时车架或整体式车身都会发生变形,使其形状和位置关系不能符合制造厂的技术规范,这不仅影响美观,还会影响到车身和汽车上其他总成的安装关系,使车辆不能正常行驶。因此,必须对其进行校正和修复,有些零部件和总成则需要更换。对于保险车辆,这笔费用需要保险人按保险合同的规定承担,这要求有相对准确的计算依据,必须正确地核定车身的损伤情况。 车身由于事故遭受损伤后的修复工作,是一项工艺复杂且技术性很强的专业工作,事故车的定损应考虑到工艺的复杂性和技术性,因此,要求定损人员应熟悉汽车车身结构及车身修复工艺。 汽车车身的结构 现代汽车的车身特别是轿车车身,不仅是现代化的工业产品和先进的交通运输工具的载体,也可以称其为一件精美的艺术品。设计者和制造者为了降低轿车的自重,增加车身的整体刚度,大多采用了整体式承载结构,采用了大量的新材料、新结构和新工艺,这使得车身的修复工艺变得更加复杂。所以,为了保证准确的定损核价,为了保证因事故受损的车身能够修旧如新,保证车身的修理质量,不仅修理者,从事保险理赔的事故车辆定损人员也必须十分熟悉车身的材料和结构特点、生产工艺、车身造型、车身维修工艺及特点。 (一)汽车车身的分类及构成 1. 根据用途车身可以分为两大类:客车车身、货车车身。 ①客车车身依据车身的大小和特点又分为:小客车(轿车)车身、大客车车身。 ②货车车身:货车车身通常由两部分组成,即驾驶室和货厢。 2. 车身按壳体结构型式可分为3种: ①骨架式。壳体结构具有完整的骨架(构架),车身蒙皮板就固定在装配好的骨架上。 ②半骨架式。只有部分骨架,如单独的支柱、拱形梁、加固件等,这些骨架或直接相连或借蒙皮板相连。 ③壳体式。该结构车身没有骨架,全部利用蒙皮板连接时形成的加强筋代替骨架。中型及大型客车多采用骨架式车身,轿车和货车多采用壳体式车身。 3. 按车身受力的不同可分为3类: ①非承载式车身。车身与车架用弹性元件连接,车身不承受汽车载荷。 ②半承载式车身。车身与车架系刚性连接,车身承受车架的一部分载荷。 ③承载式车身。承载式车身没有车架,发动机和底盘各部件都直接安装在车身上。承载式车身具有更轻的质量、更大的刚度和更低的高度,承载式车身是通过点焊将车身前部、车身底部、车身侧部和车身后部四大件焊接在一起,如图10-1所示。 4. 车身构成 (1)车身前部。车身前部一般为厢式结构,具有较强的刚性,用来安装布置发动机、前悬架、转向装置等部件。如图10-2所示。 车身前部配有后挡泥板、两侧挡泥围板、前侧梁、前横梁和散热器上支撑等刚性较高的骨架部分,这些部件组成长方形的发动机舱,在其外部覆盖有发动机罩、前挡泥板、平衡板、散热器隔栅等面板。

汽车零部件测试简介

汽车零部件测试简介 --广电计量检测股份有限公司 汽车是一个由数以万计零部件组成的机电混合复杂系统,GRGT能帮助汽车整车厂及零部件厂商快速提升零部件性能,满足您对产品品质和安全的高要求,服务涵盖汽车零部件的环境可靠性测试、电学性能测试、功能测试、EMC测试、材料测试、绿色环保测试及化学法规符合性服务项目。 [1] 测试范围汽车是一个由数以万计零部件组成的机电混合复杂系统,GRGT能帮助汽车整车厂及零部件厂商快速提升零部件性能,满足您对产品品质和安全的高要求,服务涵盖汽车零部件的环境可靠性测试、电学性能测试、功能测试、EMC测试、材料测试、绿色环保测试及化学法规符合性服务项目。 环境可靠性测试 高温储存(可带表面红外加热)High Temperature Test(can with IR) 低温储存Low Temperature Test 湿热交变(可带表面红外加热)Hemperature & Humidity Test (canwith IR) 凝露测试Condensation Test 低气压测试Low Pressure Test 温度冲击测试Thermal Shock Test 防尘防水测试Dust & Water Resistant Test 盐雾测试Salt Spray Test 耐气体腐蚀gas Corrosion Resistant Test 耐化学试剂Chemical Resistant Test 振动测试(随机、正弦、扫频等)Vibration Test (Random/Sine /Sweep) 机械冲击测试Mechanical Shock Test 碰撞测试Bump Test 跌落测试Drop Test 三综合测试(温湿度+振动)Compositive Environment Test(Temperature & Humidity &Vibration) 高加速测试HALT & HASS 插拔力检测Operation Force Test 刚度测试Rigidity Test 按键动作耐久测试Button Operation Durability 插拔耐久测试Connection Durability CD机动作耐久测试CD Player Operation Durability 电学性能测试 电源特性测试Resistance to Power Supply Voltages 电源缓升缓降测试Resistance to Slow Decrease andIncrease Power of Supply Voltages 电压特性测试Re-initialization Test 电压异常测试Resistance to Non Usual Power SupplyVoltages 线路(短路至地/电源)短路测试Resistance to Ground and PositiveSupply Voltages Short Circuit 感性负载电源连接测试Resistance of InductiveLoad Connected Circuits 电源微中断测试Resistance to Power Supply Micro-interruptions(UPDATED) 启动测试Resistance to Starting Profile 电源电压特性测试Power Supply Voltage CharacteristicsTest

浅析汽车零部件疲劳试验

浅析汽车零部件疲劳试验 疲劳是汽车零部件的基础属性之一,各类部件的疲劳上限和下限很大程度上影响着汽车性能,了解其疲劳问题、试验方法是对零部件疲劳属性进行优化的基础。基于此,本文以汽车零部件疲劳破坏过程作为切入点,从宏观和微观角度展开分析,再以此为基础,分别就汽车零部件疲劳分析计算、汽车零部件疲劳试验设计、汽车零部件疲劳试验过程与结果展开论述,为后续工作的开展提供参考。 标签:汽车零部件;疲劳试验;循环载荷;塑性应变;弹性应变 零部件疲劳强度是其质量的核心指标,是指材料经无限多次交变载荷作用而不会产生破坏的最大应力,称为疲劳强度或疲劳极限。通常情况下,任何金属材料都不可能做无限多次交变载荷试验,当其作为汽车零部件投入使用后,会在长期工作中出现种种形变,损伤零部件功能,当这种损伤积累达到一定限度,就会出现破坏。疲劳试验可对零部件的疲劳强度进行测试,了解参数并寻求改进。 一、汽车零部件疲劳破坏过程 汽车零部件的疲劳破坏可分为多种类型,但其基本原理是相同的,即零部件在循环载荷作用下,在局部最高应力处的晶粒上形成微裂纹,然后发展成较大裂纹,裂纹继续扩展,最终导致疲劳断裂。换言之,零部件的疲劳破坏分为裂纹形成、扩展和瞬断3个阶段。对常规的疲劳破坏进行分析,可以发现大部分零部件的初始破坏往往出现于亚表面,即从大晶粒处穿晶断裂,形成亚微观的疲劳裂纹,这种裂纹可能十分微小,无法得到发觉,在零部件持续工作中,受到外荷载的影响,裂纹会沿切应力方向持续扩大,造成较大的裂纹,使零部件严重破损。 宏观上看,可着眼于零部件的塑性应变和弹性应变两个指标。在汽车零部件工作过程中,循环荷载是持续存在的,其应力水平随工作态势的变化存在差异,当应力处于较低水平时,零部件的弹性应变起主导作用,随着应力水平的持续提升,塑性应变不断积累,渐渐成为主导疲劳破坏的核心因素。因此,单纯以塑性应变/弹性应变的应力水平进行疲劳寿命的描述,都是不科学的。综合对两类应变进行考虑,可明确一个关键指标,即“过渡寿命点”,过渡寿命点P的右侧,表示低应力水平循环区,是弹性应变为主导的区域,过渡寿命点P的左侧,表示高应力水平循环区,是塑性应变为主导的区域,塑性应变(线条1)、弹性应变(线条2)和总应变(线条3)的寿命曲线如图1所示。

汽车零部件耐候性试验一般规则

中华人民共和国汽车行业标准 QC/T 17—92 汽车零部件耐候性试验一般规则 1 主题内容与适用范围 本标准规定了汽车零部件耐候性试验的内容、方法、条件及设备。 本标准适用于塑料、橡胶、人造革、纤维等制成的汽车零件和汽车金属件。 本标准不适用于电线、轮胎、防振橡胶、空气弹簧等零部件。 2 引用标准 GB 250染色牢度褪色样卡 GB 2410透明塑料透光率及雾度试验方法 GB 2918塑料试样状态调节和试验的标准环境 GB 2941橡胶试样停放和试验的标准温度、湿度及时间 GB 3511橡胶大气老化试验方法 GB 3681塑料自然气候曝露试验方法 GB 9754色漆和清漆不含金属颜料的色漆 漆膜元20°、60°和85°镜面光 泽的测定 GB 9277.2色漆涂层老化的评价第二部分起泡等级的评定 GB 9277.3色漆涂层老化的评价第三部分生锈等级的评定 GB 9277.4色漆涂层老化的评价第四部分开裂等级的评定 GB 9277.5色漆涂层老化的评价第五部分剥落等级的评定 GB 1767漆膜耐候性测定法 3 术语 3.1 耐候性:试样在日光、臭氧、雨雪、湿度、温度等自然气候条件下抵抗老 化的能力。 3.2 耐光性:试样表面在光的作用下,对老化的抵抗性。 3.3 老化:试样暴露于自然或人工环境条件下,性能随时间变坏的现象。

3.4 曝露面:试样直接与日光、臭氧、雨雪等接触的表面。 3.5 有效面:零部件在工作中起作用的表面。 a.使用状态下直接可见的表面, b.由于表面状况变化直接影响零部件性能的表面。 3.6 标准样件:在规定条件下保存的作为定期观察与对比用的样件。 3.7 退色:试样在试验过程中,颜料色度、亮度变化及其他组分劣化造成的 变色。 3.8 接触污染:不同材料接触中相互作用产生的变化。 3.9 污垢:空气中有害气体、有机物等粘附或渗透到曝露面上,且不能除去的 污迹。 3.10 剥落:试样表面防护膜或粘接部分脱落或膨胀。 3.11 适用基准:由零部件的使用条件和重要程度所确定的试验规范。 例: ES 2、IG 3见表2和表3。 3.12 光照量:曝露面接受日光的照射量,用kcal/cm2表示。 3.13 光泽度:以60°镜面光泽度区分如下 无光 20%以下 半光 20~80% 有光 20%以上 3.14 试样:按试验目的准备的零件或试片。 3.15 直接曝晒试验:试样直接置于日照、风雨等自然环境中,表面涂层随时 间变化产生老化程度的试验。 3.16 隔玻璃曝晒试验:试样置于玻璃板覆盖的试验箱内曝晒,检查其随时间 变化产生老化程度的试验。 3.17 遮蔽曝晒试验:试样置于遮蔽构造物的下面,在避免日光、雨雪直接影 响的状态下,表面涂层随时间变化而产生老化程度的试验。 3.18 浸液曝晒试验:试样的一部分或全部浸人试验液中,置于室外,表面涂

《汽车和挂车制动器用零部件技术要求及试验方法》编制说明

《汽车和挂车制动器用零部件技术要求及试验方法》 编制说明 1工作简况 1.1任务来源 本标准根据国家标准化管理委员会2015年12月23日下发的《汽车安全玻璃》等20项国家标准制修订计划的通知(国标委综合(2015)82号文)制定,项目计划编号为20154192-Q-339,归口单位为工业和信息化部,项目名称为《汽车和挂车制动器用零部件技术要求及试验方法》。 1.2主要起草单位和工作组成员 主要起草单位:中国第一汽车股份有限公司技术中心、泛亚汽车技术中心有限公司、浙江亚太机电股份有限公司、浙江万安科技股份有限公司、上海汽车制动系统有限公司、烟台孚瑞克森汽车制动部件有限公司、河北星月制动元件有限公司、重庆红宇摩擦制品有限公司、中国重型汽车集团有限公司技术发展中心、中国汽车技术研究中心有限公司、长春一汽富晟特比克制动有限公司。 工作组成员:林大海、袁旭亮、胡水兵、侯宗岗、卜凡彬、刘城、申坤瑞、王丹膺、王金勇、王世双、李云生。 1.3主要工作过程 受工业和信息化部装备工业司委托,全国汽车标准化技术委员会制动

分技术委员会面向行业组建标准起草工作组,由中国第一汽车股份有限公司技术中心(以下简称“一汽技术中心”)作为牵头单位,负责该标准的前期准备工作,于2014年5月在行业内启动了标准起草工作组筹备工作,向行业内征集参与标准起草工作组的成员单位,并于2014年6月初根据回函情况和参与企业的情况,同时考虑到成员单位涉及的业务分布情况,确定了标准起草工作组成员。 1.3.1 工作组成立会议 2014年8月6日在云南省昆明市召开了标准工作组成立会议,来自10家工作组单位的13名专家参加了成立会议。会议就成立标准工作组的重要性和意义、当前制动器换装零部件市场的情况进行了简要说明,对标准工作组今后的工作提出了要求。标准工作组负责人就工作组筹备情况、重要工作任务及工作计划向与会代表进行简要汇报。随后,各位代表从当前制动器换装零部件产品质量、维修市场情况、以及标准采标、工作组主要工作、后续工作等进行了充分交流和沟通。与会代表一致认为成立制动器零部件标准工作组非常必要,该标准的制定将对规范制动器相关零部件的产品质量、售后维修市场、保护正规生产企业、引导制动器产品发展起到积极作用。最后会议达成如下结论: 1)原则上,该标准主要技术内容参照UN R90; 2)会后各单位按分工要求对UN R90法规进行翻译,并按时将译文汇总 到标准工作组。

QC T 17—92 汽车零部件耐候性试验一般规则

QC T 17—92 汽车零部件耐候性试验一般规 则 汽车零部件耐候性试验一样规则 1主题内容与适用范畴 本标准规定了汽车零部件耐候性试验的内容、方法、条件及设备。 本标准适用于塑料、橡胶、人造革、纤维等制成的汽车零件和汽车金属件。 本标准不适用于电线、轮胎、防振橡胶、空气弹簧等零部件。 2引用标准 GB 250染色牢度褪色样卡 GB 2410透亮塑料透光率及雾度试验方法 GB 2918塑料试样状态调剂和试验的标准环境 GB 2941橡胶试样停放和试验的标准温度、湿度及时刻 GB 3511橡胶大气老化试验方法 GB 3681塑料自然气候曝露试验方法 GB 9754色漆和清漆不含金属颜料的色漆漆膜元20°、6 0°和85°镜面光 泽的测定 GB 9277.2色漆涂层老化的评判第二部分起泡等级的评定 GB 9277.3色漆涂层老化的评判第三部分生锈等级的评定 GB 9277.4色漆涂层老化的评判第四部分开裂等级的评定 GB 9277.5色漆涂层老化的评判第五部分剥落等级的评定 GB 1767漆膜耐候性测定法 3术语 3.1耐候性:试样在日光、臭氧、雨雪、湿度、温度等自然气候条件下抗击老 化的能力。 3.2耐光性:试样表面在光的作用下,对老化的抗击性。

3.3老化:试样暴露于自然或人工环境条件下,性能随时刻变坏的现象。 3.4曝露面:试样直截了当与日光、臭氧、雨雪等接触的表面。 3.5有效面:零部件在工作中起作用的表面。 a.使用状态下直截了当可见的表面, b.由于表面状况变化直截了当阻碍零部件性能的表面。 3.6标准样件:在规定条件下储存的作为定期观看与对比用的样件。 3.7退色:试样在试验过程中,颜料色度、亮度变化及其他组分劣化造成的 变色。 3.8接触污染:不同材料接触中相互作用产生的变化。 3.9污垢:空气中有害气体、有机物等粘附或渗透到曝露面上,且不能除去的 污迹。 3.10剥落:试样表面防护膜或粘接部分脱落或膨胀。 例:ES 2、IG 3见表2和表3。 3.12光照量:曝露面同意日光的照耀量,用kcal/cm2表示。 3.13光泽度:以60°镜面光泽度区分如下 无光20%以下 半光20~80% 有光20%以上 3.14试样:按试验目的预备的零件或试片。 3.15直截了当曝晒试验:试样直截了当置于日照、风雨等自然环境中,表面涂层随时 间变化产生老化程度的试验。 3.16隔玻璃曝晒试验:试样置于玻璃板覆盖的试验箱内曝晒,检查其随时刻 变化产生老化程度的试验。

汽车总成(系统)所属零部件界定范围

汽车车身总成范围 车身(驾驶室):油漆工艺前的车身本体(白车身),不包括车身附件及装饰件。主要由车身结构件及覆盖件(非承载式车身)焊接组成。 M1类包括前围、侧围、后围、顶盖、车身地板、翼子板、车门、发动机罩盖、行李箱盖(或背门总成)等。 M1以外的其它类包括前围、侧围、后围、顶盖、车身地板、地板盖板(金属件)、顶盖通风窗、翼子板、车门、发动机罩盖、车身骨架(非承载式车身) 汽车车身损失的确定 车辆的车身,尤其是轿车和客车的车身更是车辆的主体结构部分,在碰撞、刮擦和倾翻等交通事故或意外事故中,车身是受损最严重的部分,其车身覆盖件及其他构件会发生局部变形,严重时车架或整体式车身都会发生变形,使其形状和位置关系不能符合制造厂的技术规范,这不仅影响美观,还会影响到车身和汽车上其他总成的安装关系,使车辆不能正常行驶。因此,必须对其进行校正和修复,有些零部件和总成则需要更换。对于保险车辆,这笔费用需要保险人按保险合同的规定承担,这要求有相对准确的计算依据,必须正确地核定车身的损伤情况。 车身由于事故遭受损伤后的修复工作,是一项工艺复杂且技术性很强的专业工作,事故车的定损应考虑到工艺的复杂性和技术性,因此,要求定损人员应熟悉汽车车身结构及车身修复工艺。 一、汽车车身的结构 现代汽车的车身特别是轿车车身,不仅是现代化的工业产品和先进的交通运输工具的载体,也可以称其为一件精美的艺术品。设计者和制造者为了降低轿车的自重,增加车身的整体刚度,大多采用了整体式承载结构,采用了大量的新材料、新结构和新工艺,这使得车身的修复工艺变得更加复杂。所以,为了保证准确的定损核价,为了保证因事故受损的车身能够修旧如新,保证车身的修理质量,不仅修理者,从事保险理赔的事故车辆定损人员也必须十分熟悉车身的材料和结构特点、生产工艺、车身造型、车身维修工艺及特点。 (一)汽车车身的分类及构成 1. 根据用途车身可以分为两大类:客车车身、货车车身。 ①客车车身依据车身的大小和特点又分为:小客车(轿车)车身、大客车车身。 ②货车车身:货车车身通常由两部分组成,即驾驶室和货厢。 2. 车身按壳体结构型式可分为3种:

汽车动力总成的设计与试验

汽车动力总成隔振设计与试验评价 翁建生 南京航空航天大学,车辆工程系 摘要:汽车动力总成的隔振设计是提高汽车NVH 性能的重要方面。本文系统地论述了汽车动力总成隔振设计方法、试验与评价方法。这些方法对汽车动力总成隔振设计有参考价值。 关键词:动力总成悬置 ,优化设计,鲁棒性、转动惯量 汽车动力总成隔振(悬置)系统通常由发动机与变速箱和几个用来联接到车架或车身的悬置构成,它的作用一方面支撑动力总成质量,另一方面是降低动力总成和车架之间振动的双向传递,起到隔振减振的效果。 近年来,随着汽车工业的飞速发展,汽车设计有两个趋势,一是向经济化,轻型化方向发展,汽车的整体质量减轻,发动机总成质量占汽车整天质量比重越来越大;二是使用大功率发动机,使得发动机不平衡力矩变大,传递到车架和车身上的振动也就变大,两点因素导致车内振动噪声状况恶化。通过改善和优化发动机悬置性能能够经济有效的解决上面所遇到的问题,所以动力总成悬置系统的设计是汽车NVH 设计中一个重要组成部分。 1、汽车动力总成隔振系统的力学模型 1.1系统的固有频率,解耦度,动反力 当不考虑阻尼和外力作用时,可得动力总成悬置系统六自由度固有特性分析方程: []{}[]{}{0}M q K q +=&&i 根据上式可以解得: 2[]{}[]{}i i K X M X ω=解上述方程可得动力总成悬置系统的固有频率i ω和主振型 }{i X 系统以第k 阶固有频率振动时,第i 个广义坐标分配到的能量占系统总能量的百分比(解耦度)为: 6 16 6 11 ()()(,)100%()()ij k i k j i ij k i k j i j m X X dig k j m X X ==== ×∑∑∑ 系统第i 个悬置动反力随频率的响应: {()}[][][]{()}[][][]{()}i i i i i i i F w k T B Q w s C T B Q w =+ 1.2 汽车动力总成隔振系统的设计方法 汽车发动机作为振源,主要有不平衡惯性力和力矩。汽车动力总成隔振系统的目的是将发动机的不平 衡惯性力和力矩通过悬置隔振使其作用在车身或车架上的动反力最小。因此,常用的方法有打击中心法、主惯性轴法与优化方法。这些方法的基本思想是解耦设计。由于动力总成有六个刚体运动自由度,解耦设计的第一步是通过悬置点的刚度和位置(角度变化,将六个自由度之间耦合尽可能小,特别是Z 方向与曲轴轴线的滚动模态解耦。通过解耦设计可达到在发动机不平衡惯性力和力矩作用下,只有主振源振动下的振动。每二步是设计优化刚度,使传递到车架工车身的动态力尽可能小。 由于CAE 和优化方法运用,优化方法作为一种工具,是完全可以用于动力总成的优化。对于优化,从不同的角度提出了不同的优化目标函数和约束,建立不同的优化数学模型。常见的目标函数有:发动机动力总成系统固有频率的合理匹配;六自由度振动能量解耦和部分解耦;振动传递率最小或者支撑的动反力最小等等。

相关文档
相关文档 最新文档