文档库 最新最全的文档下载
当前位置:文档库 › 漆酶来源与应用

漆酶来源与应用

漆酶来源与应用
漆酶来源与应用

漆酶来源与应用

万云洋1,2,杜予民2

1.中国石油大学(北京)资源与信息学院,北京(102249)

2.武汉大学资源与环境科学学院,武汉(430079)

E-mail :yunyangwan@https://www.wendangku.net/doc/d54922895.html,

摘 要:本文对漆酶来源,包括动物、微生物和植物,尤其是我国的特产资源漆树及其他植

物漆酶,酶的稳定化及固定化,生物整治、对木质素的作用以及其各方面的应用作一综述。

关键词:漆酶,漆树,生物整治,木质素,固定化

漆酶(EC1.10.3.2),对-二酚:(双)氧氧化还原酶,又名酚酶,多酚氧化酶,漆酚氧化酶

和等,是一种含铜的糖蛋白氧化酶,是多铜氧化酶的一种[1]。对漆酶的研究已有一百多年的

历史,是有记载以来开发最早的酶之一:1883年,日本人吉田在研究生漆液成份时发现这

种酶成份,但当时他误为淀粉酶物质(diastatic matter),1898年,法国人Bertrand 在研究越南

产漆液的时候,首次提出了漆酶(laccase)的概念并沿用至今[2-5];Reinhammar 等[6;7]、杜予民

等[8-12]对漆酶及漆树液全成份的分离纯化作了很好的工作;另外,熊野等[13;14]对漆酶反应机

理,黄葆同、甘景镐[15]等对中国漆酶化学的发展,Morpurgo(意大利)[16;17],Solomon(美国)

等[18-24]对漆酶铜原子中心的研究作出了各自的贡献。

漆酶虽然是研究史中的老酶,但其各种新功能也正在被发现和挖掘。本文结合自身工作实践,专门就漆酶来源、特别是植物漆酶来

源和其各方面的应用研究作一综述,进一步推动漆酶(尤其是植物漆酶)研究的发展。

Figure 1. Dominating distribution of lacquer trees in the world.

1. 漆酶的来源

1.1植物漆酶

由上述可知,对漆酶的研究首先就是从漆树来源开始的。漆树(Rhus vernicifera )

种属于

75 90 105120135 15015

30

45

被子植物亚门双子叶植物纲蔷薇亚纲无患子目漆树属(Toxicodendron)漆树科(Anacardiaceae),源产于我国,是我国的植物国宝。从图1上可见,漆树现在世界上的分布主要在我国中西部以毛坝(东经109?, 北纬30?)为中心的地区,环我国东南的地区和国家(朝鲜,韩国,日本,越南,缅甸,泰国,柬埔寨,老挝等),并集中分布在如图红线所示的三角区域(东北至日本的八户,西北至不丹的锡金,南到越南胡志明)[25]。目前全国被鉴定的漆树良种46个,生漆的产量和出口量均占世界总量的85%左右,其中湖北恩施的毛坝漆、陕西平利的牛王漆、浙江临安的严州漆享有世界声誉。漆树漆酶是目前从植物源-漆树-提取的活性最高的漆酶,是我国的一种特产资源,我们对目前已知产漆酶的植物源作一概括,详见表1。

1.2 微生物漆酶

微生物漆酶,包括真菌漆酶和细菌漆酶,已经被大量的研究和报道[26-29] (表4),尤其是真菌漆酶,据估计,已经报道产漆酶真菌不下于1000种[30]。现在各国对此研究相当多和非常的热,对于研究漆树漆酶很有借鉴作用。

目前报道的细菌漆酶来源有只有Bacillus sphaericus [31]、Azospirillum lipoferum[29;32]和地中海生海洋性细菌Alteromonas菌株[33]。不过Alexandre[34]推断漆酶在细菌中也广泛存在,并正在被不断发现[35]。

1.3 动物漆酶

相对来讲,动物体中发现的漆酶很少。目前有报道的有猪肾、麻蝇(Phormia cegina, Musca domestica, Lucilia sericata)、烟草天蛾(Manduca sexta)、绿头苍蝇(Calliphora vicina)、蚊子和双翅目的迁移类蝗虫,昆虫等[29;36-38],不过对于此类漆酶还是要小心对待,因为很有可能是一些具有类似催化性能的多酚氧化酶,而不是漆酶。

Table 1. Sources of plant laccases

Sources 中文名References

Rhus vernicifera 漆树

[25;39;40]

Rhus succedanea 木蠟树(安南漆)

Melanorrhoea usitata 缅甸连加斯

Melanorrhoea laccifera 高棉漆

Manifera indica 檬果(芒果)

[39;41]

Schinus molle 加州胡椒树

Pistacia palaestina 巴勒斯坦黄连木

Pleiogynium timoriense 帖木李

Banana 香蕉[42]

Peach 梨[43]

Grape 葡萄

[39]

Lactuca virosa 毒莴苣

Digitalis purpurea 毛地黄

Coffer bean 咖啡豆

Mungbean hypocotyls 绿豆胚轴[44]

Acer pseudoplatanus 悬铃木(大槭树)[45]

Pinus taeda 火炬松[46]

Populus trichocarpa 西部香脂杨

[47]

Populus euramericana 黄杨

Liriodendron lulipifera 马栗树[48]

Aesculus parviflora 小花七叶树[45]

Camella sinesis L. 茶[49]

Nicotiana tabacum 烟草[50]

Arabidopsis thaliana 拟南芥[48;51] Podocarpaceae 罗汉松[43]

Forsythia suspensa 连翘[52-54]

1.4 漆酶同工酶

在讨论漆酶来源的时候不能不讲漆酶同工酶,是研究漆酶另一个很重要的方面,是漆酶源的补充,也促进了漆酶研究的深入发展。同工酶研究的重要性可以从几个方面体现。首先,可以发现一些新类型的酶。白漆酶和黄漆酶正是通过同工酶的研究而提出来的[55-57]。其次,可以对漆酶底物专一性进行对比考察。第三,对系统发育树研究。Ranocha[47]在对杨属植物研究时报道了两种分子量分别为90kDa和110kDa的同工酶,并对它们进行了生化特性,分子克隆和表达研究,认为不同植物来源以及同种植物之间的漆酶序列同源性都很不同,p I 各不相同,体现了系统发育植物树的分散性。

漆酶同工酶的报道很多[58;59],尤其是真菌漆酶,几乎每一种被报道产漆酶的真菌,则必定含有几种同工酶[26;60;61]。Antorini等人[62]从两种木质素分解真菌中分离纯化的几种同工酶进行X-射线衍射分析。同工酶可以存在在同一细胞,同一组织,同一个体不同组织或者同一种属中[63-66]。相对来讲,植物漆酶中的同工酶报道不多[47;67],我们首次报道了中国漆树漆酶的两种同工酶[11;12]。各种同工酶的差异可能主要体现在糖链部分。现在同工酶的研究已经成为细胞分化及形态遗传学的重要内容[68]。

2. 酶稳定技术和固定化

酶的稳定性,指的是在操作使用的时候,酶的催化能力不随着储存,使用频率,应用环境的改变而下降的能力,仍然是目前生物技术研究的一个关键问题。酶作为一种生物物质,要完全不改变是不可能的,但是将损失尽量降低则是有可能的。为了改善和提高漆树漆酶的催化能力,应该借鉴和参考其他的行之有效的手段,比如上面提到的酶表面活性剂改性,蛋白质工程技术,化学改性(比如交联,共价吸附,表面修饰等)[69;70],添加外源物质等[54;71]。

酶的固定化实际上只是酶和蛋白稳定化的一种技术,也是对酶进行改性的一种常规手段。由于其本身的问题和对环境敏感的特点,并由于固定化漆酶在多方面的应用,使得酶固定化的研究得到了深入的发展[72]。

将漆酶固定在电极上是很好的方法,这种方法对于微量的无溶剂检测尤其适用[73-76]。将漆酶和葡萄糖脱氢酶固定在一个Clark氧电极上,构造出一种酶传感器,可以在不到1min 之内同步区分可待因和吗啡[77],以及可以检测肾上腺素类物质[78;79]。

将漆酶固定在可以再生利用的铜螯合载体上,可用于去除酒类生产中的酚[80]。漆酶固定在尼龙海绵体上,可以对聚合染料聚R-478脱色90%[81]。固定化的方法很多,表4对漆酶的固定化研究作了枚举。

由于大多数酶都是水溶性的,不溶或者难溶于有机溶剂,所以对酶进行化学物理改性是最常见的手段,固定化技术实质上也是一种改性方法。但是这些手段往往是以牺牲酶活为代价的,近年来发展的一种非离子型表面活性剂双十二烷基N-D-葡糖酸-L-谷氨酸酯(DHAD)改性酶

的方法,如图2所示,逐渐得到大家的重视。这可能涉及对蛋白质分子表面的改性或者修饰。这种非离子表面活性剂最早由Okahata等人[82]报道,稍后Goto等报道了一种改进的方法[83],我们改进后,首次用绿色方法合成的率高达96%以上的DHAD[84]。由于这种非离子表面活性剂同时带有亲水和亲油基团,同时由于操作简单,对酶活的影响小,的率高等优点,近来颇受关注[85-93]。

图2 非离子型表面活性剂双十二烷基N-D-葡糖酸-L-谷氨酸酯(DHAD)改性酶方法

Table 2. Immobilization of fungal and Rhus laccases

comment carrier

sp. nylon-66

Cerrena unicolor Phenols Glass

beads Free and

immobilized

laccases Compared

Covalent-APTES-glutaraldehyde [94]

Syringaldazine

phenols

CPG-activated/covered,

dextran layer

Stability, K m, V max Covalent-APTES-

glutaraldehyde [69]

Coriolas hirsutus ABTS, Dye, Affi-Gel-15(agarose) 85% activity after

10 cycles

Covalent ester crossing-linking [95]

Lentinula edodes Effluent,

Phenols

Chitosan 520U/g,

storage

time, pH temp.

improved

Adsorption and subsequent with

glutaraldehyde cross-linking

[96]

ABTS,

Effluent,

Phenols

Eupergit 45%immobilized,

60% activity, temp.

Covalently-activated oxirane [97]

Pleurolus ostreatus ABTS, DMP,

Phenols,

Eupergit DMP

Continuous

elimination,

pH, temp., stability

improved

Covalently-activated oxirane [98]

Polyporus versicolor Phenols(apple

juice)

Sepharose

4H-Epi-IDA-Cu2+

39% phenols

removed

48% flavanols

removed

Adsorption [99]

Pyriculuria uryzae Phenols Microperl,

polyclar 95%

immobilized,

co-immobilized

Co-immobilization

(laccase/tyrosinase)

[100]

Phenols Polyethersulphone

membrane

40% immobilized,

kinetics reactor,

stability

Adsorption [101]

Phenols,

DMP, PDA

Natural and modified

chitosan, transitional

metals

30~70 immobilized,

properties improved

Adsoption, glutaraldehyde

cross-liking and/or chelation

[72]

Protein

coupling

p-benzoquinone-activated

agarose

27% immobilized,

150% activity

Affinity p-benzoquinone-activated

agarose

[102]

Phenols Transition metals,

hydroxide oxides

silica-ZrCl4

75% activity,

properties

Chelation or metal binding [103]

Rhus

vernicifera

Phenols Porous silica treated by 75% activity after Chelation or metal binding [104]

times,

20

ZrCl4 used

properties(pH, K m,

opt. Temp. etc.)

Phenols Urushiol resin-metal ions 10% activity,

[105]

properties

activity,

Adsorption electrostatic interaction [73]

electrodes 10%

ABTS Gold

mediator Fe(CN)63-

3. 漆酶的应用

漆酶的应用范围也是相当的广泛。如上所述,也可以添加一些中介物质促进反应。不过

对漆酶的各种应用,归结到一点,就是利用了它的催化氧化性能,漆酶结构和催化机理探讨

见文献[1],此文不再详述。本文涉及其应用的几个主要方面和一些最新进展。

3.1 生物整治[106]

目前用于生物整治或生物修复的主要是真菌类酶,尤其是白腐真菌所产漆酶的高水平

而广受关注。

3.1.1 对烯烃的作用

用白腐真菌Trametes hirsuta产的漆酶氧化烯烃,分两部进行:酶先催化氧化一级底物,

加到反应中的中介物,然后被氧化的中介物再氧化二级底物——烯烃,使其成为相应的醛或

酮。用羟基苯并三唑作中介物所得结果最好,脂肪多聚不饱和的和芳香烯丙基醇在20℃下

处理2h则可完全得到氧化。在45℃下进行20h,脂肪烯丙基乙醇的氧化率可达70%。对其

它烯烃,比如烯丙基乙醚,cis-2-庚烯和环辛烯的氧化率也有一定的催化效果[107]。

3.1.2 对TCP和其它有害物质的作用

用白腐真菌Panus tigrinus和Coriolus versicolor的液体培养基对2,4,6-三氯苯酚(TCP)

异构体的毒性作了研究。在这两种情况下,无论是原封不动的真菌培养液还是纯化了的木质

素降解酶,Mn-过氧化酶和漆酶,两种真菌的木质素降解酶体系都能够将三氯苯酚转化成2,6-

二氯-1,4-氢醌和2,6-二氯-1,4-苯醌,只不过,在P.tigrinus培养液中对2,4,6-TCP起主要作用

的是Mn过氧化酶,而在C.versicolor中,则主要是漆酶[108]。漆酶还可以降解一种内分泌混

乱化合物双酚A[90;109-112]。

在有中介物质,比如1-羟基苯并三唑(HBT)和ABTS作自由基中介物时能够氧化咔唑,

N-乙基咔唑,芴和硫芴[113;114]。在有HBT协助时,从双酚和分酚化合物中可以剔除一种雌

激素活性物质,4-异丙基苯酚[115]。在pH为3,在有2mmol/L的ABTS作氧化还原中介物,

纯化漆酶能够将一种除草剂Isoxaflutole在土壤和植物中的活化形式——二酮腈转化成酸类

物质[116]。

3.1.3 对废水和染料的处理及其生态效应

漆酶还能够对工业废水进行处理,对多种工业染料进行脱色,对自然界的木块进行降

解等等[117-123]。近来,漆酶也被用于多环芳烃、石油烃污染物的生物处理,值得关注。

Criquet等人[124]报道,漆酶在一些落叶,如栎树叶中可以非常稳定的存在,他们认为这

可能是由于落叶吸收了腐殖酸的缘故。由此或许可以猜测漆酶在落叶的降解中具有重要的生

态功能。

总之,漆酶在生物整治中的潜力很大,还没有得到很好的体现[125]。

3.2. 对木质素的作用

对于漆酶在木质化过程中的功能有多种论述[47;54;126;127],既涉及木质素的生物合成,也牵涉木质素的生物降解[128;129],或者说植物漆酶合成木质素,真菌漆酶降解木质素[130]。

尽管Cullen和Kersten认为漆酶对于木质素的生物降解并非绝对必要,但是也承认漆酶能够将木质素的酚单元氧化成苯氧基[131]。Freudenberg等[131-133]很早就研究了芥子醇在漆酶等作用下的脱氢聚合反应。有报道认为漆树漆酶不能催化愈创木酚和松柏醇,所以并不涉及到木质素的生物合成[134;135],但是很多植物(表1),如悬铃木[45;136]、连翘[53;54]、火炬松[46]及针叶树[137;138]等所产漆酶均发现同木质素的合成有关,能够催化松柏醇。我们的研究也发现,漆树漆酶能够以非常慢的速度催化松柏醇[139]。尤其是当有2, 2’-连氮-二(3-乙基苯并噻唑-6-磺酸)(ABTS)调节的时候,漆酶在催化愈创木酚和β-O-4-二聚醇时得到分子量更大的产物[140]。而事实上,从1993年漆酶被用于去除纸浆木质素开始[141],这方面的研究已经相当的多。特别是白腐真菌等真菌漆酶对木质素的降解[142-144]。

虽然对于漆酶在木质化过程中的功能和作用尚缺乏结论性的证据,但是由于涉及到木质素这种复杂的成份,涉及到生物资源的深度开发,利用和环境保护等重大课题,因此研究相当活跃,意义重大,将是今后的研究热点和重点。

漆酶还被用于毛发染色等具有现实意义的应用。已经有专利报道了在有中介物质羟基氐存在时将漆酶用于染发剂[145;146]。总之,从目前的研究报道来说,漆酶的确是一种多才多艺的酶,还有许多功能和应用有待发现与发展。

参考文献

(1) Wan Y-Y, Du Y-M. Structure and catalytic mechnism of laccases. Chemistry 2007; 70(9):662-670.

(2) Benfield G, Bocks SM, Bromley K, Brown BR. Studies of fungal and plant laccases. Phytochemistry 1964; 3:79-88.

(3) Bertrand G. Inhibitory Action of certain Acids on Laccase. Bulletin de la Societe de Chimie 1908; 4(1-2):1120-1131.

(4) Jiang L-J. Natural lacquer (Raw lacquer). In: Branch Institute of Chemical Engineering Design of North China DoCI, editor. Experiences of manufacturing techniques in paint and coating industry. Bei Jing: Chemical Industry Press, 1960: 29-43.

(5) Preface: Future and past of oriental lacquer in chemistry and technology. 30 May; Fuzhou, China: 1993.

(6) Reinhammar B. Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochimica et Biophysica Acta 1970; 205:35-47.

(7) Reinhammar B, Oda Y. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. Journal of Inorganic Biochemistry 1979; 11:115-127.

(8) Du Y-M, Kong Z-W, Li H-P. Studies on separation and structure of lacquer polysaccharide. Acta Polymerica Sinica 1994;(3):301-306.

(9) Du YM, Oshima R, Iwatsuki H, Kumanotani J. High-resolution gas-liquid chromatographic analysis of urushiol of the lac tree, Rhus vernicifera, without derivatization. Journal of Chromatography 1984; 295:179-186. (10) Du YM, Oshima R, Kumanotani J. Reversed-phase liquid chromatographic separation and identification of constituents of urushiol in the sap of the lac tree, Rhus vernicifera. Journal of Chromatography 1984; 284:463-473.

(11) Wan Y-Y, Du Y-M, Yang J-H, Chen R-Z, Xiao L, Zhang Y. Study on Purification and Characterization of Two Isoforms of Chinese Rhus Laccases from Rhus vernicifera. Journal of Wuhan University (Natural Science Edition) 2003; 49(2):201-204.

(12) Wan Y-Y, Du Y-M, Yang F-X, Xu Y, Chen R-Z, Kennedy JF. Purification and characterization of hydrosoluble components from the sap of Chinese lacquer tree Rhus vernicifera. International Journal of Biological Macromolecules 2006; 38(3-5):232-240.

(13) Kumanotani J. Enzyme catalyzed durable and authentic oriental lacquer: a natural microgelprintable coating by polysaccharide - glycoprotein - phenolic lipid complexes. Progress in Organic Coatings 1998; 34:309-315.

(14) Oshima R, Yamauchi Y, Watanabe C, Kumanotani J. Enzymic oxidative coupling of urushiol in sap of the

lac tree. Journal of the Organic Chemistry 1985; 50(15):2613-2621.

(15) Gan JH. Lacquer Chemistry. 1st ed. Beijing: Science Publisher, 1984.

(16) Morpurgo L, Calabrese L, Desideri A, Rotilio G. Dependence on freezing of the geometry and redox potential of Type 1 and Type 2 copper sites of Japanese-lacquer-tree (Rhus vernicifera) laccase. Biochemical Journal 1981; 193(2):639-642.

(17) Morpurgo L, Agostinelli E, Senepa M, Desideri A. A room temperature electron paramagnetic resonance study of native and fluoride-reacted Vietnamese and Japanese lacquer-tree laccases: differences from liquid-nitrogen spectra. Journal of Inorganic Biochemistry 1985; 24(1):1-8.

(18) Lee SK, George SD, Antholine WE, Hedman B, Hodgson KO, Solomon EI. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. Journal of the American Chemical Society 2002; 124(21):6180-6193.

(19) Sundaram UM, Zhang HH, Hedman B, Hodgson KO, Solomon EI. Spectroscopic Investigation of Peroxide Binding to the Trinuclear Copper Cluster Site in Laccase: Correlation with the Peroxy-Level Intermediate and Relevance to Catalysis. Journal of the America Chemical Society 1997; 119(51):12525-12540.

(20) Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chemical Reviews 1996; 96(7):2563-2605.

(21) Yoon J, Solomon EI. Electronic structures of exchange coupled trigonal trimeric Cu(II) complexes: Spin frustration, antisymmetric exchange, pseudo-A terms, and their relation to O2 activation in the multicopper oxidases. Coordination Chemistry Reviews 2006; In Press.

(22) Cole JL, Ballou DP, Solomon EI. Spectroscopic characterization of the peroxide intermediate in the reduction of dioxygen catalyzed by the multicopper oxidases. Journal of the America Chemical Society 1991; 113(22):8544-8546.

(23) Shin W, Sundaram UM, Cole JL, Zhang HH, Hedman B, Hodgson KO, Solomon EI. Chemical and Spectroscopic Definition of the Peroxide-Level Intermediate in the Multicopper Oxidases: Relevance to the Catalytic Mechanism of Dioxygen Reduction to Water. Journal of the America Chemical Society 1996; 118(13):3202-3215.

(24) Quintanar L, Yoon J, Aznar CP, Palmer AE, Andersson KK, Britt RD, Solomon EI. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. Journal of the American Chemical Society 2005; 127(40):13832-13845.

(25) Wan Y-Y, Lu R, Du Y-M, Honda T, Miyakoshi T. Does Donglan lacquer tree belong to Rhus vernicifera species? International Journal of Biological Macromolecules 2007; 41(5):497-503.

(26) Bonomo RP, Boudet AW, Cozzolino R, Rizzarelli E, Santoro AM, Sterjiades R, Zappala R. A comparative study of two isoforms of laccase secreted by the "white-rot" fungus Rigidoporus lignosus, exhibiting significant structural and functional differencese. Journal of Inorganic Biochemistry 1998; 71(3-4):205-211.

(27) Robles A, Lucas R, Martinez-Canamero M, Ben Omar N, Perez R, Galvez A. Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32. Enzyme and Microbial Technology 2002; 31(4):516-522.

(28) Jung H, Xu F, Li K. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme and Microbial Technology 2002; 30(2):161-168.

(29) Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology and Biochemistry 2000; 32(7):919-927.

(30) Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiology Reviews 2005; 30(2):215-242.

(31) Claus H, Filip Z. The evidence of a laccase -like enzyme activity in a Bacillus sphaericus strain. Microbiological Research 1997; 152(2):209-216.

(32) Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiology Letters 1993; 108(2):205-210.

(33) Solano F, Garcia E, De Egea EP, Sanchez-Amat A. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Applied and Environmental Microbiology 1997; 63(9):3499-3506.

(34) Alexandre G, Zhulin IB. Laccases are widespread in bacteria. Trends in Biotechnology 2000; 18(2):41-42.

(35) Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal structure of a bacterial endospore coat component--a laccase with enhanced thermostability properties. The Journal of Biological Chemistry 2003; 278(21):19416-19425.

(36) Hopkins TL, Kramer KJ. Insect cuticle sclerotization. Annual Review of Entomology 1992; 37:273-302.

(37) Kramer KJ, kanost MR, Hopkins TL, Jiang H, Zhu Y-C, Xu R, Kerwin JL, Turecek F. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 2001; 57(2):385-392.

(38) Sidjanski S, Mathews GV, Vanderberg JP. Electrophoretic separation and identification of phenoloxidases in hemolymph and midgut of adult Anopheles stephensi mosquitoes. Journal of Parasitology 1997; 83(4):686-691.

(39) Gan JH. lacquer chemistry. 1st ed. Beijing: Science Publisher, 1984.

(40) Lim KT, Hu C, Kitts DD. Antioxidant activity of a Rhus verniciflua Stokes ethanol extract. Food and Chemical Toxicology 2001; 39(3):229-237.

(41) Joel DM, Marbach I, Mayer AM. Laccase in anacardiaceae. Phytochemistry 1978; 17(4):796-797.

(42) Griffiths LA. Detection and identification of the polyphenoloxidase substrate of the banana. Nature 1959; 184:58-59.

(43) Mayer AM, Harel E. Polyphenol oxidases in plants. Phytochemistry 1979; 18(2):193-215.

(44) Chen Y-A, Shin J-W, Liu Z-H. Effect of light on peroxidase and lignin synthesis in mungbean hypocotyls. Plant Physiology and Biochemistry 2002; 40(1):33-39.

(45) Bligny R, Douce R. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme. Biochemical Journal 1983; 209(2):489-496.

(46) Bao W-L, O'Malley DM, Whetten R, Sederoff RR. A laccase associated with lignification in loblolly pine xylem. Science 1993; 260(5108):672-674.

(47) Ranocha P, McDangau G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-MacHeteau M, Boudet A-M, Goffner D. Biochemical characterization, molecular cloning and expression of laccases - a divergent gene family - in poplar. European Journal of Biochemistry 1999; 259(1-2):485-495.

(48) Nitta K, kataoka K, Sakurai T. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. Journal of Inorganic Biochemistry 2002; 91:125-131.

(49) Gregory RPF, Bendall DS. The purification and some properties of the polyphenol oxidase from tea (Camellia sinensis). Biochemical Journal 1966; 101(3):569-581.

(50) De Marco A, Roubelakis-Angelakis KA. Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts. Phytochemistry 1997; 46(3):421-425.

(51) Richardson A, Duncan J, McDougall GJ. Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiology 2000; 20(15):1039-1047.

(52) Pare PW, Wang H-B, Davin LB, Lewis NB. (+)-Pinoresinol synthase: a stereoselective oxidase catalyzing 8,8'-lignan formation in Forsythia intermedia. Tetrahedron Letters 1994; 35(27):4731-4734.

(53) Davin LB, Bedgar DL, Katayama T, Lewis NG. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 1992; 31(11):3869-3874.

(54) Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DG, Sarkanen S, Lewis NG. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 1997; 275:362-366.

(55) Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L. 'Yellow' laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters 1997; 413(3):446-448.

(56) Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiology Letters 1997; 156(1):9-14.

(57) Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. Journal of Biological Chemistry 1997; 272(50):31301-31307.

(58) Chefetz B, Chen Y, Hadar Y. Purification and characterization of laccase from Chaetomium thermophilum and its role in humification. Applied and Environmental Microbiology 1998; 64(9):3175-3179. (59) Chefetz B, Kerem Z, Chen Y, Hadar Y. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste. Soil Biology and Biochemistry 1998; 30(8-9):1091-1098.

(60) Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI. Production of lignin modifying enzymes by co-cultivated White-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme and Microbial Technology 2002; 30(4):573-580.

(61) Tagger S, Perissol C, Gil G, Vogt G, Le Petit J. Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme and Microbial Technology 1998; 23(6):372-379.

(62) Antorini M, Herpoel-Gimbert I, Choinowski T, Sigoillot JC, Asther M, Winterhalter K, Piontek K. Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology 2002; 1594(1):109-114.

(63) Viterbo A, Staples RC, Yagen B, Mayer AM. Selective mode of action of cucurbitacin in the inhibition of laccase formation in Botrytis cinerea. Phytochemistry 1994; 35(5):1137-1142.

(64) Scherer M, Fischer R. Purification and characterization of laccase II of Aspergillus nidulans. Archives of Microbiology 1998; 170(2):78-84.

(65) Scherer M, Fischer R. Molecular characterization of a blue-copper laccase, TILA, of Aspergillus nidulans. FEMS Microbiology Letters 2001; 199(2):207-213.

(66) Pezet R. Purification and characterization of a 32-kDa laccase -like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiology Letters 1998; 167(2):203-208.

(67) Cheng F-G, Chen Y. Separation and Identification of Isoenzyme in Raw Urushi by Isoelectrofocusing. Journal of South-Central University for Nationalities (Natural Sciences) 2001; 20(1):78-82.

(68) Shen T, Wang JY. Biochemistry. 2nd ed. Bei Jing: High Education Press of China, 1990.

(69) Rogalski J, Dawidowicz A, Jozwik E, Leonowicz A. Immobilization of laccase from Cerrena unicolor on controlled porosity glass. Journal of Molecular Catalysis B: Enzymatic 1999; 6(1-2):29-39.

(70) Ruiz AI, Malave AJ, Felby C, Griebenow K. Improved activity and stability of an immobilized recombinant laccase in organic solvents. Biotechnology Letters 2000; 22(3):229-233.

(71) O'Fagain C. Enzyme stabilization--recent experimental progress. Enzyme and Microbial Technology 2003; 33:137-149.

(72) Wan Y-Y, Du Y-M, Shi X-W, Li J, Ru L, Miyakoshi T. Immobilization and Characterization of Rhus Laccase from Chinese Rhus vernicifera on Modified Chitosan. Process Biochemistry 2006; 41(6):1378-1382. (73) Hyung KH, Shin W. Characterization of immobilized laccase and its catalytic activities. Journal of the Korean Electrochemical Society 1999; 2(1):31-37.

(74) Leech D, Daigle F. Optimization of a reagentless laccase electrode for the detection of the inhibitor azide.

Analyst 1998; 123(10):1971-1974.

(75) Quan D, Shin W. Amperometric detection of hydroquinone and homogentisic acid with laccase immobilized platinum electrode. Bulletin of Korean Chemical Society 2004; 25(6):833-837.

(76) Quan D, Shin W. Amperometric detection of catechol and catecholamines by immobilized laccase from DeniLite. Electroanalysis 2004; 16(9):1576-1582.

(77) Bauer CG, Kuhn A, Gajovic N, Skorobogatko O, Holt P-J, Bruce NC, Makower A, Lowe CR, Scheller FW. New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase. Fresenius' Journal of Analytical Chemistry 1999; 364(1-2):179-183.

(78) Ghindilis AL, Michael N, Makower A. A new sensitive and simple method for detection of catecholamines from adrenal chromaffin cells. Pharmazie 1995; 50(9):599-600.

(79) Ghindilis AL, Makower A, Scheller FW. A laccase-glucose dehydrogenase recycling-enzyme electrode based on potentiometric mediatorless electrocatalytic detection. Analytical Methods & Instrumentation 1995; 2(3):129-132.

(80) Servili M, De Stefano G, Piacquadio P, Sciancalepore V. A novel method for removing phenols from grape must. American Journal of Enology and Viticulture 2000; 51(4):357-361.

(81) Maceiras R, Rodriguez-Couto S, Sanroman A. Influence of several activators on the extracellular laccase activity and in vivo decolorization of poly R-478 by semi-solid-state cultures of Trametes versicolor. Acta Biotechnologica 2001; 21(3):255-264.

(82) Okahata Y, Lim H-J, Hachiya S, Nakamura G.-I. Bilayer-coated capsule membrances.IV. Control of NaCl permeability by phase transition of synthetic bilayer coatings, depending on their hydrophilic head groups. Journal of Membrane Science 1984; 19(3):237-247.

(83) Goto M, Matsumoto M, Kondo K, Nakashio F. Development of new surfactant for liquid surfactant membrane process. Journal of Chemical Engineering of Japan 1987; 20(2):157-164.

(84) Wan Y-Y, Du Y-M, Hu K, Wang L-S, Cheng G-Z, Yang J-H, Kennedy JF. Synthesis and characterization of a kind of nonionic surfactant didodecyl 2-(2,3,4,5,6-pentahydroxy-hexanamido) pentanedioate: A green chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007; 296(1-3):270-276.

(85) Song B-D, Wu J-C, Xing A-H, Zhang MQ, Wang S-C. Surfactant-coated enzymes used as catalysts for reactions in organic solvents. Chemical Engineering (China) 2002; 30(2):45-48.

(86) Okazaki S-Y, Goto M, Wariishi H, Tanaka H, Furusaki S. Characterization and catalytic property of surfactant-laccase complex in organic media. Biotechnology Progress 2000; 16(4):583-588.

(87) Okahata Y, Fujimoto Y, Ijiro K. Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents. Tetrahedron Letters 1988; 29(40):5133-5134.

(88) Okahata Y, ijiro K. A lipid-coated lipase as a new catalyst for triglyceride synthesis in organic solvents. Journal of the Chemical Society: Chemical Communication 1988; 20:1392-1394.

(89) Okahata Y, Ijiro K. Preparation of a lipid-coated lipase and catalysis of glyceride ester syntheses in homogeneous organic solvents. Bulletin of the Chemical Society of Japan 1992; 65:2411-2420.

(90) Michizoe J, Ichinose S, Kamiya N, Maruyama T, Goto M. Biodegradation of Phenolic Environmental Pollutants by a Surfactant朙accase Complex in Organic Media. Journal of Bioscience and Bioengineering 2005; 99(6):642-647.

(91) Goto M, Kamiya N, Miyata M, Nakashio F. Enzymatic esterification by surfactant-coated lipase in organic media. Biotechnology Progress 1994; 10:263-268.

(92) Xing A-H, Song B-D, Wu J-C, Wang S-C. Preparation and applications of surfactant-coated enzymes. Chemical Industry and Engineering 2002; 19(1):36-42.

(93) Wu HY, Xu JH, Tsang SF. Efficient resolution of a chiral alcohol (RS)-HMPC by enzymatic transesterification with vinyl acetate using surfactant-modified lipase. Enzyme and Microbial Technology 2004; 34(5):523-528.

(94) Luterek J, Gianfreda L, Wojtas-Wasilewska M, Rogalski J, Jaszek M, Malarczyk E, Dawidowicz A, Finksboots M, Ginalska G, Leonowicz A. Screening of the wood-rotting fungi for laccase production: induction by ferulic acid, partial purification, and immobilization of laccase from the high laccase-producing strain, C errena unicolor. Acta Microbiologica Polonica 1997; 46(3):297-311.

(95) Reyes P, Pickard MA, Vazquez-Duhalt R. Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnology Letters 1999; 20(10):875-880.

(96) D'Annibale A, Stazi SR, Vinciguerra V, Mattia ED, Sermanni GG. Characterization of immobilized laccase from L entinula edodes a nd its use in olive-mill wastewater treatment. Process Biochemistry 1999; 34:697-706. (97) D'Annibale A, Stazi SR, Vinciguerra V, Giovannozzi Sermanni G. Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of Biotechnology 2000; 77(2-3):265-273.

(98) Hublik G, Schinner F. Characterization and immobilization of the laccase from P leurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme and Microbial Technology 2000; 27(3-5):330-336.

(99) Piacquadio P, De Stefano G, Sammartino M, Sciancalepore V. Phenols removal from apple juice by laccase immobilized on Cu2+-chelate regenerable carrier. Biotechnology Techniques 1997; 11(7):515-517. (100) Krastanov A. Removal of phenols from mixtures by co-immobilized laccase/tyrosinase and polyclar adsorption. Journal of Industrial Microbiology & Biotechnology" 2000; 24(6):383-388.

(101) Lante A, Crapisi A, Krastanov A, Spettoli P. Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochemistry 2000; 36(1-2):51-58.

(102) Mateescu M-A, Agostinelli E, Weltrowska G, Weltrowski M, Mondovi B. Specific immobilization of

laccase on p-benzoquinone-activated supports. Biology of Metals 1990; 3(2):98-102.

(103) Zhan D-F, Du Y-M, Qian B-G. Study of immobilized laccase and its properties. Chemical Journal of Chinese Universities 1990; 11(1):71-74.

(104) Xiao L, Du Y-M. Studies on immobilization of R hus laccase. Functional Polymer 1991; 4(3):218-222. (105) Lei F-H, Shi B, Huang Z-Y, Wang H, Guo M-G. Immobilization of laccase on urushiol resin. Linchan Huaxue yu Gongye 1996; 16(4):19-22.

(106) Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry 2002; 60:551-565. (107) Niku-Paavola M-L, Viikari L. Enzymatic oxidation of alkenes. Journal of Molecular Catalysis B: Enzymatic 2000; 10(40):435-444.

(108) Leontievsky AA, Myasoedova NM, Baskunov BP, Evans CS, Golovleva LA. Transformation of 2,4,6-trichlorophenol by the white rot fungi P anus tigrinus and C oriolus versicolor. Biodegradation 2000; 11(5):331-340.

(109) Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M. Degradation of bisphenol A by purified laccase from T rametes villosa. Biochemical and Biophysical Research Communications 2001; 284(3):704-706.

(110) Michizoe J, Goto M, Furusaki S. Catalytic activity of laccase hosted in reversed micelles. Journal of Bioscience and Bioengineering 2001; 92(1):67-71.

(111) Modaressi K, Taylor KE, Bewtra JK, Biswas N. Laccase -catalyzed removal of bisphenol -A from water: Protective effect of PEG on enzyme activity. Water Research 2005; 39(18):4309-4316.

(112) Okazaki S-Y, Michizoe J, Goto M, Furusaki S, Wariishi H, Tanaka H. Oxidation of bisphenol a catalyzed by laccase hosted in reversed micelles in organic media. Enzyme and Microbial Technology 2002; 31:227-232. (113) Bressler DC, Fedorak PM. Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Canadian Journal of Microbiology 2000; 46(5):397-409.

(114) Bressler DC, Fedorak PM, Pickard MA. Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of C oriolopsis gallica. Biotechnology Letters 2000; 22(14):1119-1125.

(115) Tsutsumi Y, Haneda T, Nishida T. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 2001; 42(3):271-276.

(116) Mougin C, Boyer F-D, Caminade E, Rama R. Cleavage of the diketonitrile derivative of the herbicide isoxaflutole by extracellular fungal oxidases. Journal of Agricultral and Food chemistry 2000; 48(10):4529-4534. (117) Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gubitz GM. Decolorization and detoxification of textile dyes with a laccase from T rametes hirsuta. Applied and Environmental Microbiology 2000; 66(8):3357-3362.

(118) Cameron MD, Timofeevski S, Aust SD. Enzymology of P hanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology 2000; 54(6):751-758.

(119) Raghukumar C. Fungi from marine habitats: an application in bioremediation. Mycological Research 2000; 104(10):1222-1226.

(120) Rodriguez E, Pickard MA, Vazquez-Duhalt R. Industrial dye decolorization by laccases from Ligninolytic fungi. Current Microbiology 1999; 38(1):27-32.

(121) Soares GMB, Costa-Ferreira M, Pessoa de Amorim MT. Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresource Technology 2001; 79(2):171-177.

(122) Soares GMB, Pessoa Amorim MT, Oliveira-Campos AM, Hrdina R, Costa-Ferreira M. Specificity of phenolic disazo dyes in relation to transformation by laccase. Enzyme and Microbial Technology 2002; 30(5):607-612.

(123) Soares GMB, Amorim MTP, Hrdina R, Costa-Ferreira MR. Studies on the biotransformation of novel disazo dyes by laccase. Process Biochemistry 2002; 37(6):581-587.

(124) Criquet S, Farnet AM, Tagger S, Le Petit J. Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biology and Biochemistry 2000; 32(11-12):1505-1513.

(125) Wong Y, Yu J. Laccase -catalyzed decolorization of synthetic dyes. Water Research 1999; 33(16):3512-3520.

(126) Wallace G, Fry SC. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochemistry 1999; 52(5):769-773.

(127) Boudet A-M. Lignins and lignification: selected issues. Plant Physiology and Biochemistry 2000; 38(1-2):81-96.

(128) Thurston CF. The structure and function of fungal laccases. Microbiology 1994; 140(1):19-26.

(129) Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guebitz G, Buchert J. Investigations on the laccase-catalyzed polymerization of lignin model compounds using size-exclusion HPLC. Enzyme and Microbial Technology 2002; 31(4):403-410.

(130) Garavaglia S, Cambria MT, Miglio M, Ragusa S, Lacobazzi V, Palmieri F, D'Ambrosio C, aloni A, i, i M. The Structure of R igidoporus lignosus Laccase Containing a Full Complement of Copper Ions, Reveals an Asymmetrical Arrangement for the T3 Copper Pair. Journal of Molecular Biology 2004; 342(5):1519-1531. (131) Cullen D, Kersten PJ. Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzluf GA, editors. The Mycota III; Biochemistry and molecular biology. Berlin-Heidelberg: Springer-Verlag, 2004: 249-273. (132) Freudenberg K, Harkin JM, Reichert M, Fukuzumi T. Enzymes participating in lignification. Dehydrogenation of sinapin alcohol. Chemische Berichte 1958; 91:581-590.

(133) Freudenberg K. Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science 1965;

148:595-600.

(134) Nakamura W. Biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. Journal of Biochemistry 1967; 62(1):54-61.

(135) Nakamura W, Nozu Y. Biosynthesis of lignin. II. Purification and properties of peroxidases from bamboo shoots. Journal of Biochemistry 1967; 62(3):308-314.

(136) Sterjiades R, Dean JFD, Gamble G, Himmelsbach DS, Eriksson KEL. E xtracellular laccases and peroxidases from sycamore maple (A cer pseudoplatanus) cell-suspension cultures. Reactions with monolignols and lignin model compounds. Planta 1993; 190(1):75-87.

(137) Savidge RA, Randeniya PV. Evidence for coniferyl-alcohol oxidase promotion of lignification in developing xylem of conifers. Biochemical Society Transactions 1992; 20(2):229.

(138) Savidge R, Udagama-Randeniya P. Cell wall-bound coniferyl alcohol oxidase associated with lignification in conifers. Phytochemistry 1992; 31(9):2959-2966.

(139) Wan Y-Y, Lu R, Akiyama K, Miyakoshi T, Du Y-M. Enzymatic synthesis of bioactive compounds by R hus laccase from Chinses R hus vernicifera. Science in China Series B: Chemistry 2007; 50(2):179-182.

(140) Rittstieg K, Suurnaekki A, Suortti T, Kruus K, Guebitz G, Buchert J. Polyerization of guaiacol and a phenolic b -O- 4- substructure by Trametes hirsuta laccase in the presenc of ABTS. Biotechnology Progress 2003; 19(5):1505-1509.

(141) Chen J, Du G-C. Production and application of environmentally friendly materials. Bei Jing: Chemical Industry Press, 2002.

(142) Mai C, Schormann W, Milstein O, Huetterman A. Enhanced stability of laccase in the presence of phenolic compounds. Applied Microbiology and Biotechnology 2000; 54:510-514.

(143) Bourbonnairs R, Paice MG, Reid ID, Lanthier P, Yaguchi M. Lignin oxidation by laccase isozymes from T rametes versicolor and role of the mediator 2,2-azinobis (3-ethylbenzthiazoline-6- sulphonate) in Kraft lignin depolymerisation. Applied and Environmental Microbiology 1995; 61:1876-1880.

(144) Larsson S, Cassland P, Jonsson LJ. Development of a S accharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology 2001; 67:1163-1170.

(145) Pruche F, Saint LD, Bernard B. Hair dye compositions containing hydroxystilbenes. patent EP 1013260. 2000 2000.

(146) Onuki T, Noguchi M, Mitamura J. Oxidative hair dye compositions containing laccase. patent WO 200037030. 2000 2000.

The Sources and Applications of Laccases

Wan Yunyang1,2, Du Yumin2

1State Key Laboratory of Petroleum Resources and Prospecting, Faculty of Natural Resources and Information Technology, China University of Petroleum, Beijing, China (102249) 2School of Resource and Environment Science, Wuhan University, Wuhan, China (430079)

Abstract

This paper reviews the sources of laccases, including animals, microorganisms and plants especially those originated from Rhus vernicifera trees and other related plants in China, the stabilization and immobilization of enzymes, its applications on bioremediation, lignin biodegradation/biosynthesis and other various aspects.

Keywords: Laccase; Rhus vernicifera; Bioremediation; Lignin; Immobilization

作者简介:万云洋,男,1978-,讲师,博士,从事再生资源化学生物学研究。

白腐真菌

白腐真菌 前言 白腐真菌(white rot fungi)为丝状真菌,系木腐真菌(wood—degrading fungi)的一种,绝大多数为担子菌纲,少数为子囊菌纲,着生在木材上,因其能降解木材中的木质素、纤维素和半纤维素使木材呈现特征性的白色腐朽状而得名。日前研究最多的有:黄孢原毛平革菌(Phanerochete chrysosporium)[1]、彩绒草盖菌(Coridusversicolor)、变色栓菌(Thametes versicolor)、射脉菌(Phlebia radiata)、风尾菇(Pleurotus pul—mononanus)等。其中黄孢原毛平革菌是其典型种,也是研究木质素降解的模式菌。白腐真菌是已知的唯一能在纯系培养中有效地将木质素降解为CO2和H2O 的一类微生物。木质素是由苯丙烷单元通过醚键和碳一碳键连接而成的具有三维空间结构的高分子芳香族类聚合物。组成单元的结构及其连接键复杂而稳定,使得木质素很难降解[2]。木质素结构的异质性和不规则性,决定了对其生物降解的复杂性和特殊性。白腐真菌经过长期进化,形成了相应的适应性特性:白腐真菌能分泌氧化酶到胞外,在催化氧化过程中形成自由基,进而攻击木质素结构,此过程不需要特异的电子供体,因此其作用具有非特异性[3]。1983年Kirk和Gold两个研究小组发现能够利用白腐真菌的上述生物学特性降解染料[4,5]。此后,白腐真菌受到许多研究者的高度关注,并在将白腐真菌应用于降解诸如染料、三硝基甲苯(TNT)等许多难降解有机物方面进行了有成效的探索[6],在木质素降解酶的生理生化过程以及基因调控方面获得了一些有意义的研究成果。以下就酶系统基因结构,催化机制,应用及新发展几方面进行介绍。木质素降解酶系统 白腐真菌依赖一系列酶催化反应实现对难降解有机物的转化,这一过程殊为复杂,其中的关键酶系为木质素降解酶系。木质素降解酶主要包括了3 种酶:木质素过氧化物酶( lignin peroxidase,LiP) 、锰过氧化物酶( mangnase peroxidase,MnP) 、漆酶( laccase,Lac) 这3 种木质素降解酶均能单独降解木质素,也能两两联合,或者3 种酶一起作用对木质素进行降解。 1、木质素降解酶的比较 1.1 LiP、MnP 和Lac 三种酶的结构及组成特点

真菌漆酶的研究进展及其应用前景

万方数据

万方数据

万方数据

真菌漆酶的研究进展及其应用前景 作者:周雪婷, 张跃华, 罗志文, 潘亭如, 缪天琳 作者单位:佳木斯大学,黑龙江佳木斯,154007 刊名: 农业与技术 英文刊名:Agriculture & Technology 年,卷(期):2012,32(9) 参考文献(33条) 1.王光辉;季立才中国漆树漆酶的底物专一性 1989 2.Nina H;Laura-Leena K Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear coper site 2002(08) 3.雷福厚;蓝虹云漆树漆酶和真菌漆酶的异同研究[期刊论文]-中国生漆 2003(01) 4.李慧蓉白腐真菌生物学和生物技术 2005 5.Harald Claus Laccases:structure.reactions,distrihution 2004(35) 6.张丽白腐真菌产漆酶对染料废水降解的研究 2004 7.张敏;肖亚中;龚为民真菌漆酶的结构与功能[期刊论文]-生物学杂志 2003(20) 8.Gimifreda L;Xu F;Bollag J-M Laccases:a useful group of oxido reductive enzymes 1999(03) 9.Xu F;Kulys J J;Duke K Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds 2000(66) 10.堵国成;赵政;陈坚真菌漆酶的酶活测定及其在织物染料生物脱色中的应用[期刊论文]-江南大学学报(自然科学版) 2003(02) 11.缪静;姜竹茂漆酶的最新研究进展[期刊论文]-烟台师范学院学报(自然科学版) 2001(17) 12.刘尚旭;赖寒木质素降解酶的分子生物学研究进展[期刊论文]-重庆教育学院学报 2001(14) 13.何为;詹怀宇;王习文;伍红一种改进的漆酶酶活检测方法[期刊论文]-华南理工大学学报(自然科学版) 2003(31) 14.季立才;胡培植漆酶结构,功能及应用 1996(18) 15.侯红漫白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究 2004 16.Huang Z Y;Huang H P;CaiR X Organic solvent enhanced spectrofluorin etric method for determition of laccase activity 1998(01) 17.Badiani M;Felici M;Luna M Laccase assay by means of highperfomance liquid chromatography 1983(02) 18.Wood D.A Production,Purification and Properties of Extracelluar laccase of Agaricus bisporus 1980(17) 19.林俊芳;刘志明;陈晓阳真菌漆酶的酶活测定方法评价[期刊论文]-生物加工过程 2009(04) 20.望天志;李卫莲;万洪文微量热法测定漆酶的活性[期刊论文]-自然杂志 1997(06) 21.Kirk T K;Farrell R L Enzymatic "combustion":The microbial degradation of lignin 1987(10) 22.张爱萍;秦梦华;徐清华漆酶在制浆造纸中的应用研究进展[期刊论文]-中国造纸学报 2004(02) 23.Reid I D Biological pulping in paper manufacture 1991(08) 24.Bergbauer M;Eggert C;Kraepelin G Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes Versicolor 1991(35) 25.林建城酶在食品工业,轻工业和环境保护上的应用分析[期刊论文]-莆田学院学报 2005(02) 26.林鹿;陈嘉翔白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解 1996(11) 27.E Rodriguez;MA.Pickard;R Vazquez-Duhalt Industial dye decolorization by laccases from ligninolytic fungi 1999(38) 28.Bollag J M;Myers C Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances 1992(117-118) 29.Majcherczy A Oxidation of ploycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor 1998(22) 30.刘涛;曹瑞饪漆酶在环境保护领域中的研究及应用进展[期刊论文]-云南环境科学 2005(03) 31.Collins P J;Kotterman M J J;Field J A;Dobson A Oxidation of Anthracene and Benzo[a]pyrene by Laccase from Trametes versicolor[外文期刊] 1996(12)

真菌漆酶的研究进展

真菌漆酶的研究进展 宋瑞(安徽大学生命科学学院合肥230039) 【摘要】漆酶是一种蓝色多铜氧化酶,和植物中的抗坏血酸氧化酶,哺乳动物的血浆铜蓝蛋白属同族,能够催化多种有机底物和无机底物的氧化[1,2],同时伴随分子氧还原成水。漆酶广泛分布于真菌、高等植物、少量细菌和昆虫中,尤其在白腐真菌中普遍存在。漆酶特有的结构性质和作用机理使其具有巨大的应用价值。本文就真菌漆酶结构,功能的研究进展作一综述,并对其应用作简单介绍。 【关键词】真菌漆酶三维结构功能应用 1真菌漆酶结构特征 1.1 漆酶的组成 漆酶是一种糖蛋白,肽链一般约由500个氨基酸组成[3],糖基含量差异较大,占整个分子质量的10%—80%[4],据相关报道,漆酶的热稳定性可能与其糖基化有关。糖组成包括半乳糖、葡萄糖、甘露糖、岩藻糖、氨基己糖和阿拉伯糖等。Mayer[5]认为漆酶并不均一,它由多条5000~7000分子量的糖肽链基本结构单元组成。由于结构单元之间的缔合度不同,造成了各种漆酶分子量的不同。另外,分子中的糖基的差异,也会引起漆酶的分子量随来源不同会有很大的差异,从59—390ku不等。真菌漆酶约含19种氨基酸,绝大部分为单体酶,但也有例外,如双孢蘑菇和长绒毛栓菌漆酶由两个亚基组成[6],而柄孢壳漆酶I由四个亚基组成。漆酶种类繁多,不同种类的真菌产生的漆酶种类不同,即使同一种真菌在不同环境下也产生不同种漆酶。

1.2漆酶的晶体结构 由于漆酶是含糖蛋白质,且糖质量分数较高,一直以来很难获得X-衍射分析所用的单晶体,因此阻碍了关于漆酶结构的研究进展。1998年第一个漆酶晶体是Ducros V[7]制备的来自灰盖鬼伞(Coprinus cinereusv)T1Cu缺失型漆酶晶体,并分析了其结构。至今为止,Bacillus subtilis(CoA)[8];Melanocarpus albomyces(MaL)[9];Rigidoporus lignosus(RiL)[10];Pycnoporus cinnabaricus(PcL)[11];Coprinus cinereus(CcL)[12]和Trametes versicolor(TvL)[13]漆酶的三维结构已相继被报道。 漆酶分子整体由3个杯状结构域所组成,分别称作结构域A、B、C,每个结构域主要由β-折叠桶,α-螺旋,loop结构所组成。三者紧密结合形成球状结构。这是铜蓝蛋白家族所共有的结构形式[7,9]。分子当中含有二硫键,漆酶种类不同,二硫键数目也不一样,MaL 漆酶分子由3个二硫键,分别是位于结构域A Cys4~Cys12、结构域A和C界面上Cys114~Cys540、结构域C Cys298~Cys332,而CcL,RiL漆酶中则含有两个二硫键。在CcL漆酶分子中,由结构域A的Cys85和结构域B的Cys487形成一个二硫键,另一个二硫键存在于结构域A和结构域B(Cys117—Cys204)之间。一个伸展的loop(氨基酸284—327)连接结构域B和结构域C。Asn343上有N连接的N—乙酰葡萄胺。 1.3 漆酶的催化中心 真菌漆酶分子中一般都含有4个Cu原子,根据磁学和光谱学性

真菌漆酶的研究进展及其应用前景_周雪婷

真菌漆酶的研究进展及其应用前景 周雪婷,张跃华* ,罗志文,潘亭如,缪天琳 (佳木斯大学,黑龙江佳木斯154007) 摘 要:漆酶生产菌株多为白腐真菌,常用的漆酶活性测定方法有分光光度法、ABTS 法、微量热法等,其降解工业“三废”中的有毒有害物质被认为是一种效率较高,成本较低的且最有前途的方法,其对环境保护的研究以逐渐成为国内外研究的热点,本文阐述漆酶的性质、活性中心、结构特点以及其在环境治理方面的应用。关键词:漆酶;结构;活性中心;环境修复 中图分类号:X592 文献标识码:A 基金项目:黑龙江省教育厅科学技术研究项目资助(项目编号:12521573) *为本文通讯作者 漆酶最早由Yoshi 从日本紫胶漆树(Rhus vernicifera )漆液 中发现。19世纪末,G .Betranel 首次将能够使生漆固化的活性物质进行分离,命名为“Laccuse ”,即漆酶。漆酶属蓝色多铜氧化酶家族[1,2],与抗坏血酸氧化酶和哺乳动物血浆中铜蛋白同源。人们将自然界中得到的漆酶分为漆树漆酶和真菌漆酶,其中真菌漆酶极具研究价值。漆酶在生物制浆、污水处理、防腐剂、杀虫剂等化工产品的降解效果显著,用于环境保护、环境监测等领域,在食品工业等方面也有应用[3],已逐渐成为自然科学的研究热点之一。漆酶催化氧化不同种类型的底物已达200余种,广泛用于食品、废水处理、造纸等领域。 国内外真菌漆酶研究主要是以担子菌、子囊菌、脉孢霉、柄孢壳菌和曲霉等真菌来研究漆酶的生物学活性,细菌和放线菌的研究较少,现已在细菌生脂固氮螺菌(Azospirillum lipofer -um )中发现了漆酶的存在。而高等担子菌中的研究对象包括白腐真菌、杂色云芝、平菇、变色栓菌,其中白腐真菌所产的漆酶为胞外酶,可作为主要的产酶者和研究对象。1 漆酶的性质1.1 理化性质 漆酶是一种含铜的多酚氧化酶,不同来源的漆酶铜含量也有所不同,多含有4个铜原子[4]。漆酶多为1条多肽链组成的单聚体,由500~550个氨基酸分子所组成,相对分子质量主要集中在50~80kD ,其碳水化合物约占15%~20%,等电点pI 为3~6,反应温度为30~60℃,pH 低的环境,漆酶的生物活性较高[5-7]。1.2 活性中心 漆酶催化中心根据其光谱性质,存在3种不同的功能:1.2.1 Ⅰ型铜 含铜的蓝色蛋白质,Ⅰ型铜与2个组氨酸和1个半胱氨酸配位,紫外可见光谱λ=600nm 时出现峰值,在EPR (电子顺磁共振)谱上有1个平行超精细耦合结构,Ⅰ型铜参与分子内的电子传递,将电子从底物传递到其它铜原子上。1.2.2 Ⅱ型铜 II 型铜与2个组氨酸和1个水分子配位,形成T 型几何结构,没有明显的可见吸收光谱,但有EPR (电子顺磁共振)信号。1.2.3 Ⅲ型铜 与漆酶的催化作用密切相关,经实验研究其为活性中心, 由2个铜原子通过1个-OH 桥配位连接起来组成四面扭曲的四方立体双核铜区结构,铜原子之间具有抗磁性,其距离是0.38n m 。在紫外可见光谱λ=330nm 处有最大吸收峰,在EPR 上无谱带[8~14];为了测定漆酶活性中心,将其经过抑制剂处理后,Ⅲ型铜在EPR 上出现有裂分峰,表明外源性配体与Ⅲ型铜发生了配位,1个Ⅱ型铜和2个Ⅲ型铜形成三核铜簇,双氧还原的反应位置在三核铜簇,此时Ⅲ型铜已结合5个配体,使其氧化性降低,限制了还原,同时也抑制O 进入三核中心区。 另有实验表明,将漆酶晶型结构被完全还原,Ⅰ和Ⅱ型铜的配位环境不变,Ⅲ型铜的-OH 桥配体则在反应中消耗,2个Ⅲ型铜之间距离亦增加[15]。1.3 检测方法 检测漆酶活性方法有分光光度法[16]、ABTS 法、微量热法、测O 2法、高效液相色谱法[17]、极谱法[18]等。AB TS 法测定漆酶,常用醋酸钠溶液作为缓冲溶液,反应体系内ABTS 的浓度为0.5mmol /L 。漆酶对不同种底物的亲和力也有显著地差异,但其对ABTS 的亲和力和催化能力普遍很高,测得的酶活性值也高,此方法反应条件不高,使用安全,常温下性质稳定,测定的OD 值相对稳定而准确[19]。微量热法测定漆酶的活性,利用LKB -2107Batch 型微量热系统,将其温度调至298K ,pH 调至7.4,此方法漆酶的提取物样品用量较少,可直接对酶的悬浮液进行测定,其对反应体系没有任何限制或干扰,适合研究酶促反应中的酶活。分光光度法测定漆酶酶活的基本原理是选定某种漆酶作用的底物,底物在漆酶催化作用下首先形成底物自由基,底物自由基浓度与吸光值成正相关,其在一定的光波波长下存在吸光系数的最大值,依据吸光值随时间变化的关系计算出酶活。分光光度法因其操作简单、快速、较准确、无需配备昂贵仪器设备等特点,得以在漆酶测定实验中广泛应用[20]。 2 漆酶的应用2.1 工业污水治理 真菌降解木质素目前主要集中于生物制浆方面。传统的氯法漂白,在去除纤维原料中木质素的过程中,仍有3%~12%的残留。在漂白废水中会产生大量有毒、有害物质,严重污染 农业与技术 第32卷 第9期 2012年9月 2 AG RIC ULTURE AND LTECHNOLOG Y

白腐真菌在环境保护中研究与应用进展

摘要综述了近年来白腐真菌在环境保护中的研究进展,主要包括在多种工业废水处理、垃圾堆肥及其渗滤液处理、煤炭脱硫、作物秸秆发酵、土壤生物修复等方面的应用。关键词 白腐真菌 环境保护 应用 中图分类号 X703.1TQ085+.413 白腐真菌在环境保护中研究与应用进展 吴林林 阮宇鹰 武琳慧黄民生 华东师范大学环境科学系(上海 200062) 环境保护 0前言 环境中难降解有机污染物日积月累并持久存在 的结果已严重危害生态系统的健康和人类社会的可持续发展。这些污染物产生于各种工农业生产及人类生活活动中,除难以降解外它们还具有较高的生物毒性和致癌、致畸、致突变危害性,是环境治理与保护工作的重点和难点。白腐真菌通过木质素过氧化物酶、锰过氧化物酶、漆酶等关键酶催化自由基链式反应,对环境中难降解有机污染物具有高效、广谱的降解功能。自20世纪80年代以来,国内外许多学者开始应用白腐真菌进行环境治理与修复的实验和应用研究。本文对白腐真菌在多种工业废水处理、垃圾及其渗滤液处理、煤炭脱硫、作物秸秆发酵、土壤生物修复等方面的研究与应用进展进行了综述。 1 白腐真菌在工业废水处理中的研究与应用 1.1 造纸废水处理 吴涓等研究了不同白腐真菌对灰法造纸黑液废 水的处理效果,考察了黑液废水浓度和碳氮源添加量对黑液脱色及CODCr去除率的影响。研究结果表明,变色栓菌(Trametesverscolor)对黑液废水的 CODCr和色度的去除率分别达到64.25%和47.31%, 在添加0.2%纤维二糖和0.02%天冬酰胺的情况下应用自行分离、筛选的白腐真菌(AH28-2)处理黑液废水时CODCr去除率也达到了60%以上。该研究还发现,锰过氧化物酶(MnP)和木质素过氧化物酶(LiP)酶活相对比值对造纸黑液的CODCr去除率有明显影响,MnP/LiP酶活比值越高时CODCr去除率也越高,说明在该降解系统中MnP起到主要作用[1]。 Marwaha等分别采用黄麻绳、棉花和小麦作为黄孢 原毛平革菌(Phanerochaetechrysosporium,简称PC菌,下同)生长、挂膜载体在厌氧条件下对造纸黑液进行预处理,结果表明,以黄麻绳为载体时废水的脱色率和CODCr去除率最高,相应的运行参数为温度40℃、pH5.5、 菌丝体负荷340mg、外加葡萄糖浓度1%(m/v)、 停留时间72h。Joyce等应用PC菌构建新型生物转盘(MyCoR反应器,即真菌生物转盘反应器)来处理纸厂漂白废水。实验结果表明,这种生物转盘能够有效降低白水的CODCr和BOD5并使氯化木质素脱氯。秦文娟等[2]将几种不同的白腐真菌菌丝悬浮液与海藻酸钠、氯化钙混合后凝固成球状,用于造纸E段氯漂废水的脱色处理,结果发现Polystic- tusversicolor和Phlebiaradiate两种PC菌对废水的 脱色效果最好(24h内废水色度下降50%左右)。王双飞等在8%PVA、0.5%海藻酸钠、3%细胞浓度的条件下制备固定化PC菌间歇式处理造纸E段氯漂废水。实验结果表明,在连续运行1个月内,处理效果稳定,废水的脱色率保持50%左右,TOC去除率分别保持50%~58%,比游离态PC菌间歇式连续处理分别高出17%和12%。 1.2染料及印染废水处理 张朝晖等应用PC菌生物膜反应器进行酸性染 料卡布龙红和弱酸大红的降解实验。结果表明,在限碳培养条件下挂膜培养5d后,木素过氧化物酶活力达到最高,此时分别加入酸性染料卡布龙红和弱酸大红,质量浓度分别为25、50、100mg/L和12.5、 25、50mg/L,48h后培养液基本脱色,较高浓度下菌膜上有少量吸附的残余染料,5d后染料质量降解 率分别为100%、88%、92%和58%、65%、38%[3]。 李慧第一作者简介:吴林林男1981年生华东师范大学环境科学系在读硕士主要从事水污染控制与生物修复研究 Vol.31No.1Jan.2006 上海化工 ShanghaiChemicalIndustry 8??

漆酶来源与应用

漆酶来源与应用 万云洋1,2,杜予民2 1.中国石油大学(北京)资源与信息学院,北京(102249) 2.武汉大学资源与环境科学学院,武汉(430079) E-mail :yunyangwan@https://www.wendangku.net/doc/d54922895.html, 摘 要:本文对漆酶来源,包括动物、微生物和植物,尤其是我国的特产资源漆树及其他植 物漆酶,酶的稳定化及固定化,生物整治、对木质素的作用以及其各方面的应用作一综述。 关键词:漆酶,漆树,生物整治,木质素,固定化 漆酶(EC1.10.3.2),对-二酚:(双)氧氧化还原酶,又名酚酶,多酚氧化酶,漆酚氧化酶 和等,是一种含铜的糖蛋白氧化酶,是多铜氧化酶的一种[1]。对漆酶的研究已有一百多年的 历史,是有记载以来开发最早的酶之一:1883年,日本人吉田在研究生漆液成份时发现这 种酶成份,但当时他误为淀粉酶物质(diastatic matter),1898年,法国人Bertrand 在研究越南 产漆液的时候,首次提出了漆酶(laccase)的概念并沿用至今[2-5];Reinhammar 等[6;7]、杜予民 等[8-12]对漆酶及漆树液全成份的分离纯化作了很好的工作;另外,熊野等[13;14]对漆酶反应机 理,黄葆同、甘景镐[15]等对中国漆酶化学的发展,Morpurgo(意大利)[16;17],Solomon(美国) 等[18-24]对漆酶铜原子中心的研究作出了各自的贡献。 漆酶虽然是研究史中的老酶,但其各种新功能也正在被发现和挖掘。本文结合自身工作实践,专门就漆酶来源、特别是植物漆酶来 源和其各方面的应用研究作一综述,进一步推动漆酶(尤其是植物漆酶)研究的发展。 Figure 1. Dominating distribution of lacquer trees in the world. 1. 漆酶的来源 1.1植物漆酶 由上述可知,对漆酶的研究首先就是从漆树来源开始的。漆树(Rhus vernicifera ) 种属于 75 90 105120135 15015 30 45

白腐真菌产漆酶条件的优化及漆酶对双酚A的降解研究

目录 摘要...................................................................................................................................... I V Abstract ..................................................................................................................................... II 第1章绪论 (1) 1.1 白腐真菌的简介 (1) 1.2 漆酶的简介 (1) 1.2.1 漆酶的结构、性质及反应机理 (1) 1.2.1.1 漆酶的结构 (1) 1.2.1.2 漆酶的性质 (2) 1.2.1.3 漆酶的反应机理 (2) 1.2.1.4 漆酶酶活的测定 (3) 1.2.2 漆酶的发展和应用 (4) 1.2.2.1 漆酶在木质素降解中的应用 (4) 1.2.2.2 漆酶在染料脱色中的应用 (4) 1.2.2.3 漆酶在含酚废水处理中的应用 (5) 1.2.2.4 漆酶在处理医药、农药方面的应用 (5) 1.2.2.5 漆酶在降解多环芳烃方面的应用 (6) 1.2.2.6 漆酶在重金属污染方面的应用 (7) 1.2.2.7 漆酶在生物传感器中的应用 (7) 1.2.3 漆酶的诱导产生 (7) 1.2.3.1 培养方式的影响 (7) 1.2.3.2 培养基的影响 (8) 1.2.3.3 碳源和氮源的影响 (8) 1.2.3.4 温度的影响 (8) 1.2.3.5 pH的影响 (9) 1.2.3.6 诱导剂和表面活性剂的影响 (9) 1.2.3.7 重金属离子的影响 (9) 1.3 双酚类化合物简介 (9) 1.3.1 双酚A (10) 1.3.1.1 双酚A的降解方法 (10) 1.3.1.2 双酚A的检测方法 (11) 1.3.2 双酚E (11) 第 2 章杂色云芝菌Coriolus versicolor产漆酶条件优化 (13) 2.1 材料与方法 (13) 2.1.1 菌种 (13) 2.1.2 试剂 (13) 2.1.2.1 化学试剂 (13) 2.1.2.2 醋酸-醋酸钠缓冲溶液 (14) 2.1.2.3 酒石酸-酒石酸钠缓冲溶液 (14) 2.1.2.4 磷酸二氢钠-氢氧化钠缓冲溶液 (14) 2.1.2.5 磷酸二氢钾-磷酸氢二钾缓冲溶液 (14) 2.1.2.6 0.5 mmol/L ABTS溶液 (14) 2.1.2.7 1 mmol/L盐酸溶液 (14) 2.1.2.8 1 mmol/L氢氧化钠溶液 (14)

相关文档