文档库 最新最全的文档下载
当前位置:文档库 › 北邮概率论讲议 第10讲习题答案

北邮概率论讲议 第10讲习题答案

北邮概率论讲议 第10讲习题答案
北邮概率论讲议 第10讲习题答案

练习2:

(),(0,),(0,1),()X t Vt b t b V N X t =+∈∞设随机过程为常数,~求的一维概率密度、均值和相关函数。

解:X(t)服从正态分布,故可通过求其均值和方差写出X(t)的一维概率密度

2

[()]()[()]()E X t E Vt b b D X t D Vt b t =+==+=

故X(t)的一维概率密度为

22

()2()x b t x f t --=

均值函数[()]()E X t E Vt b b =+= 相关函数121212222

121212(,)[()()][()()][]R t t E X t X t E Vt b Vt b E V t t bVt bVt b t t b ==++=+++=+

练习3:

-()()(0,0),()Yt Y f y X t e t Y X t =>>设随机变量具有概率密度,令求随机过程的一维概率密度、均值和相关函数。

解:由随机变量函数的概率密度公式知,X(t )的一维概率密度

(){()}{}ln() {ln()}{}

Yt X F t P x t x P e x x P Yt x P Y t

-=≤=≤=-≤=≥-

'

ln()'

()()'()ln()ln()ln()/,0x t X t f x F t f y dy x x x f f tx t t t t +∞-??

==??

??

??????

=---=-> ??? ???????

?

因为'

()()x

a f y dy f x ??=????

?

X(t)的均值函数和相关函数分别为:

[()]()()Yt

yt E X t E e

f y e dy ∞

--==?

1212()12120

(,)[()()][]()Yt Yt y t t X R t t E X t X t E e e e f y dy ∞---+===?

练习

4:00.5cos ,,()2,

,(1)()(0.5;.

(2)()()

X t t t X t t t X t F x X t t πμ=?=??若从开始每隔秒抛掷一枚硬币作实验,定义随机过程

时刻抛得正面时刻抛得反面求:的一维分布函数)求的均值函数和方差函数。

解:硬币出现正、反面得概率均为1/2,

当t=1/2时,X(1/2)的分布为

111X =0X =1222

P P ????????==???? ? ????????? 故其分布函数为

0, 0

(1/2,)1/2, 011, 1x F x x x

=≤

均值函数:

111()cos()2[cos()2]2

2

2

X t t t t t μππ=?+?=+

2

2

2

22221111()[()][()]cos ()(2)[cos()2]cos()]2222X X t E X t t t t t t t t σμπππ????=-=?+?-+=- ???

????

练习5:12()()

(,)((),()

X X X t t C t t t Y t X t t Y t μφφ+设随机过程的均值函数和协方差函数分别为,(

)为普通函数,令)=()求的均值和协方差函数。 解:[()][()()][()][()]()()X E Y t E X t t E X t E t t t φφμφ=+=+=+

121212121211221122121212(,)(,)()()[()()]()()

{[()()][()()]}[()()][()()](,)()()(,)

Y Y Y Y Y Y X X X X X X C t t R t t t t E Y t Y t t t E X t t X t t t t t t R t t t t C t t μμμμφφμφμφμμ=-=-=++-++=-=

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

2012北京邮电大学概率论与随机过程试题

北邮人: 一、填空题 1. 设事件,A B 满足()0.7,()0.3P A P AB ==, 则()P AB = 2. 袋中有10个球,其中1个红球,10个人不放回地依次抽取,每次抽取一个,问最后一个人取到红球的概率是 3. 设平面区域D 由1,0,x y y x ===围成,平面区域1D 由21,0,x y y x ===围成。现向D 内依次随机地投掷质点,问第3次投掷的质点首次落在1D 内的概率是 4. 设随机变量(1,2),(2,4)X N Y N 且相互独立,求23X Y +-的概率密度函数()f x = 5. 设平稳过程{(),0}X t t ≤≤+∞的功率谱密度为28()+14X S ωω= +,则其自相关函数为 6.设一灯管的使用寿命X 服从均值为1/λ的指数分布,现已知该灯管用了10小时还没有坏,该灯管恰好还能再用10小时的概率为 7.设电话总机在(0,]t 内接受到电话呼叫次数()N t 是强度(每分钟)为0λ>的泊松过程,(0)0N =, 则2分钟收到3次呼叫的概率 8.设随机过程(),0X t tY t =≥,其中Y 服从正态分布,即(1,4)Y N ,求103()E tX t dt ??= ??? ? 二、设二维随机变量(X,Y)具有概率密度 , 0(,)0, 其他 y e x y f x y -?<<=??

(1) 求边缘概率密度(),()X Y f x f y ,(2) 求条件概率密度|(|)Y X f y x , |(|)X Y f x y ,(3)求条件概率(1|1),{1}P Y X P X Y ≤≤+<. 三、在某交通路口设置了一个车辆计数器,记录南行北行的车辆总数。设X(t)和Y(t)分别表示在[0,t]内南行和北行的车辆数,它们是强度分别为1λ和2λ的possion 过程,且相互独立。如果在t(>0)时记录的车辆总 数为n ,求其中南行车辆有k(0

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

北邮版概率论标准答案(7)

习题七 1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计. 【解】1(),(),E X np E X A X ===因此np =X 所以p 的矩估计量 ?X p n = 2.设总体X 的密度函数 f (x ,θ)=22 (),0, 0, .x x θθθ?-<

(2) 似然函数1 1 ,01n n i i i L x x θ θ-==<<∏g ,i =1,2,…,n. 1 ln ln (1)ln n i i L n x θθ==+-∏ 由1 d ln ln 0d n i i L n x θθ==+=∏知 1 1?ln ln n n i i i i n n x x θ ===-=- ∑∏ 所以θ的极大似然估计量为 1 ?ln n i i n x θ ==-∑ 求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】 0.094x =- 0.101893s = 9n = ?0.094.EX x ==- 由2 2 2 2 21 ()()[()],()n i i x E X D X E X E X A n ==+==∑知222 ??[()]E X A σ+=,即有 ?σ =于是 ?0.101890.0966σ === 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6, 求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2 E X θ = ,令()E X X =,则 ?2X θ =且?()2()2()E E X E X θθ===, 所以θ的矩估计值为?220.6 1.2x θ ==?=且?2X θ=是一个无偏估计.

北邮版概率论答案(8)

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为 4.28 4.40 4.42 4.35 4.37 问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ μ ==≠= ===== = -- ==?=- > 所以拒绝H0,认为总体平均值有显著性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 3.24 3.26 3.24 3.27 3.25 设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == -- ==?= < 所以接受H0,认为这批矿砂的含镍量为3.25. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == - === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近

--北邮概率论研究生试题答案定稿

北京邮电大学2012——2013学年第1学期 《概率论与随机过程试题》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A)若A B ∈∈A,A ,则A B -∈A ; (B)若A A B ∈?A,,则B ∈A ; (C)若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D)若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A)若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C)若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D)若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到B orel 可测空间(),R B 上的实可测函数,

表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;若 已知100 100!1 !(100)()!2 k k k P A -= ,则2f dP Ω=? . 0 2 10(),2550 2525k k kP A =+=∑ 4. 设二维随机变量(,)X Y 的概率密度 2,01,0, (,)0,x y x f x y <<<? =??? 其他,20(1())E X t dt π ω=? 6. 设{(),0}W t t ≥是参数为2()0σσ>的维纳过程,令1 ()()X t W t =,则相 关函数2 (1,2)2 X R σ= . 7. 设齐次马氏链的状态空间为{1,2,3}E =,一步转移概率为 0.50.500.50.500.20.30.5P ?? ?= ? ???

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

北邮版概率论答案(5)

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7), ()140,()42,E X D X == 0.95{0}().P X m P X m =≤≤=≤=Φ 查表知 1.64,= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 205 ~(0,1).k V Z N -?= =∑近似的 于是105205{105}10P V P ????-?? >=> 1000.3871(0.387)0.348,V P ????-?? =>≈-Φ=? ???? 即有 P {V >105}≈0.348 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少?

北邮版概率论答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

北邮版概率论答案(2)

习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】 3535 24 35 3,4,51 (3)0.1C 3(4)0.3C C (5)0.6 C X P X P X P X ====== ==== 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 3 1331512213 3151133 150,1,2. C 22 (0). C 35C C 12(1). C 35 C 1 (2).C 35 X P X P X P X ========== (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 2235

当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 0, 022 ,0135()34,12351,2x x F x x x

北邮概率论与数理统计条件概率1.3

§1.3 条件概率 条件概率是概率论中的一个基本概念,也是概率论中的一个重要工具,它既可以帮助我们认识更复杂的随机事件,也可以帮助我们计算一些复杂事件的概率。 1. 条件概率的定义及计算 在一个随机试验中或随机现象中,当我们已知一个事件B 发生了,这时对另外一个事件A 发生的概率往往需要重新给出度量.称事件A 的这个新概率为在事件B 发生的条件下事件A 发生的条件概率,记为)|(B A P .为了对条件概率有一个直观的认识以及考虑该如何给出条件概率的数学定义,我们先看一个例子. 例1 一批同类产品由甲、乙两个车间生产,各车间生产的产品数及正品和次品的情况如下表 甲车间 乙车间 合计 正品 465 510 975 次品 15 10 25 合计 480 520 1000 从这批产品中任取一件,则这件产品是次品的概率为 %5.21000 25= 现在假设被告知取出的产品是由甲车间生产的,那么这件产品为次品的概率就不再是 %5.2,而是 %125.3480 15= 在本例中,设B 表示事件“取出的产品是由甲车间生产的”,A 表示事件“取出的产品是次品”,前面算出的事件A 的概率是在没有任可进一步的信息的情况下得到的,而后面算出的事件A 的概率是在有了 “事件B 发生了”这一信息的情况下得到的.后一个概率就是在事件B 发生的条件下事件A 发生的条件概率.与此对应,我们可以把前一个概率称为无条件概率。经过简单计算有 ) ()(1000/4801000/1548015)|(B P AB P B A P === 这个关系式尽管是从本例得出的,但它具有普遍意义.受由启发,我们可以在一般的样本空间中给出条件概率的数学定义. 定义 设B A ,是样本空间Ω中的两个事件,且0)(>B P ,在事件B 发生的条件下,事件A 的条件概率定义为 ) ()()|(B P AB P B A P = 根据条件概率的定义,不难验证条件概率满足概率定义中的三条公理: (1)非负性:对任一事件B ,有0)|(≥A B P ; (2)规范性:1)|(=ΩA P ;

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 、1 随机试验及随机事件 1、 (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形、 样本空间就是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数、 样本空间就是:S= ; 2、(1) 丢一颗骰子、 A:出现奇数点,则A= ;B:数点大于2,则B= 、 (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= 、 §1 、2 随机事件的运算 1、 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: 、(2)A 与B 都发生,而C 不发生表示为: 、 (3)A 与B 都不发生,而C 发生表示为: 、(4)A 、B 、C 中最多二个发生表示为: 、 (5)A 、B 、C 中至少二个发生表示为: 、(6)A 、B 、C 中不多于一个发生表示为: 、 2、 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 、3 概率的定义与性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= 、 2、 已知,3.0)(,7.0)(==AB P A P 则)(B A P = 、 §1 、4 古典概型 1、 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率、 2、 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率、 §1 、5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之与为7, 则其中一颗为1的概率就是 。 2、 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 、6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签, 说明两人抽“中‘的概率相同。 2、 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机 地取一个球,求取到红球的概率。 §1 、7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂 产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 与B 传递出去,接收站收到时,A 被误收作B 的概率为0、02,

概率论与数理统计课后答案北邮版(第四章)

习题四 1.设随机变量X 的分布律为 1 0 1 2 求E (X ),E (X 2 ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)0 0.432. =-?+-?++-?= 3.设随机变量X 的分布律为 1 0 1 且已知E (X )=,E (X 2 )=,求P 1,P 2,P 3.

【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-=……②, 2222 12313()(1)010.9E X P P P P P =-++=+=……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白 球的概率是多少 【解】记A ={从袋中任取1球为白球},则 (){|}{}N k P A P A X k P X k ===∑全概率公式 1 {}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】12 20 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ 4X .

北邮版概率论答案

习题二 2?设在15只同类型零件中有 2只为次品,在其中取 3次,每次任取1只,作不放回抽样, 以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; ⑶ 1 3 3 P{X -}, P{1 X -}, P{1 X }, P{1 X 2}. 2 2 2 【解】 X 0,1,2. C ;3 22 P(X 0) J C 15 35 1 2 C ; 12 P(X 1) J — C 15 35 C 1 1 P(X 2) 3 C 15 35 故X 的分布律为 X 0 \ 1 2 P 22 12 1 .Z ........... 35 35 / 35 (2)当 x<0 时,F (x ) =P (X w x ) =0 当0 w x<1时, F (x ) =P (X w x ) \ Z 22 =P(X=0)=—— 35 2, 3, 4, 5,在其中同时取 3只,以X 表示取出的3只 X 的 分布律. X 3,4,5 P(X 1 3) -3 0.1 / P(X 3 4) -3 0.3 2 / P(X 5) C 3 0.6 C ; 故所求分布律为 1?一袋中有5只乒乓球,编号为1, 球中的最大号码,写出随机变量 【解】

4.( 1)设随机变量X 的分布律为 当1 < x<2时, F (x ) =P (X W x ) =P(X=0)+P(X=1)=34 35 当 x >2 时,F (x ) =P (X W x ) =1 故X 的分布函数 0, x 0 F(x) 22 35 34 35 1, x 2 22 35 3 3 34 34 P(1 X ) F(:) F(1) 0 2 2 35 35 3 3 12 P(1 X -) P(X 1) P(1 X -)- 2 2 35 34 P(1 X 2) F(2) F(1) P(X 2) 1 - 35 1 0. 35 3?射手向目标独立地进行了 3次射击,每次击中率为,求 3次射击中击中目标的次数的分布 律及分布函数,并求 3次射击中至少击中2次的概率? 【解】 设X 表示击中目标的次数?则X=0,1,2,3. P(X 0) (0.2)3 0.008 P(X 1) C ;0.8(0.2)2 0.096 P(X 2) C 3(0.8)20.2 0.384 P(X 3) 3 (0.8) 0.512 X \ 0 1 2 3 P 分布函数 0, x 0 0.008, 0 x 1 F(x) 0.104, 1 x 2 0.488, 2x3 1, x 3 P(X 2) P(X 2) P(X 3) 0.896 P(X F(2) 故X 的分布律为

北邮版概率论答案(7)

习题七 1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计. 【解】1(),(),E X np E X A X ===因此np =X 所以p 的矩估计量 ?X p n = 2.设总体X 的密度函数 f (x ,θ)=22 (),0, 0, .x x θθθ?-<

所以θ的极大似然估计量为1 ?X θ =. (2) 似然函数1 1 ,01n n i i i L x x θ θ -==<<∏,i =1,2,…,n. 1 ln ln (1)ln n i i L n x θθ==+-∏ 】 由1 d ln ln 0d n i i L n x θθ==+=∏知 1 1?ln ln n n i i i i n n x x θ ===-=- ∑∏ 所以θ的极大似然估计量为 1 ?ln n i i n x θ ==-∑ 求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】 0.094x =- 0.101893s = 9n = 0.094.EX x = =- 由2 2 2 2 21()()[()],()n i i x E X D X E X E X A n ==+==∑知222 ??[()]E X A σ+=,即有 ¥ ?σ =于是 ?0.101890.0966σ === 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为和. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:,,,,,,,,求θ的矩法估计 和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2 E X θ = ,令()E X X =,则

概率论与数理统计课后答案北邮版(第四章)

习题四 求 E (X ), E (X ), E (2X+3). 1 1 1 1 1 【解】(1) E(X)=(-1) 1 2 ; 8 2 8 4 2 2 2 1 2 1 2 1 2〔5 (2) E(X 2) =(-1) 2 - 02 — 12 - 22 ; 8 2 8 4 4 1 (3) E(2X 3) =2E(X) 3 = 2 — 3 = 4 2 2?已知100个产品中有10个次品,求任意取出的 5个产品中的次品数的数学期望、方差 【解】设任取出的5个产品中的次品数为 X ,则X 的分布律为 故 E(X)= 0.583 0 0. 34 0 1 0.070 2 0. 007 3 -0.501, 5 2 D(X)八[X i -E(X)] P i=Q =(0 -0.501)2 0.583 (1-0.501)2 0.340 ::;■…川(5 - 0.501)2 0 = 0.432. 3?设随机变量X 的分布律为 且已知 E (X )=0.1,E(X )=0.9,求 P 1, P 2, P 3. 【解】因R +P 2+F 3=1……①, 又 E(X)=(—1)R +0畀十1^ = P 3 —P =0.1 ……②, E(X 2) =(—1)2 勒 +02电+12匪=只+巳=0.9…… 由①②③联立解得 P =O.4,P 2 =0.1,P 3=0.5. 4.袋中有N 只球,其中的白球数 X 为一随机变量,已知 E (X ) =n ,问从袋中任取1球为白 球的概率是多少? 【解】记A={从袋中任取1球为白球},则

N P(A)全概率公式' P{A|X 二 k}_P{X =k} 7 N k 1 N P{X =k} kP{X = k} 7 N N k 」 1 n = N £(X ^N 5?设随机变量X 的概率密度为 x, 0 乞 x :: 1, f (x )=」2 —x,1 兰x 兰2, 0,其他. 求 E (X ), D (X ). -be 1 2 2 xf (x)dx = ° x dx 亠 I x(2「x)dx 2 - - 2 1 3 2 2 E(X ) x f (x)dx x dx 亠 I x (2-x)dx = 0 1 D (X)=E(X 2) — [E(X)]2 T X ,Y , Z 相互独立,且 E (X )=5,E ( Y ) =11,E (Z )=8,求下列随机变量 (1) U=2X+3Y+1 ; (2) V=YZ -4X. 【解】(1) E[U ] = E(2X +3Y+1) = 2E(X)+3E(Y)+1 =2 5 3 11 1 = 44. (2) E[V] =E[YZ _4X] =E[YZ] _4E(X) 因Y,Z 独立E(Y) _E(Z) -4E(X) =11 8-4 5 = 68. 7?设随机变量 X ,Y 相互独立,且 E( X )=E ( Y )=3 ,D ( X )=12,D ( Y )=16,求 E ( 3X - 2Y ), D (2X -3Y ). 【解】(1) E(3X -2Y) =3E(X)-2E(Y) =3 3-2 3 =3. 2 2 (2) D(2X -3Y) =2 D(X) (-3) DY = 4 12 9 16=192. 8?设随机变量(X ,Y )的概率密度为 【解】E(X) 故 6?设随机变量 的数学期望?

相关文档
相关文档 最新文档