文档库 最新最全的文档下载
当前位置:文档库 › 简单概率空间

简单概率空间

简单概率空间
简单概率空间

概率论与数理统计总复习 公式概念定理

概率论与数理统计总复习 第一章 概率论的基本概念 1. 事件的关系及运算 互不相容事件:AB =Φ 即A,B 不能同时发生。 对立事件:A B =ΩU 且AB =Φ 即A B B ==Ω- 差事件:A B - 即 A 发生但B 不发生的事件 切记: ()A B AB A AB A B B -==-=-U 2. 概率的性质 单 调 性 : 若 B A ?,则 )()()(A P B P A B P -=- 加法定理:)()()() (AB P B P A P B A P -+=Y )()()()()(AB P C P B P A P C B A P -++=Y Y )()()(ABC P CA P BC P +-- 例1 设 ,,()0.7,()0.4,A C B C P A P A C ??=-= ()0.5P AB =,求()P AB C -。 解:()()()P A C P A P AC -=- ()()P A P C =- (AC C =Q ) 故 ()()()0.70.40.3P C P A P A C =--=-= 由此 ()()()P AB C P AB P ABC -= - ()()P AB P C =- (ABC C =Q ) 0.50.30.2=-=

注:求事件的概率严禁画文氏图说明,一定要用概率的性质 计算。 3. 条件概率与三个重要公式 乘法公式 全概率公式 1()()(/)n i i i P A P B P A B ==∑ 贝叶斯公式(求事后概率) 例2、(10分)盒中有6个新乒乓球,每次比赛从其中任取两个球来用,赛后仍放回盒中,求第三次取得两个新球的概率。 解:设A i ——第2次摸出i 个新球(i =0,1,2), B ——第3次摸出两个新球 ∵ A 0,A 1,A 2构成Ω的一个划分 ∴ 由全概率公式 其中 故 ; )/()()(A B P A P AB P =()(/) (/)() i i i P B P A B P B A P A = 2 ()()(|) k k k P B P A P B A ==∑201102 244224012222 666186(),()()151515C C C C C C P A P A P A C C C ======202002 334242012222 666631 (|)(|)(|)151515 C C C C C C P B A P B A P B A C C C ======4 ()0.16 25 P B ==

八年级数学概率的概念

第五章概率的概念 在以前概率学习的基础上,本章进一步研究了理论概率与实验概率之间的关系,并通过几个现实生活模型介绍了随机事件的概率的实验估算方法和涉及两步及两步以上实验的随机事件理论概率计算的又一种方法——列表法. 本节通过问题的形式引导学生回顾本章内容,梳理知识结构,同时,到本章为止,学生基本完成了义务教育阶段有关概率知识的学习,因此在学生充分思考和交流的基础上,教师可引导学生共同回忆有关概率的知识框架图. 对本章知识技能的评价,应当更多地关注其在实际问题情境中的意义,因此,在回顾与思考的教学中,应重视学生举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平,如对于实验频率与理论概率的关系,教师可以针对学生提出的某个情境与学生展开一定的辨析,并引导学生回忆和总结出两者的辩证关系. 教师也可以鼓励学生在课外独立完成一份小结,谈谈学习本章或整个概率有关知识后的收获以及自己的困惑和还想进一步研究的问题.教师还可鼓励和指导学生运用所学的概率知识去解决某些现实问题,然后再进行班级的交流与汇报. 教学目标 (一)教学知识点 1.回顾本章的内容,梳理本章的知识结构,建立有关概率知识的框架图. 2.用所学的概率知识去解决某些现实问题,再自我回忆和总结出实验频率与理论概率的关系. (二)能力训练要求 1.初步形成评价与反思的意识. 2.通过举例,进一步发展学生随机观念和统计观念. 3.学会与人合作,并能与他人交流思维的过程和结果. 4.形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力和创新精神. (三)情感与价值观要求

1.积极参与回顾与思考的过程,对数学有好奇心和求知欲. 2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 3.形成实事求是的态度. 教学重点 引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图. 教学难点 结合实例,理解实验频率和理论概率的关系. 教学方法 交流——引导——反思的方法. 教具准备 多媒体演示. 教学过程 Ⅰ.根据问题,回顾本章内容,梳理知识结构. [问题1]某个事件发生的概率是2 1,这意味着在两次重复试验中,该事件必有一次发生吗? [生]某个事件发生的概率是2 1,是指当实验次数很大时,这个事件的实验频率稳定于它的理率概率,但我们在前面做过的大量实验中还发现,实验频率并不一定等于理论概率,虽然多次实验的频率逐渐稳定于其理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的,经常的. [师]这位同学通过大量的实验,真正理解了事件发生的频率与概率之间的关系,真正体会到了概率是描述随机现象的数学模型,而数学频率与理论概率不能等同,两者存在着一定的偏差,例如,在理论上,“随意抛掷一枚硬币,落地后国徽朝上”发生的概率是2 1,但实验100次,并不能保证50次国徽朝上、50次国徽朝下,事实上,做100次掷币实验恰好50次国徽朝上,50次国徽朝下的可能性仅有80%左右,因此,概率的实验估算、理论计算以及频率及概率的偏差等应是理解概率不可分割的整体.

(完整版)概率的定义及其确定方法

§1.2 概率的定义及其确定方法 在本节,我们要给出概率的定义,这是概率论中最基本的概念。本节中我们还将介绍几种确定概率的方法。 随机事件的发生有偶然性,但我们常常会觉察到随机事件发生的可能性是有大小之分的。例如,购买彩票后可能中大奖,可能不中奖,但中大奖的可能性远比不中奖的可能性小。既然各种事件发生的可能性有大有小,自然使人们想到用一个数字表示事件发生的可能性大小。这个数字就称为事件的概率。 然而,对于给定的事件A ,该用哪个数字作为它的概率呢?这决定于所研究的随机现象或随机试验以及事件A 的特殊性,不能一概而论。在概率论的发展历史上,人们针对特定的随机试验提出过不同的概率的定义和确定概率的方法:古典定义、几何定义和频率定义。这些概率的定义和确定方法虽然有其合理性,但也只适合于特定的随机现象,有很大的局限性。那么如何给出适合于一切随机现象的概率的最一般的定义呢? 1900年数学家希尔伯特提出要建立概率的公理化定义以解决这个问题,即以最少的几条本质特性出发去刻画概率的概念.1933年数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这一公理化体系迅速得到举世公认,有了这个定义后,概率论才被正式承认为一个数学分支,并得到迅猛发展. 1. 概率的公理化定义 定义1.2.1 设Ω为样本空间,F 为Ω的某些子集组成的事件域.))((F A A P ∈是定义在事件域F 上的实值集函数,如果它满足: (1) 非负性公理 对于任一F A ∈,有0)(≥A P ; (2) 正则性公理 1)(=ΩP ; (3) 可列可加性公理 若,,21A A …,,n A …两两互不相容,则 则称)(A P 为事件A 的概率,称三元总体),,(P F Ω为概率空间. 概率的公理化定义刻画了概率的本质,概率是集合(事件)的实值函数,若在 事件域上给出一个函数,只要这个函数满足上述三条公理就称为概率。 这个定义只涉及样本空间和事件域及概率的最本质的性质而与具体的随机现象无关。对于具体的随机现象中的给定的事件,其概率如何合理地确定那要依据具

样本空间与概率空间

样本空间、概率空间及概率的公理化定义 一、样本空间 在概率论中,随机试验是指在一定条件下出现的结果带有随机性的试验。我们用E 表示随机试验。随机试验E 的所有可能出现的结果构成一个集合,而把每一可能出现的试验结果称为一个基本事件(样本点)。随机试验E 的所有基本事件构成所谓样本空间。下面举几个实际例子。 例1 掷一枚分币。出现“正面”、“反面”都是基本事件。这两个基本事件构成一个样本空间。 例2 掷一颗骰子。分别出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”都是基本事件。这六个基本事件构成一个样本空间。 例3 向实数轴的(0,1)区间上随意地投掷一个点。在(0,1)区间中的每一个点是一个基本事件,而所有点的集合(即(0,1)区间)构成一个样本空间。 抽象地说,样本空间是一个点的集合,此集合中每个点都称为样本点。样本空间记为()ωΩ=,其中ω表示样本点。这里小括号表示所有样本点构成的集合。 样本空间的某些子集称为事件。从数学观点看,要求事件(样本点的集合)之间有一定的联系,亦即对事件需加一些约束。 定义 设样本空间()ωΩ=的某些子集构成的集合记为F ,如果F 满足下列性质: (1)Ω∈F ; (2)若A ∈F ,则A A =Ω-∈F ; (3)若,1,2,k A k ∈= F ,则1k k A ∞=∈ F 那么称F 是一个波雷尔(Borel 事件域),或σ事件域。波雷尔事件域中每一个样本空间Ω的子集称为一个事件。 特别指出,样本空间Ω称为必然事件,而空集φ称为不可能事件。 在上面三个样本空间的例子中,每一个样本点都是基本事件。但是,一般并不要求样本点必需是基本事件。 在例1中共有两个样本点:“正面”,“反面”。作{=F 正面或反面,正面,反面,空集},它构成一个波雷尔事件域,其中每一个元素都是一个事件。需要说明,F 表达式中的花括号。是指事件的集合。 在例2中共有六个样本点,记i ω为出现“i 点”的样本点,1,2,3,4,5,6i =。作{),,(,),,(),,,(),,(,),,(),,(,,,65442132165312161ωωωωωωωωωωωωωωωωω?????????=F 123434561234523456(,,,),,(,,,),(,,,,),,(,,,,),ωωωωωωωωωωωωωωωωωω 123456(,,,,,)}ωωωωωω,它构成一个波雷尔事件域。这里每一对小括号表示它所包含的样本点的集合。123456(,,,,,)}ωωωωωω中一元素(即126(,,,ωωω )或每一对小括号表示的样本点集合)是一个事件。 在例3中,作1{(0,1)=F 区间中任意子集}。1F 构成一个波雷尔事件域,其中每一个元

第一章 概率论的基本概念练习题及答案

第一章 概率论的基本概念练习题 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件 D C B A BC C A B A AB ---+,,,,中的样本点。 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 《 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -. 6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立举例说明。 7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立举例说明。 8. 设 31)(=A P ,21 )(=B P ,试就以下三种情况分别求)(A B P : (1)Φ=AB , (2)B A ?, (3) 81 )(=AB P . 9. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0 )(=AB P 求事件C B A ,,全 不发生的概率。 10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相同”; =G “颜色全不相同”; =H “颜色不全相同”。 11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求: (1) (1)取出的3件中恰有1件是次品的概率; (2) … (3) (2)取出的3件中至少有1件是次品的概率。 12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率: {}501与三个数字中不含=A ,{}502或三个数字中不含=A 。 13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。 14. 一个宿舍中住有6位同学,计算下列事件的概率:

概率论的基本概念

第一章概率论的基本概念 第一节随机事件、频率与概率 一、教学目的: 1.通过本节起始课序言简介,使学生初步了解概率论简史、特色,从 而引导学生了解本课程概况及学习本课程的思想方法 2.通过本次课教学,使学生理解随机事件概念、频率与概率的概念, 了解随机试验、样本空间的概念,掌握事件的关系和运算,掌握 概率的基本性质及其运算 二、教学重点:概率的概念 三、教学难点:事件关系的分析与运算 四、教学内容: 1.序言:⑴简史⑵学法 2.§1.随机试验: ⑴实例⑵确定性现象⑶随机现象 3.§2.样本空间、随机事件: ⑴样本空间⑵随机事件⑶事件关系 与运算 4.§3. 频率与概率⑴频率定义、性质⑵概率定义、性质 五、小结: 六、布置作业: 标准化作业第一章题目 第二节古典概型、条件概率 一、教学目的: 通过本节教学使学生了解古典概型的定义,理解条件概率的概念,并能够解决一些古典概型、条件概率的有关实际问题. 二、教学重点:古典概率、条件概率计算 三、教学难点:古典概型与条件概率分析与建模 四、教学内容: 1.§4.古典概型 2.§5.条件概率(一) 五、小结: 六、布置作业: 标准化作业第一章题目 第三节乘法公式、全概率公式、Bayes公式、独立性 一、教学目的: 1.通过本节教学使学生在理解条件概率概念的基础上,掌握乘法公

式、全概率公式、Bayes公式以及能够运用这些公式进行概率计算。 2.理解事件独立性概念,掌握用独立性概念进行计算. 二、教学重点: 1.乘法公式及其使用 2.独立性概念及其应用 三、教学难点:应用公式分析与建模 四、教学内容: 1.§5.条件概率(二、三)2.§6.独立性 五、小结: 六、布置作业: 标准化作业第一章题目 第四节习题课 一、教学目的: 通过本习题课教学使学生全面系统对概率论的基本概念进一步深化,同时熟练掌握本章习题类型,从而提高学生的分析问题与解决问题的能力. 二、教学重点: 1.知识内容系统化 2.几类问题解决方法 三、教学难点:实际问题转化为相应的数学模型 四、教学内容: 1.本章知识内容体系归纳 2.习题类型: ⑴古典概型计算 ⑵事件关系与运算 ⑶条件概率计算 ⑷乘法公式、全概率公式、Bayes公式使用与计算. ⑸独立性问题的计算 五、讲练习题 第二章随机变量及其分布 第一节随机变量、离散型随机变量的概率分布 一、教学目的: 通过本节教学使学生理解随机变量的概念,理解离散型随机变量的分布及其性质,掌握二项分布、泊松分布,并会计算有关事件的概率及其分布.

概率论的基本概念

概率论的基本概念 1.1 随机试验 1.随机现象在一定条件下具有多个可能的结果,个别几次观察中结果呈现出随机性(不确定性),在大量重复观察中结果又呈现出固有的客观规律性的自然现象称为随机现象. 随机现象的三大特点: (1)在一定条件下具有多个可能的结果,所有可能的结果已知; (2)在一次观察中,结果呈现出随机性,不能确定哪一个结果将会出现; (3)在大量的重复观察(相同条件下的观察)中,结果的出现又呈现出固有的客观规律性. 2.随机试验具有以下几个特点的实验称为随机实验,常用E 来表示 1)可以在相同的条件下重复进行; 2)试验的结果不止一个,并且能事先明确试验所有可能的结果; 3)进行一次试验之前不能确定哪一个结果会出现. 注:随机试验即可在相同条件下重复进行的针对随机现象的试验.

1.2 样本空间与随机事件 1. 样本空间与随机事件的概念 1) 样本空间 随机试验E的所有可能结果E的样本空间,记为S. 样本空间的元素,即E的每个结果,称为样本点. 样本空间依据样本点数可分为以下三类 (1)有限样本空间:样本空间中样本点数是有限的; (2)无限可列样本空间:样本空间中具有可列无穷多个样本点; (3)无限不可列样本空间:样本空间中具有不可列无穷多个样本点. 2) 随机事件一般,称随机试验E的样本空间S的任何一个子集为E的随机事件,简称为事件. 在一次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生. 注:(1):随机事件在一次试验中可能发生,也可能不发生; (2):由一个样本点构成的单点集,称为基本事件; (3):样本空间S是必然事件,空集 是不可能事件,它们两个发生与否不具有随机性,为了方便将它们两个也称为随机事件。

概率论的基本概念经典习题-1

经典习题—古典概率部分 1、设,A B 为随机事件,且0(),()()()1P A P B P A P B <<+≤。 ⑴.若,A B 相互独立,则()()(),()()()()()P AB P A P B P A B P A P B P A P B ==+-U ; ⑵.若,A B 互斥,则()0,()()()P AB P A B P A P B ==+U ; ⑶.若已知(),()P A P B ,则{}()()1()min (),()P A P B P AB P A P B +-≤≤; ⑷.若已知(),(),()P A P B A P A B ,则 ()() ()()()()(),()() P A P B A P AB P A P B A P B P A B P B P A B ===, []()() ()()()1()() P A P B A P B A P B P AB P A B P A B -=-= -, []()()()()1()P A B P A P AB P A P B A -=-=-, []() ()()()1()() P A P A B P A P B A P B A P A B =+-= +U 。 ■ 2、设,A B 为随机事件,且0(),()1P A P B <<,证明: ⑴.若()()P B A P B A =,则,A B 独立; ⑵.若()()P A B P A ≥,则()()P B A P B ≥。 证明:由于0(),()1P A P B <<,故 ⑴.若()()P B A P B A =,则 ()()()() ()()()()1() P AB P AB P B P AB P B A P B A P A P A P A -====-, 故()()()P AB P A P B =,即,A B 独立; ⑵.若()()P A B P A ≥,则()()()()()P AB P B P A B P A P B =≥,故 ()()() ()()()() P AB P A P B P B A P B P A P A = ≥=。 ■ 3、设()()1P A P B +=,则()()P AB P AB =。 证明:()()1()1()()()()P AB P A B P A B P A P B P AB P AB ==-=--+=U U 。 4、进行n 次独立重复试验,每次试验中事件A 发生的概率都是()0P A α=>,若A 发生k 次,则B 发生的概率为,0,1,...,k k n β=,求B 发生的概率。 解: 用k A 表示在n 次独立重复试验中事件A 发生k 次,则()(1)k k n k k n P A C αα-=-,故

概率论概念术语中英对照

概率论与数理统计重要数学概念英汉对照 Chapter 2 Sample Space:样本空间 Random event: 随机事件 Simple event:; 基本事件 Independent : 独立 Dependent: 不独立 Mutually exclusive or disjoint : 互斥,互不相容 Axiom: 公理 Union: 并 Intersection: 交 Complement: 补 The law of Total Probability: 全概率公式 Bayes’ Theorem: 贝叶斯原理 Chapter 3 Discrete random variable (rv) : 离散型随机变量 Continuous random variable : 连续型随机变量 Probability distribution : 概率分布 Parameter: 参数 Family of probability distribution: 分布族

Probability mass function (pmf): 概率质量函数 Cumulative distribution function (cdf) : 累积分布函数(分布函数)Step function: 阶梯函数 Expected value: 期望 Variance: 方差 Standard deviation: 标准差 Binomial distribution: 二项分布 Hypergeometric distribution: 超几何分布 Negative binomial distribution: 负二项分布 Geometric distribution: 几何分布 Poisson distribution: 泊松分布 Chapter 4 Probability density function(pdf): 概率密度函数 Uniform distribution: 均匀分布 Percentile of a continuous distribution: 连续型分布的百分位数Normal distribution: 正态分布 Probability Plots: 概率图 Sample percentiles: 样本百分位数 Chapter 5 Joint probability mass function: 联合概率(质量)函数

第一章概率论的基本概念

第一章随机事件及其概率 一、选择题: 1.设A、B、C是三个事件,与事件A互斥的事件是:() A.AB AC +B.() + A B C C.ABC D.A B C ++ 2.设B A ?则() A.() =1-P(A)B.()()() P A B -=- P B A P B A C.P(B|A) = P(B) D.(|)() P A B P A = 3.设A、B是两个事件,P(A)> 0,P(B)> 0,当下面的条件()成立时,A与B一定独立 A.()()() = B.P(A|B)=0 P A B P A P B C.P(A|B)= P(B)D.P(A|B)= () P A 4.设P(A)= a,P(B)= b, P(A+B)= c, 则() P A B为:()A.a-b B.c-b C.a(1-b) D.b-a 5.设事件A与B的概率大于零,且A与B为对立事件,则不成立的是()A.A与B互不相容B.A与B相互独立 C.A与B互不独立D.A与B互不相容 6.设A与B为两个事件,P(A)≠P(B)> 0,且A B ?,则一定成立的关系式是()A.P(A|B)=1 B.P(B|A)=1 C.(|A)1 p B= p B=D.(A|)1 7.设A、B为任意两个事件,则下列关系式成立的是()A.() -? A B B A -= A B B A B.() C.() A B B A -= D.() A B B A -? 8.设事件A与B互不相容,则有() A.P(AB)=p(A)P(B)B.P(AB)=0 C.A与B互不相容D.A+B是必然事件

9.设事件A 与B 独立,则有 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (AB )=0 D .P (A+B )=1 10.对任意两事件A 与B ,一定成立的等式是 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (A|B )=P (A ) D .P (AB )=P (A )P (B|A ) 11.若A 、B 是两个任意事件,且P (AB )=0,则 ( ) A .A 与 B 互斥 B .AB 是不可能事件 C .P (A )=0或P (B )=0 D .AB 未必是不可能事件 12.若事件A 、B 满足A B ?,则 ( ) A .A 与 B 同时发生 B .A 发生时则B 必发生 C .B 发生时则A 必发生 D .A 不发生则B 总不发生 13.设A 、B 为任意两个事件,则P (A-B )等于 ( ) A . ()()P B P AB - B .()()()P A P B P AB -+ C .()()P A P AB - D .()()()P A P B P AB -- 14.设A 、B 、C 为三事件,则AB BC AC 表示 ( ) A .A 、 B 、 C 至少发生一个 B .A 、B 、C 至少发生两个 C .A 、B 、C 至多发生两个 D .A 、B 、C 至多发生一个 15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 相互对立 D .A 与B 互不独立 16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则P A B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.3 17掷两枚均匀硬币,出现一正一反的概率为 ( ) A .1/2 B .1/3 C .1/4 D .3/4 18.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率 为2p ,则该零件加工的成品率为 ( ) A .121p p -- B .121p p - C .12121p p p p --+ D .122p p -- 19.每次试验的成功率为)10(<

概率论核心概念及公式(全)

《概率论与数理统计》核心公式第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B: A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 -A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) ΩA

概率论的基本概念

第一章 概率论的基本概念 【内容提要】 一、随机事件及其运算关系 1.随机现象 在一定条件下,可能出现不同结果(不可预先确知的)的现象。 2.随机试验 在一定条件下,对随机现象进行观测或观察的过程。随机试验具有如下特点: ⑴.可以在相同条件下重复进行; ⑵.每次试验的结果不止一个,并且能事先明确试验的所有可能结果; ⑶.进行试验前不能确定到底会出现哪个结果。 3.样本空间 对于随机试验,尽管在试验之前不能预知其结果,但其所有可能结果是已知的,我们将 随机试验E 的所有可能结果组成的集合称为其样本空间,用Ω表示,并称ωΩ∈为样本点。 4.随机事件 设Ω是随机试验E 的样本空间,而{}()F A A ΩΩ=是的某些子集,且满足: ⑴.()F ΩΩ∈; ⑵.()A F Ω?∈,有()A A F ΩΩ=-∈; ⑶.(),1,2,...k A F k Ω?∈=,有 1()k k A F Ω≤<+∞∈ 。 则称()F Ω是随机试验E 的事件域,而称()A F Ω∈为随机事件。 注:设A 为随机事件,则 ⑴.A 发生??包含于A 中的任一样本点ω发生; ⑵.必然事件即样本空间Ω,而不可能事件即空集Φ。 5.随机事件的运算关系 设,,,1,2,...,k A B A k n =为随机事件,则 ⑴.事件的包含关系:,A B A B A B ωω??????∈∈事件发生时一定会导致事件发生有; ⑵.事件的相等关系:A B A B B A A B ωω=??????∈∈且当且仅当; ⑶.事件的和运算:{} ,A B A B A B A B ωωω=∈∈?? 或发生当且仅当中至少发生其一, {}12111,,,...,k k k n k n k n A k n A A A A A ωω≤≤≤≤=≤≤∈?? 存在发生当且仅当中至少发生其一; ⑷.事件的积运算:{} ,A B A B A B A B ωωω=∈∈?? 且发生当且仅当同时发生, {}12111,,,...,k k k n k n k n A k n A A A A A ωω≤≤≤≤=?≤≤∈?? 发生当且仅当同时发生; 积事件还可将 省略,直接表示为121k n k n A A A A ≤≤=??? ; ⑸.事件的差运算:{} ()A B A B A B A B ωωω-=∈???-但发生当且仅当发生而不发生; ⑹.事件的互斥关系:A B AB A B Φ??=??与互斥与不能同时发生;

大学数学概率统计概念定义归纳

一、随机事件及其概率 1.(基本概念) 随机事件定义(特点):1.试验可以在相同条件下重复进行; 2.每次试验的可能 结果不止一个,并且能事先明确试验的所有可能结果; 3.在一次试验之前不能确定哪一个结果会出现。 样本空间:随机试验的结果称为基本事件、样本或样本点。样本空间就是随机试验所有可能的结果构成的集合,也就是由所有样本点构成的集合,通 常记为Ω 事件,事件发生与否,必然事件,不可能事件 事件(定义):在试验中,可能发生也可能不发生的事件称为随机随机事件,简称事件。;;提要容:随机试验中人们特别关注的具有某种共同特征的一些结果,从数学意义上讲,就是样本空间的子集。事件通常用大写英文字母表示。 在一次试验中,若试验结果ω∈A,则称这次试验中事件A发生了,否则称事件A没有发生。 提示:事件是人们根据自己的喜爱定义的,而事件发生与否是与某次试验关联着的。 有两个特殊的事件:样本空间本身,每次试验一定发生,称为是必然事件;空集也是Ω的子集,也能称为事件,每次试验一定不会发生,称为不可能事件。

事件域: 我们希望随机试验所涉及的所有事件作为集合的运算所得到的结果还是事件,这就是所谓运算的封闭性。 随机试验的事件构成的集合类如果对最多经“可列无限多”次事件的运算的结果还是事件,则把这个集合类称为事件域。 约定随机试验的事件构成事件域,通常记为F。 事件的概率 定义在事件域F上的集函数P,满足非负性、规性、和可列可加性。 概率统计定义:随机事件A发生的可能性大小,称为事件A的概率。 概率公理化定义:设E为随机试验,S为它的样本空间,对于E中的每一事件A,恰对应一个实数,记作P(A),若它满足下列3个条件,则称P(A) 为事件A的概率。 1.非负性:0≤P(A) ≤1; 2.规性:P(A)=1; 2.可列可加性:设A1,A2,….An…..是两两互不相容事件,则 有 古典概型:设随机试验具有下面两个特性:1.试验的样本空间只包含有限个元素; 2.试验中每个基本事件发生的可能性相同。则称这种随机试验为等可 能概型或古典概型。

最新概率论与数理统计知识点总结(免费超详细版)

最新概率论与数理统计知识点总结(免费超详细 版) 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论的基本概念

第一章概率论的基本概念 主要内容: (1)理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系与运算;(2)理解事件频率的概念,了解概率的统计定义; (3)理解概率的古典定义,会计算简单的古典概率; (4)理解概率的公理化定义; (5)掌握概率的基本性质及概率的加法定理; (6)理解条件概率的概念,掌握概率的乘法公式,全概公式及贝叶斯(Bayes)公式; (7)理解事件独立性概念,会计算相互独立事件的有关概率。 前言 1、确定性现象:有一类现象,在一定条件下必然发生,例如:向上抛一石子必然下落,同性电荷必不 相互吸引,等等。 2、随机现象:这种在个别试验中其结果呈现出不确定性;在大量重复试验中结果又具有统计规律性的 现象。 3、概率论与数理统计是研究和提示随机现象统计规律的一门数学学科。它具有广泛的应用性:在日常 生活中、社会生产中等等。 §1随机试验 具有以下的特点: 1、可以在相同的条件下重复地进行;

2、每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; 3、进行一次试验之前不确定哪一个结果会出现。 在概率论中,我们将具有上述三个特点的试验称为随机试验。记为E §2样本空间、随机事件 (一)样本空间 对于随机试验,尽管在每次试验之前不能预知试验的结果,但试验的所有可能结果组成的集合是已知的,我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S,样本空间的元素,即E的每个结果,称为样本点。例如:(见教材3页) (二)随机事件 一般,我们称试验E有样本空间S的子集这E的随机事件,简称事件。在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。由一个样本点组成的单点集,称为基本事件。 例如:(1)在一定的条件下,投掷一枚硬币,结果会是:“正面朝上”,或“反面朝上”。在硬币落地之前,是不能断定结果的。 (2)在一定的气象条件下,明天北京的天气如何。“下雨”,“刮风”。都可能出现,但是却不一定。 (3)下期福利彩票的结果,36选7,结果会是什么。事件“1,3,6,7,20,30,36”是一种可能。也可能出现另外的事件。 样本空间S包含所有样本点,它是S的子集,在每次试验中它总是发生的,称为必然事件。空集 不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件。

天大版第1-5章概率论的基本概念习题及答案W

第一章 随机变量 习题一 主要知识点:事件的互不相容(互斥)、独立的概念;加法公式、乘法公式; 全概率公式及逆概率公式及其应用 典型习题:同步练习一:2、12、14、21、22、29、30、31 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件 解: 互不相容:φ=AB ; 对立事件 : φ=AB )1( 且 Ω=?B A 12.(1)设事件A , B 的概率分别为 51 与 4 1 ,且A 与 B 互斥,则 )(B A P = 5 1 . A,B 互拆,则A B ?,AB A =,所以1 ()()5 p AB P A == (2).一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放 回地摸3只球,则取到的3 只都是红球的事件的概率等于 ___14 285____. (3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果

2 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概率等于 ___1324___.1111 4523 11 68 C C C C C C ?+?? (4) .设 A1 , A2 , A3 是随机试验E 的三个相互独立的事件, 已知P(A1) = α , P(A2) = β,P(A3) = γ ,则A1 , A2 , A3 至少有一个 发生的概率是 1-(1-α)(1-β)(1- γ) . 123123123()1()1()()()P A A A P A A A P A P A P A ??=-=- (5) .一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3只球, 则摸到的没有一只是白球的事件的概率等于 __34 57____. 331221 8989893 2034 57 C C C C C C C +++= 14、两射手同时射击同一目标,甲击中的概率为0.9,乙击中的概率为0.8,两射手 同时击中的概率为0.72,二人各击中一枪,只要有一人击中即认为“中”的, 求“中”的概率. 解:=A “甲中” ,=B “乙中” 98.072.08.09.0)()()()(=-+=-+=?AB P B P A P B A P 21、市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率为95%, 乙厂的合格率是80%.若用事件A 、A 分别表示甲、乙两厂产品,B 表示合格品. 试写出有关事件的概率. (1)=)(A P 70% (2)=)(A P 30% (3)=)|(A B P 95%

概率论基本概念

概率论基本概念 第一章概率论的基本概念试卷答案 一、单项选择题 1、C 二、填空题 15、解:A ; AB ; A ? B ? C ; AB ? A C ?BC ; A ? B ? C ;; ? C ? B ? A 或?? ABC ;?? 16、解: 116 P =1-6= 0、4112; 14C12C6112 P == 0、 0073612 C64?112P == 0、 00061612; 17、解: 131213111C4C13+C4C13C39C4C13C13C13P === 0、602P =1- 0、60233C52C52或 18、解: P =1-P =1-[P +P[0、4+0、5-P P ] =1-[0、9-0、45?0、4]=0、 28、

19、解: AB ?ABC 0≤P 20、解:设A 为{由出生活到20岁}的事件,B 为{由出生活到25岁}的事件 则所求事件的概率为P =11115++-0--0+0=44488 P P B ?A ∴AB =B P =P P 0、41=== P P 0、82 2 1、解: 设如下事件: A :“甲工序的产品是次品” B :“乙工序的产品是次品” C :“产品是合格品” 显然C =,因与相互独立,故 P =P P =)) = =0、9702 22、解: 设事件A 为“抽到的一人为男性”;事件B 为“抽到的一人为色盲” 351, P ==510020 2251= P A =, P B A =510000400则 P =) P =P P +P A P B A ) 312131=?+?=[1**********]

相关文档
相关文档 最新文档