文档库 最新最全的文档下载
当前位置:文档库 › 碳稳定性同位素分析食物网中能量流动

碳稳定性同位素分析食物网中能量流动

碳稳定性同位素分析食物网中能量流动
碳稳定性同位素分析食物网中能量流动

碳稳定性同位素分析食物网中能量流动

摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。

关键词:碳稳定性同位素;食物网;能量流动;δ13C值

Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web

ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and technology.Stable isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas.

KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C

一.研究背景

随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。

食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。

但是研究食物网中各生物的能量流动关系是十分复杂的,因为食物网的真正结构或功能不易通过直接观察生物觅食、胃容物或粪便等的分析而决定,而且这仅能反映出短暂的营养关系[4]。而生物体内的稳定性同位素比值可作为一种自然的标记,用来示踪营养物质在食物网中的流动。因此研究食物网中生物的能量流动关系时选用稳定性同位素技术便可以很方便地进行实验研究。

原子是由质子、中子和电子组成。具有相同质子数不同中子数(即不同质量数)的同一

元素的不同核素互称为同位素。同位素可以分为放射性同位素和稳定性同位素。稳定性同位素是天然存在于生物体内的不发生或极不易发生放射性衰变的一类同位素。C元素和N元素分别有两种中子数不同的稳定性同位素,即13C和12C以及15N和14N。中子数多的同位素(如13C和15N等)称为重同位素,中子数少的同位素(如12C和14N等)称为轻同位素。同位素丰度是指一种元素的不同种同位素混合后,其中某一特定同位素的原子数与该元素的总原子数之比,它代表了元素的同位素组成。重同位素的自然丰度很低,轻同位素的自然丰度很高,因此一般不直接测定重同位素和轻同位素各自的绝对丰度,而是测定它们的相对丰度或同位素比率(R),以碳元素为例可表达为:13R(C)=13C/12C。为了便于比较物质同位素组成的微小变化,物质的同位素组成更常用稳定性同位素比值(δ值)表示,公式是δR样品(‰)=(R样品-R

标准)/R标准×1000。其中,R样品是被测样品13C

样品/

12C

样品的比值,R标准是标准物质

13C

标准/

12C

标准

的比值。当δ 值大于零时,则表示此样品的重同位素比标准物质富集重同位素,小于零时则表示此样品的重同位素比标准物质贫重同位素。δ值与标准物质的选择有关,结果对比时应采用相同的标准。因此,δ值能清晰地反映同位素组成的变化。在某一生态系统中,生产者的δ13C相对于该生态系统中其他消费者的δ13C的差异,可用于追踪生态系统中的主要物质碳源的来源和物质流动[4] [5]。

在研究食物网中生物的能量流动关系时,相对于传统的消化道内含物分析,稳定性同位素能提供更迅速、客观的分析。稳定性同位素分析为研究食物网结构提供了一种特别的方式,显示出长期以及短期内生物的食性变化,建立营养流动过程以及生物在食物网及营养层的地位。随着生物觅食习性的不同,碳稳定性同位素比值随其在营养层的位置以特定方式增加,因此可用以分析食物的来源和组成。稳定性同位素技术早在20世纪70年代末期就被引入到生态学领域。最初是利用植物碳稳定性同位素的差异开展了许多有关营养流动方面的研究;到90年代,稳定性C和N同位素被用来分析动物的食性、营养级位置关系以及食物链结构;本世纪初,由于科学技术的进步,在国外稳定性同位素(特别是H同位素)被用来开展动物迁徙习性方面的研究[4]。

本次研究拟利用碳稳定性同位素技术对某区域食物网中生物的能量流动关系进行实验研究,旨在分析生物之间的相互作用,明确该区域中食物网中生物的能量流动关系,了解某些动植物种群数量的减少或增加对该区域中其他动植物的影响,从而提出科学合理的解决方案,最终减少人类活动等因素对该区域生态系统的干扰,使该区域的生态问题得以有针对性地解决。

二.器材和试剂

实验器材:解剖针、解剖镊、解剖剪、恒温干燥箱、研钵、研磨杵、100目筛、Finnigan MAT DELTA PLU SXL同位素质谱仪、元素分析仪、比集运量质谱仪(Finnegan Mat,Bermen,Germany)

实验试剂:标本固定液等

三.研究技术路线

1.选定研究区域

选定此次实验研究的区域。在该区域中,人类的活动导致某些动植物的种群数量发生变化,影响了该区域的生物多样性。但是目前对该区域中食物网各生物的能量流动关系尚不明确,无法提出科学合理的解决对策,因此需要通过此次实验加以明确。

2.测定生物群落中碳稳定性同位素比值(δ13C)

选取选定区域中待研究的动植物样品,测定碳稳定性同位素比值(δ13C)。具体测定步骤可以参考以下实验步骤,不过具体实验步骤依照实际情况而定。

参考实验步骤:选取选定区域中主要植物及部分动物的样品,鸟类以胸肌作样品,哺乳类以后退肌肉作样品,昆虫及两栖类则取全部作样品。所有样品经恒温干燥箱60~80℃烘

干至恒重,充分研磨,过100目筛备用。以Finnigan MAT DELTA PLU SXL同位素质谱仪和元素分析仪进行测定,二者的操作界面为ConF Ⅲ。制备条件:氧化炉温度为900℃,还原炉温度为680℃,柱温为40℃。产生的CO2在真空管中经纯化注入比集运量质谱仪(Finnegan Mat,Bermen,Germany)进行测定。

测定之后要计算碳稳定性同位素比值(δ13C值),计算公式为δR样品(‰)=(R样品-R标准)/R

标准×1000。在这个公式中,δR样品为被测材料的碳稳定性同位素比值;R样品为被测样品13C

样品

/12C样品的比值,R标准是标准物质13C标准/12C标准的比值。当δ值大于零时,则表示此样品的重同位素比标准物质富集重同位素,小于零时则表示此样品的重同位素比标准物质贫重同位素。δ值与标准物的选择有关,结果对比时应采用相同的标准。

3.获得碳同位素富集因子

由该区域中某些已知的植食性动物的肌肉或植物的叶片以及植食性动物的胃容物二者的碳稳定性同位素比值差异平均后得到碳同位素富集因子。例如,计算得到的肌肉或叶片碳稳定性同位素(δ13C)平均数是(-25.19±0.37)‰,胃容物碳稳定性同位素(δ13C)平均数是(-26.24±0.30)‰,二者相减得到碳同位素富集因子是(1.05±0.45)‰。DeNiro M J&Epstein S (1978 , 1981)报道的植食性动物与其食物间的碳同位素富集因子为1‰~2‰[6][7],这个可以作为一个参考标准。

4.食物链营养关系分析

食物链营养关系分析的时候主要依赖于碳稳定性同位素分析,并且辅以胃容物分析,即通过胃容物获得部分食物信息,并比较两种可能存在取食与被取食的生物间的碳同位素差异,与营养级间的碳同位素富集因子(例如1.05‰ ±0.45‰)相比较。如果二者在碳同位素富集因子范围内波动,则可认定二者之间存在取食与被取食的营养关系;相反,若二者差异不在此范围之内或差异较大,则可认定二者之间不存在(或存在微弱的)取食与被取食的营养关系。

5.食物链长度计算

食物链的长度按下述公式计算:FCL=(δ13C顶极物种-δ13C初级生产者)/本次实验测定的碳同位素富集因子。在此式中,FCL是指待计算的食物链的长度,δ13C顶极物种为顶级物种的碳稳定性同位素比值,δ13C初级生产者为初级生产者的碳稳定性同位素比值,最后与本次实验测定的碳同位素富集因子相除便可得到食物链的长度。

四.研究进度安排

此次实验的进行时间主要取决于选取选定区域中待研究的动植物样品的时间,因为该实验步骤需要充分考虑研究区域中动植物的生活规律,从而依据动植物的生活规律可以顺利高效地选取到待研究的样品。其他实验步骤可以在实验室完成,对自然环境的要求较低,因此实验时间比较灵活。

五.研究成本预算

此次实验的研究成本主要来自实验仪器的购买,相对昂贵的实验仪器包括恒温干燥箱、同位素质谱仪、元素分析仪、比集运量质谱仪。另外研究成本还包括科研工作人员在选定的研究区域和实验室两地来回的交通费用和在研究区域选取样品期间科研工作人员户外餐饮住宿等的费用。

六.可行性分析

生物多样性(biodiversity)是指生命有机体的种类和变异性及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,包括动物、植物、微生物和它们所拥有的基因以及它们与其生存环境形成的复杂的生态系统和自然景观。生物多样性通常被认为有三个层次,即:遗传多样性、物种多样性和生态系统多样性。其中,物种多样性是生物多样性在物种上的表现形式,反映了地球上生物有机体的复杂性,是生物多样性研究的核心内容。

种群(population)是指在特定时间内,分布在同一区域的同种生物个体的集合。种群具有共同的基因库,种群内部个体之间能够进行自然交配并繁衍后代,因此,种群是种族生存的前提,是物种具体的存在单位、繁殖单位和进化单位。

生态系统中有许多食物链,各种食物链并不是孤立的,它们往往纵横交织,紧密结合在一起,形成复杂的多方向的网状结构。这种多个食物链交织在一起、相互联系而成的网叫做食物网(food web)。生态系统越稳定,生物种类越丰富,食物网也越复杂。

生物体的碳稳定性同位素被广泛应用于食物网的食物组成研究中。将同位素应用于食物网研究基于如下假设:(1)物质来源的同位素差异大;(2)营养级之间δ13C差异很小,在1‰之内[8]。研究通常认为,同一个生态系统中动物的δ13C值通常高于其食物,并有沿着食物链递增的趋势,这是因为动物在摄食时优先吸收13C,同时消耗12C,或二者同时发生。在不同的生态系统中,由于初级生产者对生态系统物质来源的贡献具有空间异质性,同时受到不同生物对物质来源的可得性和易消化程度的影响,基于食物网中各碳源δ13C值的差异性以及食物的同位素值在向高营养级传递的变化规律[9],可以利用稳定同位素对这些初级生产者进行追溯,从而对有机物的来源进行指示[10]。显然,食物的同位素值决定动物的同位素值。同时,食物的营养价值、充足程度、动物的生理状况、发育阶段和年龄等均影响动物的同位素值。动物的同位素值随食物的同位素值变化而变化。其变化速度与动物的生长速度直接相关[11][12]。因此,生长快的动物,其同位素值反映近期的食物来源;生长缓慢的动物,其同位素值则反映的是比较长期的食物来源。同位素法在食物网中的应用反映了较长时间范围内捕食者对所摄取食物的代谢吸收。其局限性在于,复杂的食物网中不同来源的物质同位素在一定程度上会重合;同时,因新陈代谢引起的同位素分馏在不同物种间表现出一定差异。甚至即使是同一物种在不同生活阶段也会存在差异[13],这将会给利用同位素表征食物关系带来困难。

七.研究预期成果

此次实验的实验目的是研究某一受到人类破坏或其他因素干扰的区域的食物网中生物能量流动关系,从而可以明确在该区域内生物之间的能量流动关系。这样该区域中某些生物的种群数量发生变化时,可以利用食物网较准确地判断其他生物的种群数量变化,以便人为地采取一些适度的举措以维持该区域生态系统的稳定性。这样做体现了人与自然可持续发展的思想,有利于实现人与自然的和谐相处。

八.主要参考文献

[1]杨持.生态学概论[M].北京:高等教育出版社,2013.4

[2]李振基,陈小麟,郑海雷.生态学(第四版)[M]. 北京:科学出版社,2014.8

[3]百度百科.食物网.https://www.wendangku.net/doc/db4878533.html,/view/35438.htm.

[4]易现峰,张晓爱,李来兴,李明财,赵亮.高寒草甸生态系统食物链结构分析——来自碳稳定性同位素的证据[J].动物学研究.2003,Feb.25 (1):1-6.

[5]杨卫君.土壤微生物及小型动物与有机物料分解的关系[D].杨凌:西北农林科技大学,2014

[6] DeNiro M J, Epstein S. 1978.Influence of diet on the distribution of carbon isot opes in animals [J]. Geochim. Cosmochim. Acta,42: 495-506.

[7] DeNiro M J, Epstein S. 1981.Influence of diet on the distribution ofisot opes in animals [J]. Geochim. Cosmochim. Acta, 45:341-351.

[8] Gu B, Schelske C L, and Hoyer M V. 1996. Stable isotopes of carbon and nitrogen as indicators of diet and trophic structure of the fish community in a shallow hypereutrophic lake. Journal of Fish Biology, 49(6): 1233-1243.

[9] Pitt K A, Connolly R M, and Meziane T. 2009. Stable isotope and fatty acid tracers in

energy and nutrient studies of jellyfish: a review. In: Jellyfish Blooms: Causes, Consequences, and Recent Advances. edited by K. Pitt and J. Purcells, Springer Netherlands, p 119-132.

[10] Sugisaki H, and Tsuda A. 1995. Nitrogen and carbon stable isotopic ecology in the ocean: The transportation of organic materials through the food web. Biogeochemical Processes and Ocean Flux in the Western Pacific307-317.

[11] Ayliffe L K, Cerling T E, Robinson T, West A G, Sponheimer M, Passey B H, Hammer J, Roeder B, Dearing M D, and Ehleringer J R. 2004. Turnover of carbon isotopes in tail hair and breath CO2of horses fed an isotopically varied diet. Oecologia, 139(1): 11-22.

[12]Hobson K A, and Clark R G. 1992. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues.

[13]Overman N C, and Parrish D L. 2001. Stable isotope composition of walleye: 15N accumulation with age and area-specific differences in δ13C. Canadian Journal of Fisheries and Aquatic Sciences, 58(6): 1253-1260.

五年级科学上册《食物链和食物网》教案设计 教科版

《食物链和食物网》 一、教材分析: 《食物链和食物网》是小学科学五年级上册第一单元《生物与环境》中的第五课内容。本课教学内容分为两部分,第一部分:谁吃谁。要求学生按照谁被谁吃的关系说说这些生物之间的食物关系,从而引出科学概念“食物链”,然后通过对食物链的分析,引出概念“生产者”和“消费者”,最后概括出食物链的特征:通常从绿色植物开始,到凶猛的肉食动物终止。第二部分:水田的食物网。在学生对食物链有所了解的基础上,通过图文,让学生找出水田中存在的多条食物链。然后通过对这些纵横交错的食物链的分析,得出新的概念“食物网”,以此来认识自然界中各种生物彼此复杂的食物关系。再通过食物链和食物网的相关知识,来认识生物中动植物之间复杂、密切、各种各样的食物联系,从而得出:其中一种生物对链上的其它生物的巨大影响,以及保护某一种生物对保护整个生态环境的重要性。本课教材让学生通过观察、分析、动手实践等多种科学学习手段,来学习其中的科学知识,并用学到的科学知识去解释现实生活中存在的问题,真正让学生做到学以致用。 二、教学设计: (一)教学目标 1、科学概念: 生物之间这种像链环一样的食物关系,叫做食物链。同一种植物会被不同的动物吃掉,同一种动物也可吃多种食物,生物之间这种复杂的食物关系形成了一个网状结构,叫做食物网。 2、过程与方法: 通过寻找生态系统中动植物之间的食物关系,学会分析食物链中的生产者和消费者,掌握食物链中规律,并能正确表达食物链。能利用食物链和食物网分析保护生态环境的重要性。3、情感态度价值观: 意识到食物网反映了一个生态群落中的动植物之间复杂的食物关系;在讨论交流的过程中能耐心地倾听并吸收别人的学习成果。 (二)教学重点、难点 教学重点: 建立生态系统中的食物链、生产者、消费者、食物网的概念,并会画简单的食物链。 教学难点: 理解食物网所反映群落和生态系统中动植物间的关系。 (三)教学准备:多媒体课件,头饰,记号笔。 (四)教学课时:1课时。 (五)教学过程与设计意图 一、激趣导入 课前要求学生接照惯例重温班级口号:五年级的同学,像鲜花一样飘香;五年级的同学,像星星一样闪亮;五年级的同学,像钻石一样璀璨;五年级的同学,是全校最棒的!(设计意图:使学生以一种积极的状态投入学习) 接下来给学生讲《螳螂捕蝉,黄雀在后》的故事,在这个故事中,谁将被谁吃呢?随着学生的陈述一一板书。今天我们就来研究生物之间的食物关系,学习第五课食物链和食物网。(板书课题:5食物链与食物网)(设计意图:激发学生的学习兴趣,将学生引到这一课中) 二、探究过程: 1、讨论:他们谁被谁吃? 1)课件出示“蔷薇、草、树叶、蚜虫、瓢虫、蚯蚓、小鸟”的图片,请学生按照“谁被谁

生态系统中能量流动的分析与计算

1.下表是某农田生态系统中田鼠种群摄食植物后能量流动情况,下列有关叙述错误的是 A.田鼠同化的能量中有35%用于其生长发育和繁殖 B.田鼠粪便量属于其同化能量中流向分解者能量的一部分 C.以田鼠为食的天敌最多可获得的能量为1.4×109J/(hm2·a) D.田鼠的上一营养级同化的能量至少为3.5×1010J/(hm2·a) 【答案】B 109J/(hm2·a),C正确;田鼠的上一营养级同化的能量至少=7.0×109/20%=3.5×1010J/(hm2·a),D 正确。 2.如图所示为某食物链中各个营养级共有的能量流动情况,其中a~d代表能量值。请回答下列问题: (1)a、b、c的数量关系可以表示为,d代表。 (2)若图示为第一营养级的能量流动情况,则图中缺少的能量流向是,该能量流向的能量值范围为。 (3)若图示为第二营养级的能量流动情况,假设该动物的摄入量为e,为了提高该动物的食物利用率,应提高(用字母表示)的值。如果该动物为恒温动物,在气温逐渐降低时,假设b保持 不变,则b/a的值将(填“增大”“减小”或“不变”)。 【答案】(1)b=a+c流向分解者的能量值 (2)流向下一(第二)营养级的能量0.1b~0.2b (3)b/e(或b)减小

0.1b~0.2b。(3)要提高该动物的食物利用率,需提高同化量与摄入量的比值或提高同化量的值,即 提高b/e(或b)的值。当气温逐渐降低时,恒温动物为了维持体温的恒定,势必增加呼吸散失量(a),因此,在b保持不变的情况下,b/a的值将减小。 1.如下图甲表示某生态系统的能量锥体图,P为生产者,Q1为初级消费者,Q2为次级消费者。现对图中的各营养级所含有的能量进行分类剖析,其中分析不正确的是(注:图乙中a、a1、a2表示上一年留下来的能量,e、e1、e2表示呼吸消耗量) A.b+c+d+e为本年度流入该生态系统的总能量 B.c1表示初级消费者中被次级消费者所同化的能量 C.b和d之一可代表生产者传递给分解者的能量 D.初级消费者产生的粪便中所含的能量包含在c中 【答案】D 【解析】本题考查的是能量流动的相关知识。b+c+d+e为生产者光合作用利用的光能,即本年度流入该生态系统的总能量,A正确;图中Q1为初级消费者,Q2为次级消费者,因此c1表示初级消费者中被次级消费者所同化的量,B正确;生产者的能量去向有四个方面:自身呼吸消耗(e)、被下一营养级利用(c)、被分解者分解、未被利用,因此b和d之一可代表生产者传递给分解者的能量,C正确;初级消费者产生的粪便中所含的能量未被初级消费者同化,因此不包含在c中,D错误。

碳稳定性同位素分析食物网中能量流动审批稿

碳稳定性同位素分析食物网中能量流动 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

碳稳定性同位素分析食物网中能量流动 摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。 关键词:碳稳定性同位素;食物网;能量流动;δ13C值 Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas. KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C 一.研究背景 随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。 食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。

封管法制备有机碳稳定同位素样品存在的问题和改进

第7卷 第2期2016年4月 地球环境学报 Journal of Earth Environment V ol.7 No.2Apr. 2016 doi:10.7515/JEE201602010 收稿日期:2015-11-17;录用日期:2015-12-07Received Date: 2015-11-17; Accepted Date: 2015-12-07基金项目:国家自然科学基金项目(41303010) Foundation Item: National Natural Science Foundation of China (41303010)通信作者:刘卫国,E-mail: liuwg@https://www.wendangku.net/doc/db4878533.html, Corresponding Author: LIU Weiguo, E-mail: liuwg@https://www.wendangku.net/doc/db4878533.html, 封管法制备有机碳稳定同位素样品 存在的问题和改进 曹蕴宁1,刘卫国1, 2 (1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061; 2. 西安交通大学 人居环境与建筑工程学院,西安 710049) 摘?要:有机碳稳定同位素的高精度测定是利用地质样品有机碳同位素研究气候和植被变化等的基础。通过实验发现低有机碳含量样品同位素测定误差相对较大,其中样品收集过程是主要的影响因素之一。本文针对这个问题,主要从杂质气体干扰入手,在一步冷冻分离CO 2和H 2O ,或分步冷冻分离CO 2和H 2O 的收集方法,以及改变收样管体积三方面进行条件实验研究,讨论了封管法制备有机碳稳定同位素样品气体收集过程对有机碳稳定同位素组成的影响。结果表明:(1)CO 2气体的纯化收集是封管法制备有机碳稳定同位素样品的一个重要步骤,收集时杂质气体含量越高,对样品有机碳稳定同位素组成的影响越大;(2)在相同的杂质气体背景条件下,与一步冷冻分离CO 2和H 2O 的方法相比,分步冷冻CO 2和H 2O 的方法能够显著减小杂质气体对有机碳稳定同位素测定的影响;(3)小体积收样管能够显著提高有机碳稳定同位素样品的离子流强度,进而提高低有机碳含量样品的稳定碳同位素测定精度。关键词:有机碳稳定同位素;样品制备;封管法 Problems and improvements of preparing organic carbon stable isotope samples by sealing tube method CAO Yunning 1, LIU Weiguo 1, 2 (1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences , Xi’an 710061, China; 2. School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China ) Abstract: Background, aim, and scope High precision measurement of organic carbon stable isotope (δ13C) is the basis for its application in the reconstruction of past changes in climate and vegetation types. It has been observed that the measurement error of δ13C for samples with low organic carbon content was relatively large, partly due to the problem in the CO 2 collecting process. To solve this problem, the effect of CO 2 gas collecting process on the δ13C of organic carbon was investigated from three aspects: impurity gas on the process of CO 2 freezing, freezing CO 2 and H 2O by one step and freezing CO 2 and H 2O step by step, and the effect of collection tubes with different volumes. Materials and methods The national standard material (GBW04407) and different types of natural samples were analyzed using sealed tube method to study the effect of CO 2 gas collecting process on the δ13C of

地质样品有机地化测试有机质稳定碳同位素组成分析方法

MV_RR_CNG_0398地质样品有机地化测试有机质稳定碳同位素组成分析方法 1.地质样品有机地化测试有机质稳定碳同位素组成分析方法说明 2.地质样品有机地化测试有机质稳定碳同位素组成分析方法摘要 1 范围 本标准规定了有机质稳定碳同位素组成分析中质谱计的技术性能指标、样品制备、质谱分析的方法及精密度等。 本标准适用于原油及其各族组分、干酪根、煤、岩石沥青等各种沉积有机质和一切生物体有机质的稳定碳同位素组成分析。

本标准不适用含有碳酸盐矿物的有机物样品的稳定碳同位素组成分析。 2 方法提要 试样在流动氧同位素制样装置中分解燃烧,并进一步氧化,充分转化为CO2,所生成的H2O用冷冻法除去,在真空状态下去除杂质气体,经纯化后的CO2收集到样品管中,在气体稳定同位素比值质谱计上进行稳定碳同位素组成分析。 3 仪器和设备 3.1 气体同位素比值质谱计:具双进样系统、三束离子接收器的质谱计,要求具备技术性能指标如下: 3.1.1 灵敏度:S>10 A/Pa(0.1 A/mbar); 3.1.2 工作分辨率:M/ΔM>95(10%峰谷); 3.1.3 丰度灵敏度:A. S<5×10-6; 3.1.4 测量精度:E. P<0.04(‰)。 3.2 流动氧有机质碳同位素制样装置〔示意图见附录A(提示的附录)〕: 3.2.1 机械真空泵一台; 3.2.2 热偶真空计一台; 3.2.3 加热炉温度控制仪二台:温控范围室温~1 100℃; 3.2.4 带真空活塞的玻璃真空系统一套。 4 试剂和材料 4.1 线状氧化铜:分析纯。 4.2 无水乙醇:分析纯(或化学纯)。 4.3 高纯氧:纯度优于99.99%钢瓶氧气。 4.4 液氮:保存在杜瓦瓶中。 4.5 真空硅脂:7501型。 5 分析步骤 5.1 样品制备 5.1.1 燃烧样品:取原油样约1 mg~2 mg置于石英小舟中,燃烧生成的H2O由冷阱10在-45℃~-60℃的低温下捕集而除去。CO2由冷阱12在液氮低温(-196℃)下收集。 5.1.2 抽除氧气:当真空度约1 Pa,抽氧结束。 5.1.3 CO2转移:真空度约6 Pa,CO2转移结束。 5.1.4 抽除杂气。 5.2 质谱分析 5.2.1 开机:质谱计进样系统,分析系统抽真空。 5.2.2 预热:灯丝发射部件、离子加速电压(高压)部件、磁铁电流部件通电预热约1h,使其工作稳定。 5.2.3 “零”富集测试:样品(SA)及标样(ST)两个储样器中放进同一个工作标准ST-8301钢瓶CO2气,作“零”富集测试。 5.2.4 样品分析:进样系统样品SA一路引入样品CO2,标准ST一路引入工作标准ST-8301钢瓶CO2气,在已设定好实验条件下,作样品测量。测量前调整储样器中样品的压力,使样

单体烃稳定碳同位素

单体烃稳定碳同位素在沉积和油气地质中的应用 摘要随着科学技术的进步,人们已不满足测定原油总体的δ13C值及原油族组分碳同位素值,而是着眼于研究原油中单体烃分子的碳同位素特征,以便获得更多、更详细烃分子系列碳同位素信息。因此,单体烃碳同位素分析技术应用而生,原油单体烃碳同位素分析技术主要用于油源对比。由于碳同位素仪比较复杂,包括的设备多,操作繁琐,国内同行业有这样大型仪器的单位不多,因而对此项技术的开发有很重要的意义。原油单体烃碳同位素分析技术在油源对比等地质应用方面具有可行性,同时体现出有效的实际应用价值。 关键词单体烃碳同位素油气地质原油分类油源对比 单体烃碳同位素能从分子级别反映单个化合物的来源,较之于全油和族组成分同位素,具有更明显的优越性,已广泛应用于油气成因类型、油源识别、混源定量等油气勘探实践中。其数据的精度在相当程度上取决于单体化合物分离的纯度、仪器检测的稳定性及标样的界定。原油单体烃碳同位素的分布形式主要取决于样品的性质,特别是母源岩原始沉积环境与生源输人,受成熟度等其他因素的影响相对较小。我国西部叠合盆地由于存在多套有效烃源岩,不同成因类型原油混源现象普遍,如塔里木盆地可能包含海相与陆相各自不同层位烃源岩,甚至海相与陆相成因原油的混源,因此单体烃碳同位素在油源识别中至关重要。为了更好地应用单体烃碳同位素技术,需要建立不同地质模式下不同成因类型原油的单体烃碳同位素模型,并对可能的影响因素进行评价。 1单体正构烷烃碳同位素的古植被与古气候意义 近年来,由于气相色谱-燃烧-同位素比质谱联用仪(GC/C/IRMS)新技术的成功运用,使得单体分子标志化合物碳同位素的研究已在生物源识别、C3与C4植被类型确定、全球碳循环等方面得到了应用。单体分子标志物碳同位素的研究使稳定同位素在古气候学中的应用达到分子级水平,不但为局部或全球古气候研究而且为控制全球碳循环的机制探讨提供了新的更加准确的证据。因而,分子标志物的分布与单体碳同位素组成特征的联合应用,可以大大增强追踪古环境中有机质来源和重建古生物地球化学过程及古环境的能力。 1.1 溯源 正构烷烃分子标志化合物在古气候研究中得到了广泛应用,但是它们本身存在一些不可避免的缺陷:一是不同类型生物体中可能存在相同或相似的正构烷烃组成,使来自众多生物源的正构烷烃混合输入难以区分;二是正构烷烃分子标志物在埋藏中可能会或多或少地受到降解演化的破坏,使得其相应的生物源辨认模糊。然而,单体正构烷烃的碳同位素

生态系统中能量流动的计算类型分析

生态系统中能量流动的计算类型分析生态系统中能量流动的计算是近几年高考的热点,考生常因缺乏系统总结和解法归纳而容易出错。下面就相关问题解法分析如下: 一、食物链中的能量计算 1.已知较低营养级生物具有的能量(或生物量),求较高营养级生物所能获得能量(或生物量)的最大值。 例1.若某生态系统固定的总能量为24000kJ,则该生态系统的第四营养级生物最多能获得的能量是( ) A. 24kJ B. 192kJ C.96kJ D. 960kJ 解析:据题意,生态系统固定的总能量是生态系统中生产者(第一营养级)所固定的能量,即24000kJ,当能量的传递效率为20%时,每一个营养级从前一个营养级获得的能量是最多的。因而第四营养级所获得能量的最大值 为:24000×20%×20%×20%=192kJ。 答案:D 规律:已知较低营养级的能量(或生物量),不知道传递效率,计算较高营养级生物获得能量(或生物量)的最大值时,可按照最大传递效率20%计算,即较低营养级能量(或生n物量)×(20%)(n为食物链中由较低营养级到所需计算的营养级的箭头数)。 2.已知较高营养级的能量(或生物量),求较低营养级应具备的能量(或生物量)的最小值。 例2.在一条有5个营养级的食物链中,若第五营养级的生物体重增加1 kg,理论上至少要消耗第一营养级的生物量为( ) A. 25 kg B. 125 kg C. 625 kg D. 3125 kg

解析:据题意,要计算消耗的第一营养级的生物量,应按照能量传递的最大效率20%计4算。设需消耗第一营养级的生物量为X kg,则X=1?(20%)=625 kg。 答案:C 规律:已知能量传递途径和较高营养级生物的能量(或生物量)时,若需计算较低营养级应具有的能量(或生物量)的最小值(即至少)时,按能量传递效率的最大值20%进行计n算,即较低营养级的生物量至少是较高营养级的能量(或生物量)×5(n 为食物链中,由较低营养级到所需计算的营养级的箭头数)。 3.已知能量的传递途径和传递效率,根据要求计算相关生物的能量(或生物量)。 例3.在能量金字塔中,生产者固定能量时产生了240molO,若能量传递效率为10%,15%2 时,次级消费者获得的能量最多相当于多少mol葡萄糖,( ) A.0.04 B. 0.4 C.0.9 D.0.09 解析:结合光合作用的相关知识可知:生产者固定的能量相当于240?6,40mol葡萄糖;生产者的能量传递给次级消费者经过了两次传递,按最大的能量传递效率计算,次级消费者获得的能量最多相当于40×15%×15%,0.9mol葡萄糖。 答案:C 规律:已知能量传递效率及其传递途径时,可在确定能量传递效率和传递途径的基础上,按照相应的能量传递效率和传递途径计算。 二、食物网中能量流动的计算 1.已知较高营养级从各食物链中获得的比例,未告知传递效率时的能量计算。 例4.右图食物网中,在能量传递效率为10%,20% 时,假设每个营养级的生物从前一营养级的不同生物

碳同位素分析

二里头遗址出土陶容器内残余物的碳同位素分析 赵春燕赵海涛陈国梁许宏 (北京,王府井大街27号,中国社会科学院考古研究所,100710) 摘要:考古出土陶容器内残余物的分析与鉴别对于探讨古代人类饮食结构、生存状况及周围环境等问题具有特别重要的意义.依据残余物的碳同位素分析可以区分食物的种类,因而碳同位素分析是最重要的方法之一. 对二里头遗址出土的11份陶容器内残余物进行的碳同位素分析结果表明,二里头遗址居民食物中兼具C3类和C4类植物,而且,C4类植物也就是粟的比例可能更高一些。 关键词:二里头遗址,残余物,碳同位素 考古出土陶容器内残物的分析与鉴别对于探讨古代人类饮食结构、生存状况及周围环境等问题具有特别重要的意义。人类在学会制作陶器以后,生活方式发生了质的改变。蒸煮等烹调方式的使用改善了古人类的生活,使得人类对动植物的利用更加充分,吸收更多的营养,身体更加健康。因而,了解古代人类烹饪方式的发生、发展的历史也就是了解人类自身文明发展的历史。一般而言,了解古代人类饮食结构及生存状况所涉及的研究对象主要可以分为两个方面:一是被研究的主体-人类本身,包括对人类骨骼和牙齿遗存的研究;二是人类食用的对象,包括考古遗址中发现的动植物的遗存研究等等。但出土器物中发现的残余物的分析研究,可以帮助考古学家获得更多的不可见的动植物利用信息。 残余物的分析方法比较多, 根据残余物的状态不同相应有不同的方法.其中,碳、氮同位素分析是最重要的方法之一。依据残余物的碳同位素分析可以区分食物的种类。其原理并不复杂: 植物是通过光合作用将空气中的二氧化碳转化为植物组织。到目前为止所发现的光合作用的途径主要三种。一是卡尔文途径。因为它的最初产物是3-磷酸酰甘油酸(3-PGA),这是一种含三个碳原子的化合物,所以又称为C3途径,遵循 C3光合作用途径的一类植物称为C3植物。温和湿润环境下生长的大部分植物都属于C3植物,例如各种乔木、灌木和大部分禾本科的植物。二是哈-斯途径。这种途径的最初产物是含四个碳原子的化合物-草酰乙酸,所以遵循哈-斯光合作用途径的一类植物称为C4植物。 C4植物包括玉米、粟、甘蔗等旱暖开放环境中生长的某些草类。三是少数多汁植物如菠箩、甜菜等所遵循的称为CAM的光合作用途径[1、2]。 自然界的植物因光合作用的途径不同,而导致了最初产物的不同。而不同的最初产物的植物间碳同位素组成是有差别的,可以用δ13C值定量表示。通过对自然界数百种不同科、属、种的植物的研究发现,C3类植物如稻米、小麦、豆类等,其δ13C值范围为 -23‰~-30‰,平均值为-26‰。C4类植物,如玉米、小米、高粱、甘蔗等,δ13C值范围为–8~-14‰,平均值为-11‰。CAM类植物如菠萝、甜菜等,δ13C值范围为–12‰~-23‰,平均值为-17‰。豆科植物可以直接从空气固氮,其δ15N值约为0~1‰;非豆科植物利用土壤中的氮,δ15N 值平均为3~4‰。这些研究结果给后来的研究提供了直接的对比标准。对于出土残余物而言,因炭化过的植物残骸不会再受土壤微生物的影响而改变,一般认为碳氮同位素不会发生分

碳同位素组成特征及其在地质中的应用

同位素地球化学

目录 一、碳的同位素组成及其特征 (1) 1.碳同位素组成 (1) Ⅰ、碳的同位素丰度 (1) Ⅱ、碳的同位素比值(R) (1) Ⅲ、δ值 (2) 2.碳同位素组成的特征 (2) Ⅰ.交换平衡分馏 (2) Ⅱ.动力分馏 (3) Ⅲ.地质体中碳同位素组成特征 (3) 二、碳同位素在地质科学研究中的应用 (8) 1. 碳同位素地温计 (8) 2.有机矿产的分类对比及其性质的确定 (9) Ⅰ.煤 (9) Ⅱ.石油 (9) Ⅲ. 天然气 (11)

碳同位素组成特征及其在地质科研中的应用 一、碳的同位素组成及其特征 1.碳同位素组成 碳在地球上是作为一种微量元素出现的,但分布广泛,在地质历史中有着重要作用。碳的原子序数为6 ,原子量为12.011,属元素周期表第二周期ⅣA族。碳在地壳中的丰度为2000×10-6,是一个比较次要的微量元素。在地球表面的大气圈、生物圈和水圈中,碳是最常见的元素之一,是地球上各种生命物质的基本成分馏。碳既可以呈固态形式存在,又能以液态和气态形式出现。它既广泛分馏布于地球表面的各层圈中,也能在地壳甚至地幔中存在。总之,碳可呈多种形式存在于自然界中。在有机物质和煤、石油中,以还原碳的形式存在,在二氧化碳气体和水溶液中,以氧化碳形式出现。碳还可呈自然元素形式出现在某些岩石中(如金刚石和石墨)。一般用同位素丰度、同位素比值和δ值来表示同位素的组成。 Ⅰ、碳的同位素丰度 同位素丰度指同位素原子在元素总原子数中所占的百分比,自然界中的碳有2个稳定同位素:12C和13C。习惯采用的平均丰度值分别为98.90%和1.10%。由此可见,在自然界中碳原子主要主要是以12C的形式存在。另外碳还有一个放射性同位素14C,半衰期为5730a。放射性14C的研究,目前已发展成为一种独立的同位素地质年代学测定方法,主要应用于考古学和近代沉积物的年龄测定。适合用于作碳稳定同位素分馏析的样品包括:石墨、金刚石等自然碳矿物,方解石、文石、白云石、菱铁矿、菱锰矿等碳酸盐矿物;石灰岩、白云岩、大理岩等全岩样品;各种矿物包裹体中的C O2和CH4气体以及石油、天然气及有机物质中的含碳组分馏等。 Ⅱ、碳的同位素比值(R) 同位素比值R=一种同位素丰度/另一种同位素丰度 对于非放射性成因稳定同位素比值: R=重同位素丰度/轻同位素丰度 由此可见,碳的同位素比值R=1.1%/98.9%=0.011

碳同位素组成特征

塔中地区晚寒武—奥陶世碳酸盐岩δ13C同位素组成特征 朱金富于炳松黄文辉初广震吕国 (中国地质大学北京100083) 摘要通过研究、分析塔里木盆地塔中地区寒武系至奥陶系海相碳酸盐岩的碳、氧同位素组成特征,分析和探讨了影响塔中地区寒武系至奥陶系碳酸盐岩碳同位素变化的原因。结果表明,寒武-奥陶系海相碳酸盐岩的碳同位素的变化可能与海平面变化有密切联系,在晚寒武世至早奥陶世晚期为一海退期,有机质产率及有机碳埋藏速率的下降导致了碳酸盐岩δ13C 值的降低;而在早奥陶晚期-中奥陶世为一海侵期,有机质产率及有机碳埋藏速率的增加导致了碳酸盐岩δ13C值的增高;晚寒武世至早奥陶世海水中的硫酸盐含量高,硫酸盐细菌的还原作用使有机质氧化,从而导致碳酸盐岩δ13C值降低。 关键词寒武-奥陶系碳酸盐岩碳同位素海平面变化硫酸盐 第一作者简介:朱金富,男,1978年生,中国地质大学(北京)在读博士,研究方向:含油气盆地沉积学 碳氧稳定同位素是解释碳酸盐岩成因的一种重要的地球化学标志。同时,碳、氧同位素分析是古环境研究中常用的一种手段,它在恢复水体的古温度、古盐度和研究沉积物成岩作用等方面已得到了广泛的应用。近年来,有关碳氧同位素与海平面变换的关系的研究备受关 注(彭苏萍等,2002年;邵龙义,1999年;李儒峰,刘本培,1996年;刘传联,1998年等)。本文通过对塔里木盆地塔中地区寒武系至奥陶系碳酸盐岩中碳同位素的分析,探讨了 碳同位素与沉积环境、相对海平面变化及硫酸盐含量的关系。 塔中低凸起位于塔里木盆地中部,北与满加尔凹陷、南与塘古孜巴斯凹陷、西与巴楚低凸起、东与塔东低凸起相接。东西长约300km,南北宽约160km,面积约4.8ⅹ104km2(图1所示)。它分为塔中?号断裂构造带、塔中北坡及中央垄断垒带三个构造单元。塔中地区地层发育比较齐全,除了缺失侏罗系和大面积缺失震旦系外,寒武系至古-新近系均有分布。

生态系统的能量流动(教案)

5.2生态系统的能量流动 高中生物备课组主讲人:王春玉 一、教学目标 1、知识性目标 ⑴、理解生态系统能量流动的概念。 ⑵、描述生态系统能量流动的过程和特点(重点)。 ⑶、说出研究生态系统能量流动的意义。 2、技能性目标 ⑴、引导学生用数据来分析能量流动的特点,让学生在归纳总结的基础上,阐述出生态系统能量流 动具有的两个特点。 ⑵、指导学生构建能量流动的概念模型、数学模型、物理模型。 ⑶、对生态系统中能量的流入和流出加以分析,培养知识迁移和运用能力。 3、情感性目标 ⑴、通过小组分工与自主性学习相结合,培训同学发现问题解决问题以及与他人合作交流的能力。 ⑵、注重生态学观点的培养,同时关注农业的发展和生态农业的建设。 ⑶、培养实事求是的科学态度,树立科学服务于社会的观点。 二、教学重点和难点 重点:描述生态系统能量流动的过程和特点。 难点:引导学生用数据来分析能量流动的特点,让学生在归纳总结的基础上,阐述出生态系统能量流动具有的两个特点。 三、教具:多媒体课件

附件1能量流动的概念模型

生产者 植食动物 肉食动物 顶位肉食动物 分解者 入射光能 118872 能量A 118432 0.25 0.05 贮存 输出 有机物输入 12 5 2 ① 5.1 0.5 2.1 ① 9 3 70 23 4 ① ① ② ① 附件2能量流动的数学模型与物理模型 数学模型:第n 营养级获得的能量最多为 最少为 物理模型:能量金字塔 附件3能量流动的经典例题 请同学们讨论:该生态系统中,流经该生态系统的总能量是多少?第二营养级到第三营养级的能量 传递效率是多少? 五、教学反思 本教案已多次用于实际教学中,课后我对整节课作了反思,归纳以下几点: 1、 成功点 教学中,由于引入了网络功能,使得教学中知识点更加生动,便于理解。同时我努力引导学生通过多手段、多角度的探索,多次运用模型构建的方法分析问题、解决问题,发展创新意识。使学生能很好的理解并运用所学知识。 2、 疑惑点 本节课知识点多且难,而课标要求只能用一课时来教学。故教学中难度与广度很难把握。知识点稍为拓深,时间就会超出要求。如何做到在一节课内,完成本节课所以知识点,还需探讨更有效率的教学方法。 3、 感悟点 通过追踪教学过程,审视教学环节。我发现兴趣仍是大部分学生的学习推动力。而通过多媒体的教学手法则很好的调动了学生的学习兴趣。当然,认真严谨的教学设计也是必需的。如今,网络已经改变了人们的生活。若能合理的搜索网络资源并整合到教学中,将于教于学都大有裨益。这方面我还需要努力。

碳、氧同位素含量偏移的地质意义研究

碳、氧同位素含量偏移的地质意义研究在学习地球化学之前,我曾加入一个科研立项小组的科研工作中。这个科研项目的主题是“晚泥盆世弗拉斯—法门期之交( Fr/ Fa 界线) 所发生的全球性生物大绝灭事件”,我们对此项工作主要从牙形石分带,微球粒的基础研究及对碳酸盐含量,碳、氧同位素的含量偏移等方向展开。在加入到这个工作开始到学习完地球化学这门课止,我阅读了关于“碳、氧同位素含量偏移在重大地质事件中的指示意义”这一知识点的文献约十余篇。这些文献除了有部分对F—F事件的碳、氧同位素的规律总结之外,更有一部分是对其他重大地质事件诸如中元古代海平面变化、河南地区震旦系碳酸盐沉积、早寒武世黑色页岩、奥陶系—三叠系古环境变化、白垩纪缺氧事件等的系统归纳。本文即是对这些重大地质事件运用同位素含量分析的方法,对以往做过此方面工作的文献进行一次系统的梳理。 碳酸盐和有机物碳同位素组成的分析已成为推断全球碳循环变化的有力工具,碳循环的变化通常与生物集群灭绝事件有关。碳同位素的正偏移,在一些地质学家看来被认为是有机碳埋藏速率增强的结果。而这种变化被许多科学家认为是由于海平面的变化或者海水温度的变化导致大量暖盐水体的形成,诱导海水缺氧,使得海水中有机物氧化速率降低,有机碳埋藏速率增加,导致CO2浓度降低,全球变冷,这一系列变化又导致了生物的大量灭绝。 在对北京十三陵地区中元古代雾迷山组海平面变化的分析中,李任伟等人对白云岩进行了取样,分析以及检验发现:北京十三陵地区雾迷山组(1310~1207 Ma) 白云岩的δ13C 数值范围-1.5 ‰~1. 5 ‰(PDB) ,δ18O 数值范围一般为- 4 ‰~- 5 ‰(PDB) 。它们碳同位素组成具有旋回性变化的特征。δ13C 从地层层序的边界发生正偏移,至1. 5 ‰(PDB) ,然后发生负偏移至- 1. 5 ‰(PDB) 。有时,在δ13C 为负值的层段δ18O 数值较高,约为- 4. 0 ‰(PDB) 。 中元古代雾迷山时期碳酸盐岩相对具有重碳同位素组成的层段与海侵相关。可以在新元古代,也可以在显生宙找到类似的例子。在白垩纪森诺曼阶-土仓阶、早侏罗世、中奥陶世晚期以及晚寒武世,人们都可以在海侵时期沉积的碳酸盐岩地层中发现δ13C数值的正偏移。原因在于此时的海洋有较高的有机产率和高的有机碳埋藏速率,由于沉积有机质从海洋中选择地吸收了轻碳同位素(12C),结果造成海洋碳酸盐库对重碳同位素(13C) 的相对富集。雾迷山组这种碳、氧同位素组成特征可以反映海平面的变化。在海侵体系域时期海水有相对高的有机产率和有机碳埋藏速率,在高位体系域时期的碳酸盐台地可能为滞流和蒸发环境,海水中微生物因呼吸而消耗有机质的作用比较强烈。 河南汝州、鲁山一带罗圈组冰积层之上的东坡组以页岩、粉砂质页岩及粉砂岩为主。而在对河南汝州一鲁山一带震旦系东坡组碳酸盐沉积的研究中,杜远生及张良等人发现了白云岩透镜体及白云质粉砂岩、砂岩。白云质粉砂岩具有与东坡组页岩不协调的软沉积变形。白云岩透镜体和白云质粉砂岩具有明显的δ13C 负偏。白云岩透镜体的δ13C为一4.19‰~一6.18‰。白云质粉砂岩的占δ13C 大部分为一2‰~一4‰之间。因此认为,东坡组的白云岩透镜体及白云质粉砂岩、砂岩与华南震旦纪盖帽白云岩及南华纪Sturtian冰期冰积层之上的碳酸盐丘和菱锰矿类似,为冰积层中的天然气水合物泄漏释放的CO2和海水中的Mg+发生快速反应快速沉淀而成的,即东坡组的白云岩、白云质粉砂岩、砂岩为冷泉成因。 而陈兰等人对扬子地台湘黔地区旱寒武世黑色页岩有机碳同位素的组成变化进行野外地质观察与室内分析研究表明:研究区灯影组白云岩主要为碳酸盐台

碳氢氧氮稳定同位素在生态学中的研究案例

碳氮氢氧稳定同位素示踪技术在生态系统研究案例稳定同位素作为示踪剂广泛应用于生态循环和大气循环中的相关研究。研究人员通过测量空气、植物和土壤中的稳定性同位素组成,进而研究传统生态学无法解释的复杂生态学过程,例如:碳同位素用于分析生态系统CO2循环,区分碳通量研究中各组分的贡献率,确定不同物种对全球生产力的分配和贡献;氢氧同位素用于分析植物对土壤水分的利用效率,进而区分土壤水分的蒸腾与蒸散;氮同位素用于分析植物及生态系统的氮素循环,通过反硝化细菌转化成N2O,根据15N在N2O分子的不同位置,可以示踪N素循环的不同化学反应过程。在这些生态研究中,要求使用的设备同时具备高环境耐受性、高精度、高测量速度及宽量程等特点。 美国Los Gatos公司采用专利的OA-ICOS技术(第4代CRDS技术)设计的一系列稳定同位素分析仪,具有操作温度范围宽、量程宽、高速、高精度的优点。能够满足实验室野外多点长期同步监测、不同高度长期同步监测等研究的需要。其与其他传统测量方法相比,改进了对外界温度、压力变化比较敏感的缺陷,具备无法比拟的优势,适用范围也大大得到扩展。 一、测量原理 LGR:采用OA-ICOAS技术,符合Beer-Lambert定律,通过测量光损失来确定未知物质的浓度;通过改变入射激光的波长,一次扫描测量需要的全部光谱,每秒300次测量,做平均,从而保证了多点连续监测的同步性以及高精度性。 特点:1、测量速度非常快,每秒300次全光谱扫描取平均,测量速度及精度远超传统质谱仪; 2、一次扫描测量全光谱,实时显示光谱曲线,即使温度压力的变化引起峰漂移 也不会影响到峰面积的变化; 3、离轴的光腔设计,避免反射光与入射光直接的相互干扰,信噪比低; 4、通过峰面积来计算位置物质的浓度,所以测量范围很宽; 二、 试验方案 1、碳氧稳定同位素示踪设计方案 1.1土壤-植物根系呼吸的区分 利用土壤、植物根系呼吸产生的CO2中13C同位素信息,可以区分它们各自在总呼吸中所占的比例,同时对18O同位素进行监测,使得多混合源的同位素区分成为可能。

生态系统的能量流动

能量流动的过程 1.概念:生态系统中能量的输入、传递、转化和散失的过程。 (1)流经生态系统的总能量:是生产者通过光合作用所固定的全部太阳能。 (2)渠道:食物链和食物网。 (3)能量转化:太阳能→有机物中的化学能→热能(最终散失)。流动形式是有机物中的化学能。 (4)散失途径:呼吸作用,包括各个营养级自身的呼吸消耗以及分解者的呼吸作用。

(5)能量散失的形式:以热能形式散失。 2.过程图解 在各营养级中,能量的三个去路:通过呼吸作用以热能的形式散失;流向下一营养级生物利用;被分解者利用。 3.特点:单向流动和逐级递减。 4.意义 ①帮助人们科学规划、设计人工生态系统,使能量得到有效的利用。 ②帮助人们合理地调整生态系统中的能量流动关系,使能量持续高效地流向对人类最有益的部分。 判断下列有关能量流动叙述的正误。 (1)生态系统中生产者得到的能量必然大于消费者得到(2011·海南卷,2A)(√) (2)流经生态系统的总能量是照射在生产者上的太阳能(×) (3)沼渣、沼液作为肥料还田,使能量能够循环利用(2010·新课标全国卷,5C)(×) (4)多吃肉食比多吃素食消耗的粮食总量更多(2010·江苏卷,11C)(√) (5)流经第二营养级的总能量指次级消费者摄入到体内的能量(×) (6)某营养级生物的粪便量属于上一营养级生物的同化量(√) 临考视窗高考侧重于考查能量流动的过程、特点及有关计算。以流程图、表格数据、示意图的形式命题,考查学生图文转换、获取信息的能力。 (2014·河南郑州一模)如图是一个处于平衡状态生态系统的能量流动图解,其中A、B、C、D分别代表不同营养级的生物类群,对此图解理解正确的一项是( ) A.流经该生态系统的总能量就是A通过光合作用固定的太阳能减去自身呼吸消耗的能量 B.D中所含的能量与C中所含的能量之比就是能量从C传递到D的效率 C.B同化的能量要大于B、C、D呼吸消耗的能量之和 D.由于流经该生态系统的总能量是一定的,所以B获得的能量越多,留给C、D的能量就越少 [自主解答] ________ 解析:流经该生态系统的总能量就是A通过光合作用固定的太阳能,A 错误;能量从C传递到D的效率是指D同化的能量与C同化的能量之比,B错误;B同化的能量要大于B、C、D呼吸消耗的能量之和,因为还有一部分能量流向了分解者,C正确;B获得的能量越多,留给C、D的能量也越多,D错误。 答案: C 【互动探究】 1.流入量与同化量是什么关系?同化量、摄入量与粪便量

碳酸盐岩碳氧同位素与古气候古环境

碳酸盐岩碳氧同位素与古气候古环境 在地球科學中碳氧同位素广泛应用于成岩成矿作用、古海洋、石油天然气成因研究。而碳氧同位素在反映古气候古环境中尚属比较新颖的应用,文章在阅读相关文章基础上,进一步阐明了不同环境下碳酸盐岩中的碳氧同位素反映古气候古环境的机理。 标签:碳酸盐岩;碳氧同位素;古气候;古环境 引言 过去的几十年里,碳酸盐岩中的碳氧同位素相关研究日益增加,因为通过对湖相碳酸盐岩中碳氧同位素的数据分析,在一定程度上重新构建过去时期的古气候和古环境方面的变化。文章以湖湘碳酸盐岩,石笋中的碳酸盐岩以及黄土中的碳酸盐岩为例,较为具体说明了三种碳酸盐岩中的碳氧同位素的含量变化对应着怎样的环境气候(温度,蒸发降水量,植物种类茂盛程度)变化。 1 湖相碳酸盐岩中的碳氧同位素 (1)在湖泊沉积中,碳酸盐岩中δ18OPDB与δ13CPDB间的相关性,反映着湖泊水文条件,若δ18OPDB和δ13CPDB之间是呈正相关关系,则反映为封闭性的湖泊,如果它们之间相关系数大于0.70,则湖泊的封闭性是比较好的。例如由于丹麦Bliden Lake沉积碳酸盐岩中δ18O和δ13C之间相关系数为0.4,因此Olsen等认为丹麦Bliden Lake是开放性的。 (2)湖泊中的碳酸盐岩(或泥灰岩)δ13C含量变化主要与气候,蒸发,湖泊生产力有关。对于封闭性较好的湖泊,湖泊生物生产力以及蒸发作用(通过大气中CO2与湖泊水体间的交换)影响着沉积碳酸盐δ13C值。在开放性湖泊中沉积碳酸盐的δ13C的影响因素较多且较复杂,主要与气候,蒸发,湖泊生产力有关。例如青海湖,由于湖中水量远大于入湖水量,而且湖中DIC含量远大于入湖淡水中的DIC含量,故青海湖可以看做封闭性湖泊;水生植物的光合作用和呼吸作用影响着δ13CDIC;蒸发作用下,湖泊水体急剧减小,湖泊深层水与表层水将会加速混合而影响δ13CDIC;由于水体中CO2和大气CO2交换导致湖水δ13CDIC的变化,反映着当时蒸发作用强弱(尤其当湖水CO2分压低于大气CO2分压时)。 (3)对于氧同位素组成的受控因素相关讨论比较少。在湖泊泥灰岩中,δ18O 值的影响因素应该是蒸发,气候,气温,湿度等因素综合作用。a. 降水蒸发:湖泊降雨量和蒸发量与δ18OPDB的值密切联系,当降水充足时,湖水会增加大量贫δ18O的水体,因此湖水δ18OPDB值就较低;相反,如果蒸发量大于降雨量,此时湖水的氧同位素会发生分馏,导致湖水δ18OPDB值增加。例如北京石花洞石笋相关研究表明,在分辨率<10a的时间尺度上,石笋中δ18O的记录主要反映了降雨量的变化,降雨量增加,则δ18O值相应偏低。b. 气温的影响:在较

相关文档
相关文档 最新文档