文档库 最新最全的文档下载
当前位置:文档库 › 单通道时差法超声流量计研发(硬件)【文献综述】

单通道时差法超声流量计研发(硬件)【文献综述】

单通道时差法超声流量计研发(硬件)【文献综述】
单通道时差法超声流量计研发(硬件)【文献综述】

毕业设计文献综述

电气工程与自动化

单通道时差法超声流量计研发(硬件)超声流量测量技术的基本原理是利用超声波在流体中传播时所载流体的流速信息来测量流体流量的。利用超声波测定流速、流量的技术不仅应用在工业生产方面,而且在医疗、海洋观测及各种计量测试中都有着广泛的应用。1955年,世界上第一台超声波流量计在美国诞生,它使用的技术就是“鸣环”时差测量法,用于航空燃料油流量的测量。

20世纪70年代中后期,基于大规模集成电路技术的飞速发展,使得超声波流量计的稳定性和可靠性得到了初步的保证,同时为了消除声速变化对测量精度的影响,出现了频差法。同一时期,前苏联科技工作者提出了流量修正系数及其理想状态下的理论计算公式,为超声波流量计进一步提高测量精度打下了坚实的理论基础。至此,超声波流量计的研究和应用才蓬勃发展起来。

进入80年代中期,超声波流量计的实现方法已不仅仅局限于时差法和频差法两种方法,由于电子技术及其相关理论的飞速发展,超声波流量计的种类越来越多,又出现了射束位移法、多普勒法、相关法及噪声法等。到了80年代中后期,单片机技术的应用使超声波流量计向高性能、智能化方向发展。由于使用了单片机作中央处理单元,系统不仅可以进行复杂的数学运算和数据处理、进一步提高了超声波流量计的测量精度,而且还能够设计出友好的人机界面,使系统具有参数设置、自动检错排错功能以及其他一些辅助功能,大大方便了用户的操作和使用。单片机在超声波流量计中的应用,使超声波流量计开始真正进入工业测量领域。

最近10年来,基于高速数字信号的处理技术与微处理器技术的进步,新型探头材料与工艺的研究、声道配置及流体动力学的研究,超声波流量测量技术取得了长足的进步,形成了迅猛发展的势头。

超声波流量计在工业中的应用包括气体、液体以及固体物质流量的测量,其测量范围对大多数液相介质而言,流速从每秒几厘米到每秒十几米,管径从小于1厘米到几米,工作温度从低温(如液态氧、液化天然气)到上千度的高温,允许工作压力从接近真空到几百个大气压,其响应时间从几个毫秒(引擎控制)到24小时(监控管道流量),在医学上

可以测量血管流量,还可以用于江河流量和敞开水道流量的测量。和传统的流量计,如差压流量计、转子流量计、文丘里流量计、涡街流量计等相比,超声波流量计有结构简单,安装、使用和维护方便;可以直接给出被测流体的瞬时流量和累积流量;无压力损失,部件不受流体腐蚀和磨损;成本和制造难度不随口径的增加而增加,尤其适合大、中口径管道的测量的优点。

目前生产最多、应用范围最广泛的是时差法超声波流量计。它主要用来测量洁净的流体,在自来水公司和工业用水领域得到广泛应用 。此外它也可以测量杂质含量不高(杂质含量小于10g/L ,粒径小于1mm )的均匀流体,如污水等介质的流量,而且精度可达±1.5% 。应用表明,选用时差法超声波流量计,对相应流体的测量都可以达到满意的效果。

单声道时差法超声流量计的测量原理如下:

在管道的两侧安装两个换能器,两换能器轴线相交于管道轴线的安装角为θ,管径为D ,两个换能器之间的距离为L ,当超声波顺流传播时,有

(1)

当超声波逆流时,有 (2)

以上两式中,c 为超声波在静止流体中的传播速度,v 为被测流体的平均流速。由(1)、

(2)式得 (3) 则流速为 (4) 只要测出顺流和逆流传播时间t 1 和 t 2 就能求出流速v , 进而得到流量, 这就避免了求声速c 的困难。这种方法不受温度的影响, 可以实现精确测量。

超声波传播时间测量:

时差法超声波流量计的测量精度与超声波传播时间的准确测量密切相关。只有在既能稳定、准确地测量传播时间又能有效地对顺、逆流传播时差进行计算的前提下,才谈得上测量精度。所谓超声波传播的时间,应该是指从发射信号的开始时间起,到接收换能器接收波形的起振点止,两者之间的这段时间在本课题中采用TDC-GP2计时芯片,它具有高精度的时间测量单元。单通道时,GP2典型分辨率可达50ps ,测量范围 500ns —4ms 。

超声波信号处理方法:

1

sin t L v c =?+θ2cos t L v c =?-θ2

11221)(cos 2t t t t L t L t L v ?-=-=?θθcos 2)(2

112t t t t L v -=

在时差式超声流量计中,最常用的信号处理方法为阈值法我们知道在真正的超声波信号来临之前,接收换能器已经接收到了一些干扰信号,如果阐值电压设置过低,干扰信号的幅值大于该电压值时,一样会产生触发电平,这样便被TDC认为是STOP信号到来,引起误触发停止计时。而通过使能窗的控制,在所选的过零点到来之前的任何干扰对整个系统都不再造成影响,或者说当在预期时间以外的干扰脉冲到达芯片通道的时候,芯片将不会把干扰信号作为传感器的回波来进行测量,这样对于过零点的确定提供了极大的帮助,在设计接收回波电路的时候,大大简化了其信号处理过程。因此,选用使能窗与过零检测技术配合使用的接收信号处理方法。

采用MSP430单片机作为整个超声流量计系统的CPU,由于MSP430单片机是以超低功耗作为特点,因此,整个超声流量计可以使用3.6V的电池作为工作电源,且可保证5年以上的正常工作。这样,不仅降低了成本,更使超声流量计的适应性得到极大的提高。

超声流量计近几十年的迅速兴起在于其相对传统流量计(如孔板、涡轮等)具有非接触式测量、无可动部件、维护方便、适于大管径测量等优势。超声流量测量现已广泛应用于工业、医学和民用等多个领域,与此相关的研究也逐年增加。国外每隔一段时间就会出现一些综述,评述其时超声流量测量的技术进展,国内也有不少文献介绍超声流量测量原理及应用。因此,超声流量计的发展前景还是很光明的,对超声流量计的研究与应用对于社会经济发展也是具有促进作用的。

超声流量计的发展趋势:

近些年来超声流量计的研究与发展主要集中在以下几个方面:对更精确的时间测量方法的研究;对适用于多种流体(包括气体、液体等)计量的超声流量计的研究;对超声流量计的数据处理方法研究以及流体状态的分析;对超声流量计的智能化、多功能化和低功耗等方面的研究等。从近些年来国内外对超声流量计研究的热点分析,可以看出超声流量计的研究将向更高精度、更高的稳定性、更加智能化和更低功耗的方向发展参考文献:

[1]鞠文涛.超声波热量表的设计与研发:[学位论文].杭州:浙江大学,2008.

[2]刘楠峰,王太平,谢倩.浅析时差式超声流量计在大流量在线校准工作中的应用.计量与测试技术,2010,37(3):28-29,31.

[3]段允, 王让定, 朱莹, 姚灵.一种抑制时差法超声流量计静态漂移的方法.微电子学与计算机,2010,27(8):205-209.

[4]邬金鹏.时差式超声波流量计的应用技术.企业科技与发展,2010(2):16-17,20.

[5]于文峰.时差式超声流量计的研究与硬件电路实现: [学位论文].哈尔滨:哈尔滨工程大学,2008.

[6]景岚.超声波流量计工作原理及常见问题概述.科技信息,2010(21)951,965.

[7]刘存,黄建军.时差法超声波流量计的几点改进.沈阳工业大学学报,2001,24(2):113-115.

[8]王秉仁,张雷,姜小丽.超声波测速技术在流量测量中的应用.矿山机械,2006,34(2):77-79.

[9]刘佰英.管道超声波流量计研究:[学位论文].沈阳:东北大学,2005.

[10]郑鹏.基于FPGA的时差法超声波流量计系统的设计与实现:[学位论文].杭州:浙江大学,2006.

[11]杨震.基于超声波时差法管道流量计积分算法及实验研究:[学位论文].西安:西安理工大学,2006.

[12]胡天浩.浅谈超声波流量计.油气井测试,2003,12(4):63-65.

[13]T. H. Nguyen, O. Khrakovsky, L. Sui.Transducer Design for Liquid Custody Transfer Ultrasonic Flowmetering.IEEE Ultrasonics Symposium,2007:1832-1835.

[14]Comes, M., Drumea, P., Blejan, M., Dutu, I., Vasile, A.ULTRASONIC FLOWMETER. ISSE 2006 - 29th International Spring Seminar on Electronics Technology,10-14 May 2006 :386-389.

[15]李广峰,刘昉,高勇.时差法超声波流量计的研究.电测与仪表,2000,37(9):13-19.

[16]梁鸿翔,王润田,周艳.TDC超声流量计设计中的同频噪声处理.声学技术,2009,28(1):29-33.

[17]张涛,蒲诚,赵宇洋.传播时间法超声流量计信号处理技术进展述评.化工自动化及仪表,2009, 36 (4) : 1-7.

[18]李晶,莫德举.基于改进时差法的超声流量计.中国仪器仪表,2004.12:10-12,15.

[19]田晖,孙延祚.时差法超声流量计的改进.北京化工大学学报,1999,26(4):58-60.

[20]蒋树义.单片机在超声波流量计中的应用研究.工业计量,2000(增刊):204-205.

超声波流量计说明书

各类超声波流量计说明书 超声波流量计种类有很多,有便携式,手持式,一体式,分体式等,以下是几种超声波流量计的具体技术参数说明。 便携式超声波流量计: 一、概述: TCS-600P型便携式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,内置一体式智能打印机可实时、定时打印;具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数: ※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作24小时 ※安装方式:外敷安装,操作简单、方便 ※显示:2行汉字同屏显示瞬时流量、累计流量、信号状态 ※信号输出:隔离RS485通信协议、MODBUS协议,兼容国内其它厂家同类产品通讯协议 ※打印输出:内置热敏一体式打印机,实现及时或定时打印 ※其它功能:自诊断,提示当前工作状态是否正常

※采用智能充电方式,直接接入AC 220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 手持式超声波流量计: 一、概述: TcS-600B型手持式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数

※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作15小时 ※安装方式:外敷安装,操作简单、方便 ※显示:4行汉字同屏显示瞬时流量、累计流量、信号状态 ※其它功能:内置数据记录器可记录时间、累计流量、信号状态、工作时间等 自诊断,提示当前工作状态是否正常 ※信号输出:标准数据口RS232用于联网检测或导出记录数据 ※采用智能充电方式,直接接入AC220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 固定式超声波流量计,分体式超声波流量计: 一、概述: TCS-600F型固定分体式超声波流量计利用了低电压、多脉冲发射接收原理,采用双平衡信号差分发射、接收专利技术和硬件参数无关化设计方法;通过选用国际上最新、最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。

基于BP神经网络的超声波流量计的设计

基于BP神经网络的超声波流量计的设计 学习调整能力,能够适应动态变化的环境。主要介绍流量测量基本原理、硬件结构以及软件设计,最后通过多种环境下的测试和结果分析,证明了该流量计适应性强、精确度高。关键词:STM32;神经网络;时差法;广义互相关算法 中图分类号:TN926?34;TP311 文献标识码:A 文章编号:1004?373X(2016)16?0006?04 Abstract:A ultrasonic flowmeter taking time?difference method for pipe flow measurement was designed based on the controller STM32. In order to improve the environmental suitability and flow measurement accuracy,the generalized cross?correlation time?delay estimation algorithm based on the BP neural network filtering is applied to time?difference detection. The algorithm filters the mixed noise by combining and optimizing the multiple filters with specific statistical characteristics,has self?learning and self?adjusting ability,and is able to adapt to the dynamic changing environment. The basic principles of the flow measurement,hardware structure and software design are mainly introduced in this paper. The strong adaptability and high accuracy of the flowmeter were proved through test in a variety of environment and the result analysis. Keywords:STM32;neural network;time?difference method;generalized cross ?correlation algorithm 流量的精确测量对提高人们的生活质量、企业的生产效率,对节约型社会的建立都有着非常

基于51单片机超声波测距仪设计【开题报告】

毕业论文开题报告 电子信息工程 基于51单片机超声波测距仪设计 一、课题研究意义及现状 随着社会的发展,传统的测距方法在很多场合已无法满足人们的需求。例如在井深、液位、管道长度测量等场合。传统的测距方法根本无法完成测量任务。还有在很多要求实时测距的情况下。传统的测距方法也不能很好地完成测量任务。于是一种新的测距方法——超声波测距应运而生。超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。超声测距是一种非接触式的检测方式,它不受光线、被测对象颜色等影响。超声波传感器结构简单、体积小、信号处理可靠,所以检测比较迅速、方便、计算简单、易于做到实时控制。在移动机器人、汽车安全、海洋测量等上得到了广泛的应用。因此,本课题的研究是非常有实用和商业价值。 随着科学技术的快速发展,超声波测距仪的应用将会越来越广,这是一个蓬勃发展而又有无限前景的技术及产业领域。未来的超声波测距技术将朝着更高精度,更大应用范围,更稳定方向发展,死角问题也能得到解决。超声波测距仪将其通过51单片机来实现,成本低、精度高、操作简单、工作稳定可靠,非常适合于短距离测量定位。51单片机为许多控制提供了高度灵活和低成本的解决办法。充分利用它的片内资源,即可在较少外围电路的情况下构成功能完善的超声波测距系统,有很大的市场开发潜力。 二、课题研究的主要内容和预期目标 本课题主要设计一种基于单片机的超声测距系统。该系统以超声波的传播速度为确定条件,利用发射超声波与反射回波时间差来测量待测距离。课题主要内容包括硬件设计和软件设计。硬件设计主要包括单片机系统,超声波发射电路、超声波检测接收电路、数码管显示电路等。软件部分拟采用单片机C语言编程,便于维护和修改,主要是利用中断完成信号发射和接受中间所耗时间的计算,并进行相关的数据处理以得到准确的距离。本课题要求测量精确、可靠、显示正确。 三、课题研究的方法及措施 先通过上网、图书馆等各种途径,搜索与本课题相关的资料进行大量的阅读,从而从整体上对这个课题进行认识。然后根据查阅的资料作出总体方案的设计框图以及确定本设计的实现方法。本设计总体框图如下:

手持式超声波流量计说明书

目录 1. 概述 (1) §1.1 引言 (1) §1.2 主要特点 (1) §1.3 工作原理 (1) §1.4 装箱单(标准配置) (2) §1.5 正面视图 (3) §1.6 典型用途 (3) §1.7 数据的完整性和内置时钟 (3) §1.8 产品的识别 (4) §1.9 基本技术参数 (4) 2.开始测量 (5) §2.1 内置电池 (5) §2.2 通电 (5) §2.3 键盘 (6) §2.4 窗口操作 (6) §2.5 快速输入管道参数步骤 (7) §2.6 传感器安装位置的选择 (9) §2.7 传感器的安装 (10) §2.7.1 传感器的安装距离 (10) §2.7.2 V方式安装传感器 (10) §2.8.3 Z方式安装传感器 (11) §2.8.4 W方式安装传感器 (11) §2.8.5 N方式安装传感器 (12) §2.8 检查安装 (12) §2.8.1 信号强度 (12) §2.8.2 信号质量(信号良度) (13) §2.8.3 总的传输时间和时差 (13) §2.8.4 传输时间比 (13) 3.菜单窗口详解 (14) §3.1 菜单窗口简介 (14) §3.2 菜单窗口详解 (15) 4.怎样使用 (20) §4.1 怎样判断流量计是否工作正常 (20) §4.2 怎样判断管道内的液体流动方向 (20) §4.3 怎样改变系统的测量单位制 (20) §4.4 怎样选择流量单位 (20) §4.5 怎样选择累积器倍乘因子 (20)

§4.6 怎样打开和关闭累积器 (21) §4.7 怎样实现流量累积器清零 (21) §4.8 怎样恢复出厂设置 (21) §4.9 怎样使用阻尼器稳定流量显示 (21) §4.10怎样使用零点切除避免无效累积 (21) §4.11怎样静态校准零点 (21) §4.12怎样修改仪表系数(标尺因子)标定校准 (22) §4.13怎样使用密码保护 (22) §4.14怎样使用内置数据记录器 (22) §4.15怎样使用频率输出功能 (22) §4.16怎样设置累积脉冲输出 (23) §4.17怎样产生输出报警信号 (23) §4.18怎样使用蜂鸣器 (24) §4.19怎样使用OCT输出 (24) §4.20怎样修改日期时间 (24) §4.21怎样调整LCD显示器的对比度 (25) §4.22怎样使用RS232串行口 (25) §4.23怎样查看每日、每月、每年流量 (25) §4.24怎样使用工作计时器 (25) §4.25怎样使用手动累积器 (25) §4.26怎样了解电池剩余电量的工作时间 (25) §4.27怎样给电池充电 (25) §4.28怎样查看电子序列号和其他细节 (26) 5.问题处理 (27) §5.1硬件上电自检信息及原因对策 (27) §5.2工作时错误代码(状态代码)原因及解决办法 (27) §5.3 其他常见问题问答 (28) 6. 联网使用及通信协议 (30) §6.1 概述 (30) §6.2 流量计串行口定义 (30) §6.3 通信协议 (30) §6.4 功能前缀和功能符号 (32) §6.5 键值编码 (33) 7. 质量保证及服务维修支持 (34) §7.1 质量保证 (34) §7.2 公司服务 (34) §7.3 软件升级服务 (34)

超声波测距文献综述

超声波测距系统的电路设计 0712203-33 黄景 摘要:介绍一种基于单片机控制的三路超声测距系统的构成和工作原理,超声波测距作为辅助视觉系统与其他视觉统配合使用,可实现整个视觉功能。 关键词:机器人超声波测距单片机串行通讯数据采集 前言:由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 正文: 1.超声波测距原理 1.1 超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 1.2 压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 1.3 超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空

超声波时差法测量

题目:超声波传输时差法的测量 姓名: . 学号: . 班级: . 同组成员: . 指导教师: . 日期: .

关键词:超声波流量计,时差法,换能器,脉冲 第一部分:摘要 1.中文摘要: 超声波用于气体和流体的流速有许多优点。和传统的机械式流量仪表,电磁式流量仪表相比它的计量精度高,对管径的适应性强,非接触流体,使用方便,易于数字化管理等。 近年来,由于电子计术的发展,电子元器件的成本大幅度下降,思潮申博流量仪表的制造成本大大降低,超声波流量计也开始普及起来。 根据其原理,研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了一定的探讨和研究:根据流体力学及物理学的有关知识,对超声波流量计进行了相关了解。针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响。在多种测量原理及方法下,这里我们则采用的是多脉冲测量法的原理和应用。 当然,我们还要结合课题的实际情况,对时差法超声波流量计的硬件电路进行详细的分析和设计,讨论器件的选择、参数计算等技术问题,设计出了换能器发射和接收超声波的等效电路,当其换能器发射超声波时,相当于换能器给相应的计数环节给以上升沿脉冲使其开始计数,同理,当换能器接收超声波时也产生一个上升沿脉冲,来作用于相对应的计数器使其停止计数。 针对超声波流量计的工作环境,由于条件的限制,我们只能在普通环境下进行我们的课题设计。对造成超声波流量测量误差的各种因素我们也只能进行常规

的分析以及改进。 2.英文摘要: The FV ultrasonic flowmeter is designed to measure the fluid velocity of liquid within a closed conduit. The transducers are a non-contacting, clamp-on type, which will provide benefits of non-foulingoperation and easy installation. The FV transit-time flowmeter utilizes two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed pipe at a specific distance fromeach other. The transducers can be mounted in V-method where the sound transverses the pipe twice,or W-method where the sound transverses the pipe four times, or in Z-method where the transducersare mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection of themounting method depends on pipe and liquid characteristics. The flow meter operates by

超声波流量计系统的设计

超声波流量计系统的设计 樊伟佳 (陕西理工学院电信工程系电子信息工程专业,2012级1班,陕西汉中 723004) 指导教师:秦伟 [摘要]超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表,并且以其非接触式的测量、高精度等特点在工业生产、医药、水资源等领域有着广泛的应用。本设计利用时差法超声波流量计原理,针对超声波流量计测量精度容易受温度影响的问题,利用改进型算法避免温度对测量精度的影响。设计系统时选择了一些基本电路设计了以下电路:超声波发射电路,超声波接收电路,LED显示电路,主从单片机电路,电源电路以及存储电路等,成功实现了瞬时流量的测量与辅助功能的实现,总的来说,本次设计的超声波流量计具有精度高、测量范围大、安装方便、测试操作简单等特点。另外,本次设计的超声波流量计适用于管道和明渠流量测量,适合测量的流体:水或其它杂质较少的液体,管径或明渠宽度:0.3~20m,流速:0.1~12m/s。 [关键词]超声波流量计;单片机;时差法; The Design of Ultrasonic Flow Meter System Fan Weijia (Grade 04,Class 1,Major electronics and information engineering,Electronics and information engineering Dept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Qin Wei [Abstract]: Ultrasonic flowmeter is the use of ultrasonic wave propagation characteristics in the fluid to measure the flow rate measuring instruments, and its non-contact measurement, high accuracy and other characteristics in industrial production, medicine, water and other fields have a wide range of applications. This design uses the principle of transit-time ultrasonic flowmeter, ultrasonic flowmeter for measurement accuracy easily affected by temperature problems using the improved algorithm to avoid the effect of temperature on the measurement accuracy. Design system selected some basic circuit design of the following circuits: ultrasonic transmitter circuit ultrasonic receiver circuit, LED display circuit, master-slave microcontroller circuit, power circuit and a memory circuit, successfully realized its measurement and accessibility of instantaneous flow, Overall, this design ultrasonic flowmeter has high accuracy, wide measuring range, easy installation, simple test operation. In addition, this ultrasonic flowmeter design suitable for pipes and open channel flow measurement, suitable for measuring fluid: water or other impurities, less liquid, open channel diameter or width: 0.3 ~ 20m, flow rate: 0.1 ~ 12m / s. [Key words]:Ultrasonic flowmeter; single chip microcomputer; time difference method;

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波衍射时差法

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波 衍射时差法 摘?要在TOFD检测过程中,相关参数的设置非常为重要,关系到采集图谱质量的好坏。下面,就结合现场情况,把TOFD检测实践中的一些见解归纳分析一下,主要以ISONIC系列仪器进行研究。 关键词 TOFD检测;ISONIC;参数设定;研究 TN914 A 1673-9671-(xx)071-0198-01 1 TOFD检测中的参数设置的重要性 TOFD检测扫描前主要注意的参数有:探头真实频率,脉冲宽度,重复频率,阻抗,感抗,滤波频率,信号平均值,时间窗口,增益等参数。 脉冲宽度是非常重要的,它有助于优化接受信号的形状。改变脉冲宽度可以导致不同周期部分减弱或加强。如果想使两个超声脉冲组成单一频率的信号,则应将脉冲宽度设置为所用探头频率周期的一半(例:5 MHz时使用100 ns);为了使信号持续最低周期数,应将脉冲宽度设置为所用探头频率的一个周期(例:5 MHz时使用200 ns)。

其中探头频率必须是探头实际频率,而不是探头的标称频率。在实际工作中必须通过试验来获得最优脉冲宽度。 如果使用手动采集数据,则需要注意脉冲重复频率PRF与探头移动速度必须相匹配,由于手动扫查时计算机不能判断和控制探头移动,只能由操作者正确选择PRF来保证能正常采集A扫数据。若采用编码器或者电机驱动,则PRF相对不重要,因计算机可以计算出探头位置,在规定的A扫采样率间隔采集数据。若PRF设置不当时将采集到空白A扫。 阻抗Tuning项匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 感抗damping项的单位是欧。知道了交流电的频率f(Hz)和线圈的电感L(H),就可以把感抗计算出来。在实际调节射频波波幅时,需要不断地改变感抗值来选择最优波幅,使图谱效果达到最佳。 在选择高低通滤波器频率时,推荐滤波器带通宽度的最小范围是0.5到2倍的探头中心频率。选择信号平均值至最低要求,以获得一个合理的信噪比,设置时间窗口覆盖A扫的有用部分,以便数字化。

时差法超声波流量计

时差法超声波流量计

1 引言 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。 2 超声波流量计分类 根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。 2.1 多普勒法 多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。其工作原理如图1所示。 图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach 管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为 2f ,当粒子流速均为u 时,其关系为: )sin 21()sin 1()sin 1(02012C u f C u f C u f f β ββ-≈-=- = (1) β sin 2)(020f C f f u -= (2) 多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。 2.2 波束偏移法 波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。其测量原理如图2所示。

图2 波束偏移法原理图 Fig.2 Theory of beam-excursion approach 流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。波束偏移法用于测量准确度要求不高的高速流体流量测量。 3 时差法原理 3.1 时差法 时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。基本原理如图3所示。 图3 时差法工作原理图 Fig.3 Theory of transit-time method 超声波换能器A 、B 是一对可轮流发射或接收超声波脉冲的换能器。设超声波信号在被测流体中的速度为C ,顺流从A 到B 时间为1t ,逆流从B 到A 时间为2t ,外界传输延迟总时间为0t 。则由几何关系可知 01sin cos /t v C d t ++= θ θ (3) 02sin cos /t v C d t +-= θ θ (4) 由于2 C >> θ2 2 sin v ,则

超声波流量计设计

学号:14111501202 湖南理工学院 毕业论文 题目:超声波流量计的设计 作者:刘阳届别:2011级 院别:机械工程学院专业:机械电子工程 指导老师:周红波职称:讲师 完成时间: 2015.5.10

摘要 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本设计与传统的机械式流量仪表不同,它具有机械式仪表所不具备的优点,而且因其采用高精度时间测量芯片TDC-GP2进行时间测量,保证了测量的精度。本设计采用时差法原理进行测量流体流速,进而计算出瞬时流量。 论文从流量计的发展历史和背景到超声波流量计的原理、特点以及国内外发展概况,详细地介绍了超声波流量计。另外,论文又详细研究了时差法超声波流量计的理论知识,并在理论基础上研究了超声波流量计的硬件电路与软件部分,其中所用的高精度时间测量芯片TDC-GP2以及单片机STC89C58RD+是本设计的核心部分。本设计成功实现了瞬时流量的测量与辅助功能的实现,有较广阔的研究前景。 绪论 1.1流量计的发展历史与现状概述 数千年前,人们为了适应水利和农业灌溉的需要,就已经开始关注流量测量的问题。流量测量作为人类文明的一种标志,是计量科学技术的组成部分之一,它不仅广泛用于农业和水利,也广泛用于化工、石油、冶金以及人民生活各个领域之中,一直得到世界各国政府和企业的重视,而且重视程度一直在不断加强。 最早的流量测量发生在公元前1000年,古埃及人通过对尼罗河流量的测量来预计当年收成的好坏,古罗马人利用孔板测量的方法在修建引水渠时进行流量测量。而到目前为止,流量计的发展也有了几百年的时间,早在1738年,瑞士人丹尼尔·伯努利以伯努利方程为基础,利用差压法测量水流量;后来意大利人

【免费下载】超声波测距 文献综述

超声测距系统设计综述 摘要:超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已 应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。因此, 深入研究超声的测距理论和方法具有重要的实践意义。 系统介绍了硬件和软件两个方面。在硬件方面,围绕单片机展开,设计了具有通信、预处 理等接口的硬件电路,完成对回波数据的采集、处理、上传等功能,并利用单片机片内的温度 传感器采集环境温度,对声速做出修正;在软件方面,利用Matlab仿真工具构造发射信号和回 波数据对互相关时延估计法、伪随机码扩频测距和LMS自适应时延估计算法进行仿真,分析了仿真结果和上述算法的优缺点,最后选定互相关时延估计法为超声测距处理算法。 关键词:超声波、测距仪、单片机 1.前言 超声测距指的是利用超声波的反射特性进行距离测量,在车辆自动导航、机器入的定位和对象识别、海洋水声以及工业距离的测量方面具有重要意义。常见的测距原理和方法主要有脉冲回波法和相位差法两种。 相位差法与脉冲回波法的不同体现在对回波的处理方式上,由超声波换能器接收端获得调制声波的回波,经放大电路转换后,得到与放大的相位完全相同的电信号,此电信号放大后与光源的驱动电压相比较,测得两个正弦电压的相位差,根据所测相位差就可算得所测距离。由于采用的是相位比较,使得测距精确度大大提高,但这种方法本身存在明显的缺陷。由于相位测量存在以2n为周期的多值解,从而容易造成解的不确定性。为了消除多解,常常需要引入包络检测和采用发射多种不同频率波的方式减小不确定度,这就使得该方法的实现复杂化。 2.系统方案比较与选择 2.1利用分立模块的超声波测距仪

用时差法测量超声声速

用超声波流量计测量超声声速 姓名:田田班级:网络(2)班学号:090602231 摘要:在大学物理实验里,我们学习了用共振干涉法和相位比较法测量超声声速,但在工程中运用的是更为精确的时差法测量超声声速。在此,我们可以使用超声波流量计进行测量。超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。 关键字:时差法,超声声速,超声波流量计 Use ultrasound flowmeter measurement ultrasonic velocity Name:TianTian class: network (2) class student id: 090602231 Abstract:in university physics experiment, we studied the use is also called the resonant interfering method and phase comparison ultrasonic velocity measurement, but in engineering is the use of more precise time difference method for measuring the ultrasonic velocity. Here, we can use the ultrasonic flowmeter measurements. Ultrasonic flowmeter is through testing the fluid flow of ultrasonic beam (or ultrasonic pulse) role to measure flow meter. According to the principle of signal detection ultrasound flowmeter can be divided into velocity differential method (direct time difference method, the method of time difference, the method of phase difference and frequency offset method), beam migration method, doppler method, cross-correlation method, space filter method and noise method, etc. Ultrasonic flowmeter and electromagnetic flowmeter is same, because instrument circulation channel not set any block up pieces, belong to the unimpeded flowmeter is suitable for solving the flow measurement

时差法超声波流量计_2006_硕士论文-

重庆大学硕士学位论文中文摘要 摘要 超声波流量计由于具有非接触式测量、测量范围宽、安装简便、以及特别适合大管径及危险性流体流量测量等优点,被供水、石油、化工、电力等部门广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本论文通过充分调研及查阅大量的文献资料,选择时差法超声波流量计为研究对象,对如何提高系统的精度及系统稳定性和可靠性问题进行了深入的理论研究,并设计了具体的硬件电路,主要工作及创新有: 1.研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了较深入的研究;根据流体力学及物理学的有关知识,对超声波流量计进行了修正,并给出了不同情况下流量修正系数的计算公式; 2.针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响;介绍了几种常用提高超声波测时精度方法的同时,讨论并采用了超声波时差测量的新方法——多脉冲测量法的原理和应用; 3.结合课题的实际情况,对时差法超声波流量计的硬件电路进行了详细的分析和设计,讨论了器件的选择、参数计算等技术问题,设计出了匹配性能良好的发射、接收电路;在信号调理上,除了常规的滤波电路外,还采用了自动增益放大电路来提高信号的可靠性;而且,采用主从单片机协同工作的方式,提高了系统的稳定性;在软件方面,给出了系统的软件流程图并较详细地叙述了算法的实现; 4.针对流量计的工作环境,对流量计系统的抗干扰性进行了研究,并采取了相应的软、硬件措施; 5.对造成超声波流量测量误差的各种因素进行了详细的分析、研究,并应用误差理论,对时差法超声波流量计的各种可能的误差进行了误差分配和合成;对硬件电路和软件进行了试验性的验证,给出了实验结果。 关键词:超声波流量计,时差法,传播时间

超声波流量计的设计毕业设计论文

毕业设计说明书超声波流量计的设计

目录 1 绪论 (1) 1.1 超声波流量测量技术发展概述 (1) 1.2 常用流量计类型和性能比较 (2) 1.3 超声波流量计的特点和用途 (3) 1.4 超声波流量计 (3) 1.4.1 多普勒超生波流量计 (4) 1.4.2 时差法超生波流量计 (4) 2 超声波流量计原理 (5) 2.1 超声波简介 (5) 2.1.1 超声波的频率 (5) 2.1.2 超声波的发生 (5) 2.2 研究超声波流量计测水量需用:时差法 (5) 3 时差法超声波流量计的总体设计 (7) 3.1 流量计设计参数 (7) 3.2 换能器的安装 (7) 3.3 测量原理 (8) 3.3.1 声学原理 (8) 3.3.2 测时原理 (9) 3.4 系统硬件框图 (11) 4 时差法超声波流量计的硬件设计 (13) 4.1 超声波换能器的选择 (13) 4.2 超声波发射/接收电路 (13) 4.2.1 超声波发射电路 (14) 4.2.2 超声波接收电路 (15) 4.2.3 采样保持电路 (18) 4.2.4 电压比较电路的设计 (20) 4.2.5 切换控制电路 (21)

4.3 信号采集及控制电路 (21) 4.3.1 从单片机的选取 (21) 4.3.2 电路设计 (22) 4.4 信号处理及人机接口电路 (22) 4.4.1 主单片机系统方案 (22) 4.4.2 数据存储电路 (24) 4.4.3 键盘电路 (24) 4.4.4 时钟电路 (25) 4.4.5 液晶显示电路 (26) 4.4.6 与从单片机通信接口 (27) 4.4.7 与PC机通讯接口 (28) 4.5 硬件抗干扰设计 (29) 4.5.1 干扰的来源 (29) 4.5.2 抗干扰措施 (30) 5 时差法超声波流量计的软件设计 (31) 5.1 主单片机软件设计 (31) 5.2 从单片机部分软件设计 (32) 5.2.1 从单片机软件流程图 (32) 5.3 单片机软件抗干扰措施 (33) 5.3.1 数据采集误差的软件对策 (33) 5.3.2 控制状态失常的软件对策 (33) 6 系统误差分析 (34) 6.1 系统误差分析 (34) 6.1.1 误差基本理论 (34) 6.1.2 误差产生因素 (35) 7 结论 (40) 参考文献 (41) 致谢 (43)

超声测距系统设计开题报告

毕业设计(论文)开题报告 学生姓名:学号: 专业:电气工程及其自动化 设计(论文)题目:超声测距系统设计 指导教师: 2011 年 2 月24 日

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述 文献综述 1 研究背景 测距的原理和方法有很多,根据信息载体的不同可分为光学方法、无线电方法和超声波方法[1]。随着电子技术的发展,先后出现了激光、超声波及红外线等非接触式测距方法。激光测距虽然测距精度高,操作简单,但是受环境的影响比较大,且系统检测维护不便,价格相对昂贵,一般多在军事领域应用。红外测距属于电磁波的一种,超声波是声波测距,实现起来更容易且不受电磁干扰影响。红外传播速度为3x108m/s,超声波在空气中的传播速度为340m/s,其速度相对电磁波是非常慢的,因此在同等距离的情况下,超声波的传播时间远大于红外,往返时间更易测量[1]。 由于超声波方向性好、超声测量无接触,超声波测距系统价格低廉、易实现、信息处理简单可靠,所以利用超声波进行距离和长度的测量越来越受到人们的重视。超声波技术的发展经历了从理论技术的研究到大范围的工业应用。在这期间,雷达技术、激光技术、电子技术等技术的发展对超声波技术不断更新和发展起到了很大的促进作用[2]。 2 国外研究现状 一般认为,关于超声波的研究最初起始于1876年F.Galton的气哨实验,这是人类首次有效产生的高频声波。在之后的三十年中,超声波仍然是一个鲜为人知的东西,由于当时电子技术发展缓慢,对超声波的研究造成了一定程度的影响[3]。 1917年,法国人Langevin使用一种晶体传感器在水下发射和接收相对低频的超声波。这种方法可以用来检测水中是否存在潜艇并进行水下通信联络。在这之后对超声的研究主要体现在电子领域[4]。 1925年,Pierce使用石英传感器和镍传感器来产生和探测超声波,而且频率扩展到兆赫级。至此;Debye,Sears,Lcas分别发现了超声波的衍射光栅,用超声波来研究液体和气体的声学特性方法得到稳定发展。 1927年Hantalnnn和Tro11e解决了超声汽笛的许多细节问题,这些汽笛被证明在流

超声波时差法原理介绍

时差法超声波流量计的原理和设计 王润田 1 引言 超声波用于气体和流体的流速测量有许多优点。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。近年来,由于电子技术的发展,电子元气件的成本大幅度下降,使得超声波流量仪表的制造成本大大降低,超声波流量计也开始普及起来。经常有读者回询问有关超声波流量测量方面的问题。作为普及,我们将陆续撰写一些专题文章,来介绍一些相关知识,以便推广和普及超声波流量技术的普及和提高。本文主要介绍目前最为常用的测量方法:时差法超声波流量计的原理和设计。 2 时差法超声波流量计的原理 时差法超声波流量计(Transit Time Ultrasonic Flowmeter)其工作原理如图1所示。他是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺溜和逆流传播时间差来间接测量流体的流速,在通过流速来计算流量的一种间接测量方法。 图1 时差法超声波流量测量原理示意图 图1中有两个超声波换能器:顺流换能器和逆流换能器,两只换能器分别安装在流体管线的两侧并相距一定距离,管线的内直径为D,超声波行走的路径长度为L,超声波顺流速度为tu,逆流速度为td,超声波的传播方向与流体的流动方向加角为θ。由于流体流动的原因,是超声波顺流传播L长度的距离所用的时间比逆流传播所用的时间短,其时间差可用下式表示:

式中X是两个换能器在管线方向上的间距。 为了简化,我们假设,流体的流速和超声波在介质中的速度相比是个小量。即:

图2 超声波流量计的电原理框图 4 结语 时差法超声波流量计的换能器安装方式可以有多种。常见的有外加式和管段式,也有介入式,比如家用煤气表一般可采用介入式。无论何种安装方式其原理大同小异。比如介入式就是取上面公式中的θ=0。 超声波波用于流体的测量还有其他几种基于不同原理的测量方法:多卜勒频移法、相位差法和相关法等等,各有优缺点,可根据不同的使用条件和计量精度等因素加以选取。 随着电子技术的迅速发展、超声波技术的普及以及产品成本的降低和可靠性的提高,我们相信,超声波流量仪表将成为流体计量中最为普遍采用的手段。 参考文献:

超声波流量计的测量原理

超声波流量计的测量原理 超声波流量计 超声波流量计是一种非接触式流量测量仪表,近20多年发展迅速,已成为流量测量仪表中一种不可缺少的仪表。尤其在大管径管道流量测量,含有固体颗粒的两相流的流量测量,对腐蚀性介质和易燃易爆介质的流量侧量,河流和水渠等敞开渠道的流量及非充满水管的流量测量等方面,与其他测量方法相比,具有明显的优点。 超声波流量计的测量原理 超声波流量计是利用超声波在流体中的传播特性实现流量测量的。电磁流量计超声波在流体中传播时,将载上流体流速的信息。因此,通过接收到的超声波,就可以检测出被测流体的流速,再换算成流量,从而实现测量流量的目的。 利用超声波测量流且的方法很多。根据对信号检测的方式,大致可分为传播速度法、多普勒法、相关法、波束偏移法等。在工业生产测量中应用传播速度法最为普遍。 1.传播速度法 根据在流动流体中超声波顺流与逆流传播速度的视差与被测流体流速有关的原理,检测出流体流速的方法,称为传播速度法。很据具体测最参数的不同,又可分为时差法、相差法和频差法。 传播速度法的基本原理如图2.59所示。远传式水表从两个作为发射器的超声换能器T, , T,发出两束超声波脉冲。各自达到下、上游两个作为接收器的超声换能器R,和RZ。设流体静止时超声波声速为C,发射器与接收器的间距为L。则当流体速度为时,顺流的传播时间为式中,L, C均为常量,所以只要能测得时差At,就可得到流体流速。,进而求得流最p。这就是时差法。 时差法存在两方面间题:一是计算公式中包括有声速C,可拆卸螺翼式水表它受流体成分、沮度影响较大,从而给测量带来误差;另一是顺、逆传播时差At的数量级很小(约为10-’一10"9s),测量Lt,过去需用复杂的电子线路才能实现。 相差法是通过测量上述两超声波信号的相位差△lp来代替测量时间差6r的方法。如图2.61,设顺流方向声波信号的相位为9).二“:;逆流方向声波信号的相位为T2 =则结合式(2.56)可得逆、顺流信号的相位差为式中。—声波信号的角频率。 此方法可通过提高。来取得较大的相位差乙甲,滴水计数水表从而可提高测量精度。但此方法仍然没有解决计算公式中包含声速C的影响。 频差法是通过测量顺流和逆流时超声波脉冲的重复频率差来测量流量的方法。该方法是将发射器发射的超声波脉冲信号,经接受器接受并放大后,再次切换到发射器重新发射,形成“回鸣”,并如此重复进行。由于超声波脉冲信号是在发射器一流体一接收器一放大电路一发射器系统内循环的,故此法又称为声还法。脉冲在生还系统中一个来回所需时间的倒数称为声还频率(即重复频率),它的周

相关文档
相关文档 最新文档