文档库 最新最全的文档下载
当前位置:文档库 › 2019届高三数学(理)复习题:模块六概率与统计第19讲 概率、统计、统计案例Word版含答案

2019届高三数学(理)复习题:模块六概率与统计第19讲 概率、统计、统计案例Word版含答案

2019届高三数学(理)复习题:模块六概率与统计第19讲 概率、统计、统计案例Word版含答案
2019届高三数学(理)复习题:模块六概率与统计第19讲 概率、统计、统计案例Word版含答案

第讲概率、统计、统计案例

.[·全国卷Ⅱ]我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于的偶数可以表示为两个素数的和”,如.在不超过的素数中,随机选取两个不同的数,其和等于的概率是()

.

.

[试做]

命题角度古典概型

①求古典概型概率的方法:

直接法:将所求事件的概率分解为一些彼此互斥的事件的概率,再运用互斥事件概率的加法公式计算.

间接法:先求事件的对立事件的概率,再用公式()()求概率,即运用逆向思维(正难则反),特别是对“至多”“至少”型题目,用间接法求解更简便.

②易错点:当事件为互斥事件时,有()()(),否则()()()(∩).

.()[·全国卷Ⅰ]如图所示,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.△的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,则()

()[·全国卷Ⅰ]如图所示,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()

.

.

[试做]

命题角度几何概型

①利用几何概型概率公式求解.

②处理几何概型与非几何知识的综合问题的关键是,通过转化,将某一事件所包含的事件用“长度”“角度”“面积”“体积”等表示出来,如把这两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上一个区域,进而转化为面积的度量来解决.

③易错点:利用几何概型的概率公式时,不要忽视事件是否等可能.

.[·全国卷Ⅲ]某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立.设为该群体的位成员中使用移动支付的人数()<(),则()

[试做]

命题角度次独立重复试验的期望与方差

关键一:确定的值;

关键二:利用方差公式()()求解.

小题用样本估计总体

()某机构为了解“跑团”每月跑步的平均里程,收集并整理了年月至年月期间“跑团”每月跑步的平均里程(单位)的数据,得到如图所示的折线图.

根据折线图,下列结论正确的是()

.月跑步平均里程的中位数为月份对应的里程数

.月跑步平均里程逐月增加

.月跑步平均里程的峰值出现在月份

月至月的月跑步的平均里程相对于月至月,波动性较小,变化比较平稳

()为了了解一批产品的长度(单位)情况,现抽取容量为的样本进行检测,如图所示是检测结果的频率分布直方图,根据产品标准,单件产品长度在[)的为一等品,在[)和[)的为二等品,其余均为三等品,则样本中三等品的件数为.

[听课笔记]

【考场点拨】

用频率分布直方图估计总体的数字特征应注意以下几点:

()频率分布直方图的纵轴是,而不是频率;

()在频率分布直方图中每个小长方形的面积才是相应区间的频率,在应用和作频率分布直方图时要注意;

()最高的小长方形底边中点的横坐标是众数;

()平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标是中位数;

()频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和是中位数.【自我检测】

.甲、乙两名同学次考试的成绩统计如图所示,甲、乙两组数据的平均数分别为,,标准差分别为σ甲,σ乙,则()

.<,σ甲<σ乙.<,σ甲>σ乙

.>,σ甲<σ乙.>,σ甲>σ乙

.从某中学甲、乙两班中各随机抽取名同学,测量他们的身高(单位),所得数据用茎叶图表示,如图,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是()

.甲班同学身高的方差较大

.甲班同学身高的平均值较大

.甲班同学身高的中位数较大

.甲班同学身高在以上的人数较多

.已知某个数的平均数为,方差为,现加入一个新数据,此时这个数的平均数为,方差为,则() <>

.><.>>

.为了解某校一次期中考试数学成绩的情况,抽取位学生的数学成绩(单位:分),得到如图所示的频率分布直方图,其中成绩分组区间是[),[),[),[),[),[],则估计该次考试数学成绩的中位数是 ()

小题变量间的相关关系、统计案例

()随着国家“二孩政策”的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机

附表:

由算得的观测值≈,参照附表,得到的正确结论是()

.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”

.有以上的把握认为“生育意愿与城市级别有关”

.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”

.有以上的把握认为“生育意愿与城市级别无关”

由表中数据,求得线性回归方程为,当产品的销量为件时,产品的单价大致为元.

[听课笔记]

【考场点拨】

()回归直线一定过样本点的中心(,).

()随机变量的观测值越大,说明“两个变量有关系”的可能性越大.

【自我检测】

.某中学的兴趣小组将在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图所示,则下列说法错误的是()

①②

.沸点与海拔高度呈正相关

.沸点与气压呈正相关

.沸点与海拔高度呈负相关

.沸点与海拔高度、沸点与气压的相关性都很强

若关于的回归方程为,则.

小题古典概型与几何概型

()已知甲袋中有个黄球和个红球,乙袋中有个黄球和个红球.现随机地从甲袋中取出个球放入乙袋,再从乙袋中随机取出个球,则从乙袋中取出红球的概率为()

.

.

()如图是平面四边形各边的中点,若在平面四边形内任取一点,则该点取自阴影部分的概率是()

.

.

.

.

[听课笔记]

【考场点拨】

求解概率题的几个失分点:()不能正确判断事件是古典概型还是几何概型导致错误;()古典概型问题中如涉及“至多”“至少”等事件的概率计算时,没有转化为求其对立事件的概率,来简化运算;()几何概型中,基本事件对应的区域测度把握不准导致错误;()利用概率公式时,忽视验证事件是否等可能导致错误.

【自我检测】

.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()

.如图,半径为的圆内有四个半径相等的小圆,其圆心分别为,这四个小圆都与圆内切,且相邻两小圆外切,

则在圆内任取一点,该点恰好取自阴影部分的概率为()

.已知是半径为的圆上的一个定点,在圆上等可能地任取一点,连接,则弦的长度超过的概率是()

..

.连续次抛掷一颗质地均匀的骰子,观察向上的点数,则事件“点数之积是的倍数”的概率为.

小题条件概率、相互独立事件与独立重复试验

()从装有若干个大小相同的红球、白球和黄球的袋中随机摸出个球,摸到红球、白球和黄球

的概率分别为,,.若从袋中随机摸出个球,记下颜色后放回,连续摸次,则记下的颜色中有红有白但没有黄的概率为()

..

()

,其中的各位数字中()出现的概率为,出现的概率为.若启动一次出现的数字为,则称这次试验成功,若成功一次得分,失败一次得分,则次重复试验的总得分的方差为.

[听课笔记]

【考场点拨】

求相互独立事件同时发生的概率的方法:

()相互独立事件同时发生的概率等于他们各自发生的概率之积;

()正面计算较复杂或难以入手时,可从其对立事件入手计算.

特别提醒:利用独立重复试验的概率公式计算概率时,其计算量往往很大,计算时要小心谨慎,以确保计算的正确.

【自我检测】

.某电视台“夏日水上闯关”节目中的前三关的过关率分别为,只有通过前一关才能进入下一关,且是否通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为()

.据统计,连续熬夜小时诱发心脏病的概率为,连续熬夜小时诱发心脏病的概率为.现有一人已连续熬夜小时未诱发心脏病,则他还能继续连续熬夜小时不诱发心脏病的概率为()

.

.设随机变量ξ(),η(),若(ξ≥),则(η≥)的值为()

.

.设随机变量,则().

第讲概率、统计、统计案例

典型真题研析

[解析] 不超过的素数有,共个,从中任取两个有种取法,其中和为的有种,即(),(),(),所以所求概

率.

.()()[解析] ()设,则.记△的面积为,黑色部分的面积为,则ππππ().根据几何概型的概率计算公式可知.

()根据对称性,图中黑色部分、白色部分的面积相等.设正方形的边长为,则正方形的面积为,图中

圆的面积为π,故黑色部分的面积为,所以所求的概率为.

[解析] 由(),解得或.由()()<()(),可知>,故.故选.

考点考法探究

小题

例()()[解析] ()由折线图知,月跑步平均里程的中位数为月份对应的里程数,月跑步平均里程不是逐月增加的,月跑步平均里程的峰值出现在月份,故中结论不正确,故选.

()由题意得,三等品的频率为( )×,

∴样本中三等品的件数为×.

【自我检测】

[解析] 由图可知,甲同学的平均成绩高于乙同学,且甲同学的成绩更稳定,即>,σ甲<σ乙,故选.

[解析] 观察茎叶图可知甲班同学身高的数据波动大,所以甲班同学身高的方差较大中结论正确;

甲班同学身高的平均值为

,

乙班同学身高的平均值为

,

所以乙班同学身高的平均值较大中结论错误;

甲班同学身高的中位数为,

乙班同学身高的中位数为,

所以乙班同学身高的中位数较大中结论错误;

甲班同学身高在以上的有人,

乙班同学身高在以上的有人,

所以乙班同学身高在以上的人数较多中结论错误.

故选.

[解析] ∵某个数的平均数为,方差为,现加入一个新数据,此时这个数的平均数为,方差

为,∴<,故选.

[解析] 由题,得.因为成绩在[),[),[)的频率之和为,所以中位数位于区间[)内,由,得中位数约为×.故选.

小题

例()()[解析] ()根据的观测值≈>,

可得有以上的把握认为“生育意愿与城市级别有关”,或在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”,所以选.

()由表中数据得,

∴×,

∴回归方程为.

当时,∴.

【自我检测】

[解析] 结合散点图可得,

沸点与气压呈正相关,

气压与海拔高度呈负相关,

所以沸点与海拔高度呈负相关,

且沸点与海拔高度、沸点与气压的相关性都很强.

故选.

[解析] 由题意易知,若越大,则与有关系的可能性越大,结合选项计算可得选项符合题意.故选.

[解析] 由题意得,代入到线性回归方程,得.

∴×,

∴.

小题

例()()[解析] ()先从甲袋中取出个球放入乙袋,再从乙袋中取出个球的基本事件总数为,取出

红球的基本事件总数为,所以从乙袋中取出红球的概率.故选.

()连接,与分别交于点,如图所示,设点到的距离为,

则△·四边形×××·,∴四边形△,

∴四边形四边形,

∴所求概率是,故选.

【自我检测】

[解析] 春节和端午节至少有一个被选中的对立事件是春节和端午节都没有被选中,而春节和端

午节都没有被选中的概率为,所以春节和端午节至少有一个被选中的概率为.故选.

[解析] 设小圆的半径为,根据题意可知四边形为正方形.由,得(),所以大圆的面积为

π,四个小圆的面积为π().由几何概型的概率计算公式可得,所求概率为.故选. [解析] 本题可利用几何概型求解.如图为圆心为直径,且⊥.根据题意可得,该圆的周长为π,满足条件“弦的长度超过”的点所在的弧是,且其长度为π,则弦的长度超过的概率.故选.

.[解析] 总事件数为×.当第次掷骰子向上的点数为时,满足条件的事件有(),(),(),(),(),(),(),(),共个;当第次掷骰子向上的点数为时,满足条件的事件有×(个).所以所有满足条件的事件共个,所求概

率.

小题

例()()[解析] ()满足题意时,记下的颜色应是个红个白或者个白个红,据此可得,所求概率为

××××.

()启动一次出现数字为的概率×.设次独立重复试验中成功的次数为η,则

η,∴(η)××.∵η×(η)η,

∴()(η)(η).

【自我检测】

[解析] 该选手只闯过前两关的概率为××(),故选.

[解析] 设事件为连续熬夜小时诱发心脏病,事件为连续熬夜小时诱发心脏病.由题意可知()(),则

()(),由条件概率计算公式可得().

[解析] 由(ξ≥),得(),∴,

(η≥)()()××××,故选.

.[解析] 因为,所以()××.

[备选理由] 例主要考查条形图的识别以及应用;例为高考试题,考查×列联表的应用;例考查古典概型,需要在一定的排列组合计数的基础上完成;例考查几何概型,涉及数学史,可以开拓学生的视野和应用意识;例需要对所给的问题进行判断,属于二项分布问题,考查二项分布的方差.

例[配例使用]下图是某企业在年—年企业产值的年增量(即当年产值比前一年产值增加的量)统计图(单位:万元),下列说法正确的是()

年产值比年产值少

.从年到年,产值年增量逐年减少

.产值年增量的增量最大的是年

年的产值年增长率可能比年的产值年增长率低

[解析] 由图年产值比年产值多万元,故中说法错误;

年的产值年增量大于年的,故中说法错误;

产值年增量的增量最大的不是年,故中说法错误;

因为增长率等于增长量除以上一年产值,由于上一年产值不确定,所以年的产值年增长率可能比年的产值年增长率低,故中说法正确.故选.

例[配例使用] [·江西卷]某人研究中学生的性别与成绩、视力、智商、阅读量这个变量的关系,随机抽查名中学生,得到统计数据如表至表,则与性别有关联的可能性最大的变量是()

.成绩.视力

.智商.阅读量

[解析] 根据独立性检验计算可知,阅读量与性别有关联的可能性较大.

例[配例使用]若件产品中有件一级品件二级品,从中任取件,则这件中至少有件二级品的概率是()

.

.

[解析] 由题意,从件产品中任取件的情况总数为,其中至少有件二级品的情况数为,

由古典概型的概率计算公式可得所求概率为,故选.

例[配例使用]中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,

通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形是由个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若∠,则在

正方形内随机取一点,该点恰好在正方形内的概率为()

.

.

[解析] 如图可知,正方形的边长为,正方形的边长为.

由题意知∠∠×,得,即.∴所求概率为.故选.

例[配例使用] [·全国卷Ⅱ]一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次表示抽到的二等品件数,则().

[答案]

[解析] (),故()××.

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率论与数理统计概率问题

选修2-3 2.2.1 条件概率 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

3.已知P (B |A )=13,P (A )=25,则P (AB )等于( ) A.56 B.910 C.215 D.115 [答案] C [解析] 本题主要考查由条件概率公式变形得到的乘法公式, P (AB )=P (B |A )·P (A )=13×25=215,故答案选C. 4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14 B.13 C.12 D.35 [答案] B [解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件. 所以其概率为4361236 =13. 5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

高中数学教案——概率与统计

课题:1.7概率与统计 教学目的: 1能运用简单随机抽样、分层抽样的方法抽取样本; 2. 能通过对样本的频率分布估计总体分布; 3. 培养学生动手能力和解决实际问题能力通过例题,对本章部分内容进行一次复习.培养学生的探究能力以及分析与解决实际问题的能力 教学重点:统计在实际生活中的应用 教学难点:学生解决实际问题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 二、讲解范例: 例1某中学高中部共有16个班级,其中一年级6个班,二年级6个班,三年级4个班.每个班的人数均在46人左右(44人-49人),各班的男女学生数均基本各占一半.现要调查这所学校学生的周体育活动时间,它是指学生在一周中参加早锻炼、课间操、课外体育活动、体育比赛等时间的总和(体育课、上学和放学路上的活动时间不计在内).为使所得数据更加可靠,应在所定抽样的“周”之后的两天内完成抽样工作.此外还有以下具体要求: (1)分别对男、女学生抽取一个容量相同的样本,样本容量可在40-50之间选择 (2)写出实习报告,其中含:全部样本数据;相应于男生样本的 - - 1 x与 1 s,相 应于女生的 - - 2 x与 2 s,相应于男、女全体的样本的 - - x;对上面计算结果作出分

析. 解:(1)由于各个年级的学生参加体育活动的时间存在差异,应采用分层抽样;又由于各班的学生数相差不多,且每班的男女学生人数也基本各占一半,为便于操作,分层抽样时可以班级为单位.关于抽取人数,如果从每班中抽取男、女学生各3人,样本容量各为48(3×16),符合对样本容量的要求. (2)实习报告如表一所示. 1 .在本班范围内,就每名学生所在家庭的月人均用水量进行调查.调查的具

概率统计试卷及答案

概率统计试卷 A 一、填空题(共5 小题,每题 3 分,共计15分) 1、设P(A) =, P(B) = , P() = ,若事件A与B互不相容,则 = . 2、设在一次试验中,事件A发生的概率为,现进行n次重复试验,则事件A至少发生一次的概率为 . 3、已知P() = , P(B) = , P() = ,则P()= . 4、设随机变量的分布函数为则= . 5、设随机变量~,则P{}= . 二、选择题(共5 小题,每题3 分,共计15分) 1、设P(A|B) = P(B|A)=,, 则( )一定成立. (A) A与B独立,且. (B) A与B独立,且. (C) A与B不独立,且. (D) A与B不独立,且. 2、下列函数中,()可以作为连续型随机变量的概率密度. (A) (B) (C) (D) 3、设X为一随机变量,若D(10) =10,则D() = ( ). (A) . (B) 1. (C) 10. (D) 100. 4、设随机变量服从正态分布,是来自的样本, 为样本均值,已知,则有(). (A) . (B) . (C) . (D) . 5、在假设检验中,显著性水平的意义是(). (A)原假设成立,经检验不能拒绝的概率. (B)原假设不成立,经检验被拒绝的概率. (C) 原假设成立,经检验被拒绝的概率. (D)原假设不成立,经检验不能拒绝的概率. 三、10片药片中有5片是安慰剂, (1)从中任取5片,求其中至少有2片是安慰剂的概率. (2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率. (本题10分) 四、以表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),的分布函数是 求下述概率: (1){至多3分钟}. (2){3分钟至4分钟之间}. (本题10分) 五、设随机变量(,Y)的概率密度为 (1) 求边缘概率密度.

2020高考理科数学大题专项练习:统计与概率问题

大题专项:统计与概率问题 一、解答题 1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率; (2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解:(1)由已知,有P (A )= C 22C 32+C 32C 3 2C 8 4=6 35. 所以,事件A 发生的概率为6 35. (2)随机变量X 的所有可能取值为1,2,3,4. P (X=k )= C 5k C 3 4-k C 8 4(k=1,2,3,4). 所以,随机变量X 的分布列为 随机变量X 的数学期望E (X )=1×1 14+2×3 7+3×3 7+4×1 14=5 2. 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,用“ξk =0”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系. 解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A , 第四类电影中获得好评的电影为200×0.25=50(部). P (A )=50 140+50+300+200+800+510=50 2 000=0.025.

高中数学选修统计和概率

概率与统计知识点: 1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。 2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列 4、分布列性质① p i ≥0, i =1,2, … ;② p 1 + p 2 +…+p n = 1. 5、二项分布:如果随机变量X 的分布列为: 其中0=A P A P AB P A B P 9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。)()()(B P A P B A P ?=? 10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验 11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独 立重复试验中 )(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p ) 于是可得随机变量ξ的概率分布如下:

概率统计试题及答案(本科完整版)

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对 a c b <<以及任意的正数0 e >,必有概率 {} P c x c e <<+ = ?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且=,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中 ABC ABC ABC U U

2,3,则: P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得 ()()()()()123123109080850612P A A A P A P A P A ....=??=??= ()()()12312321101020150997P A A A P A A A ....??=-=-??= ()() ()()()()1231231231231231231231233010808509020850908015090808500680153010806120941 P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=??+??+??+??=+++=U U U 2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。今从甲袋任取一球放入乙袋后,再从乙袋任取一球。问此球为白球的概率是多少? 解:以W 甲表示“第一次从甲袋取出的为白球”,R 甲表示“第一次从甲袋取出的为红球”, W 乙表示“第二次从乙袋取出的为白球”, 则 所 求 概率为 ()()()() P W P W W R W P W W P R W ==+U 乙甲乙甲乙甲乙甲乙 ()( ) ()( ) P W P W W P R P W R =+甲乙甲甲乙甲 11 111111111 n m N N n m N M n m N M C C C C C C C C +++++++=?+?

概率统计考试试卷及答案

概率统计考试试卷及答案 一、 填空题(每小题4分,共20分) 1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P . 2. 设随机变量X 的分布函数 ) (,)(+∞<<-∞+= -x e A x F x 1,则 ___=A 3. 已知,)|(,)|(,)(21 3141===B A P A B P A P 则_____)(=?B A P 4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数 ___)(=y f Y 5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则 ____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分) 1. 设随机变量X 的概率密度为?? ???≤>=-000 x x e x f x ,,)( 已知Y=2X,求E(Y), D(Y). 2. 两封信随机地投入标号为I,II,III,IV 的四个邮筒, 求第二个邮筒恰好投入1封信的概率。 3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服 从均匀分布,Y 的概率密度为?? ???≤>=-000 212y y e y f y Y ,,)( 求含有a 的 二次方程022=++Y Xa a 有实根的概率。 4. 假设91X X ,, 是来自总体),(~220N X 的简单随机样本,求系数

a,b,c 使 298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2 χ分布,并求其自由度。 5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态 分布。从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15.1, 14.9, 14.8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值 μ的置信区间 (9610502.,./==ααz ) 三、(14分)设X,Y 相互独立,其概率密度函数分别为 ???≤≤=其他 ,,)(0101x x f X ,?? ???≤>=-000 y y e y f y Y ,,)( 求X+Y 的概率密度 四、(14 分)设 ?? ???≤<-=其它,),()(~0063θ θθx x x x f X ,且n X X ,, 1是总体 X 的简单随机样本,求 (1)θ的矩估计量θ ,(2) )(θ D 五、(12分)据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。(7881080.).(=Φ)

相关文档
相关文档 最新文档