文档库 最新最全的文档下载
当前位置:文档库 › 一道几何题的多种解法探索

一道几何题的多种解法探索

一道几何题的多种解法探索
一道几何题的多种解法探索

人教版初中

一道几何题的多种解法探索

有些三角形问题,条件与结论存在比较隐秘的关系,这给问题的解决带来一定的困难. 若能设法添加辅助线,并充分利用图形的几何性质,问题就能巧妙地得到解决. 请看下例

例如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点. 求证:CD=2CE.

一、截长法——将长线段二等分,设法证明其一份长等于短线段长.

证法1如图1,取CD的中点

..F,连BF,则CD=2CF.

∵BD=AB,

∴BF//AC,且

1

2 BF AC

=

∴∠CBF=∠ACB.

∵AB=AC,∴∠ABC=∠ACB.∴∠ABC =∠CBF .

1

,

2

BE AB

=∴BE=BF

又∵BC=BC,∴△BCE≌△BCF.

∴CE=CF. ∴CD=2CE.

点评此法利用截长法,构造三角形全等,并通过三角形全等架通桥梁.

二、补短法——将短线段延长一倍,设法证明延长后的线段等于长线段.

证法2如图2,延长CE到F,使EF=EC.

∵BE=AE,EF=EC,∠BEF=∠AEC,

∴△EFB≌△ECA,∴∠EBF=∠EAC,BF=AC.

∵AB=AC,∴∠ABC=∠ACB.

而∠FBC=∠EBF+∠ABC,∠DBC=∠EAC+∠ACB,

∴∠FBC=∠DBC.

而BD=AB= AC= BF,BC=BC,

∴△CBF≌△CBD,∴CF=CD.

而CF=2CE,∴CD=2CE

点评此法利用AB边上的中线CE,将其延长一倍,并构造全等三角形证得结论.

三、折半法——通过添加辅助线,使辅助线段长等于长线段的一半.

证法3如图3,取AC的中点F,连BF.

∵AB=AC,∴AE=AF,

又∠A=∠A,

∴△ABF≌△ACE,∴CE=BF.

∵BD=AB,AF=FC,∴BF是△ABD的中位线.

∴2

CD BF

=,∴CD=2CE.

点评此法取中点配中点,构造三角形中位线(折半),并通过.1. 三角形全等证得结论.

证法4如图4,取BC的中点F,取BD的中点G,连EF、FG,则EF是△ABC的中位线,GF是△BCD的中位线.

1

//,;

2

EF AC EF AC

=

1

//,.

2

GF CD GF CD

=

∴∠FEB=∠A.

∵E为AB的中点,∴

11

22 AE BE AB AC ===

∴AE=EF.

∵BD=AB,G为BD的中点,∴AC=EG.

∴△AEC≌△EFG,∴CE=GF.

∴CD=2CE.

点评此法取两线段中点,构造三角形中位线(折半),并利用题设条件,设法通过三角形全等证明CE=GF,证得结论.

四、倍长法——通过添加辅助线,得到短线段的两倍长线段.

证法5如图5,延长AC到F,使CF=AC.

∵AB=AC,BD=AB,∴AF=AD.

又∠A=∠A,∴△ABF≌△ACD,

∴BF=CD.

∵E为AB的中点,C为AF的中点,

1

2

CE BF

=∴CD=2CE.

点评此法通过添加辅助线,使短线段成为三角形中位线,并设法通过三角形全等证得BF=CD,从而证得结论.

.2.

对一道课本试题的变式

对一道课本习题的变式、推广与思考 波利亚指出:“拿一个有意义又不复杂的题目去帮助学生发掘问题的各个方面,使得通过这个题目就好像通过一道门户,把学生引入一个完整的领域。” 题目:已知ABC ?两个顶点()()0,6,0,6B A -,边BC AC ,所在直线的斜率之积等于9 4-,求顶点C 的轨迹方程。(北师大版数学选修2-1第三章§1椭圆习题3-1A 组第8题) 一、动手实践,掌握方法 解析:设()y x C ,,则直线BC AC ,的斜率分别是()6,66 ,621-≠≠-= +=x x x y k x y k , 根据题意,9 4 21- =?k k ,所以 9 4 362 2-=-x y ,化简,得()6,6116362 2 -≠≠=+x x y x 所以顶点C 的轨迹是椭圆,去掉左右顶点。 评析:(1)典型的用直接法求动点的轨迹方程,注意6,6-≠≠x x ,一方面它保证了直线BC AC ,的斜率的存在性,另一方面符合C 为ABC ?的一个顶点,C B A ,,不能共线。 (2)题目的几何条件包括“两个定点、一个动点、一个定值,两条直线的斜率,一个等量关系”。 (3)轨迹是椭圆,去掉左右顶点。 二、引进参数,化静为动 变式1、已知两个定点()()()00,,0, a a B a A -,动点C 满足直线BC AC ,的斜率之积等于()0≠m m ,试讨论动点C 的轨迹。 分析:首先确定动点C 的轨迹方程,然后依据方程判定它的轨迹。 解析:设()y x C ,,则直线BC AC ,的斜率分别是 a x y k a x y k -=+= 21,,()a x + - ≠,根据题意,m k k =?2 1 , 所以m a x y =-2 22,化简,得动点C 的轨迹方程122 22=-ma y a x ,所以 1、当0 m 时,动点C 的轨迹是焦点在x 轴上的双曲线,去掉它的两个顶点; 2、当0 m 时 (1)若1-=m ,则动点C 的轨迹方程为2 2 2 a y x =+,所以它的轨迹是圆心在原点,半径为a 的圆,去掉 与x 轴的两个交点; (2)当01 m -时,2 2ma a - ,所以动点C 的轨迹是焦点在x 轴上的椭圆,去掉左右顶点; (3)当1- m 时,2 2ma a - ,所以动点C 的轨迹是焦点在 y 轴上的椭圆去掉左右顶点。 评析:引进参数,化静为动,培养学生分类讨论的数学思想,发展学生的数学思维能力。注意到变式1并没有改变题目中的几何关系,但是参数值及它的的符号决定了轨迹的不同形式——圆、椭圆、双曲线,这也从一个侧面说明三种曲线之间有着内在的联系,可以想象当参数m 由()+∞→≠→-→∞-001变化时,动点 c 的轨迹由焦点在y 轴上的椭圆,变为圆,再变为焦点在x 轴上椭圆,然后蜕变为焦点在x 轴上的双曲线,

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

一道高考数学几何题的多种解法探究

一道高考数学几何题的多种解法探究 本文通过一个高考填空题的四种解法着重阐明解析 几何的思想和方法。解法一打破题目所给的坐标系的禁锢,重新建立坐标系另辟蹊径。解法二根据直线AC⊥BD以此建立新的坐标系,这是本题的又一个另辟蹊径。有了参数α,写出新坐标系下的圆的方程,再数形结合用根与系数的关系求弦长。解法三采用直线参数方程,再一次另辟蹊径为解决本题寻求新的方法,其根本目的是便于计算弦长。解法四是几何法,用添加两条垂线的巧妙运用,结合几个重要定理求出弦长,用重要不等式求四边形的最大值。有了这些好方法,使本来很难做的问题得以迎刃而解。 命题:如图⑴已知AC、BD为⊙O:x?+y?=4的两条互相垂直的弦, 垂足为M(1,),则四边形ABCD的面积的最大值是__. 解法一: 由于|OM|= ,考虑到原来的坐标系中两条弦长的计算比较繁琐,因此可改变方法,以 直线OM为x轴,建立新的直角坐标系,此时M的坐标是(,0)。 1.直线AC与BD有一条斜率不存在时,另一条的斜率

为0.不妨设BD的斜率 不存在,则BD⊥x轴,另一条|AC|为直径4,弦|BD|= 此时四边形ABCD 的面积S=1/2|AC|?|BD|=4 2.当直线AC与BD的斜率都存在时,不妨设AC的斜率为k,(k≠0)则BD的斜率为-1/k.所以AC的直线方 k?x-y-k=0,BD的直线方程为x+k?y-=0 。 设O到AC、BD的距离分别是d1,d2,则d1=,d2= 由垂径定理和相交弦定理得|AC|?=4(|AC|/2)?=4(2+d1)(2-d1)=4(4-d1?)类似地可得到|BD|? S?=(1/2|AC|?|BD|)? ∴S ≤ 5. 当k?=1/k?时k=±1时等式成立,此时四边形ABCD的面积S取得最大值5。 坐标系的恰当建立是解析法解题的重要基础和关键,否则会使计算繁琐。本题解法打破题目所给的直角坐标系的禁锢,重新建立坐标系,这就是另辟蹊径的重要途径。然后再综合运用圆的垂经定理和相交弦定理,点到直线的距离公式和重要不等式定理就可解决问题。 解法二:由于AC⊥BD,分别以AC、BD所在直线为x′、y′轴,建立如图新的直角坐标系设∠xMx′=α,则M的坐标为(0,0),O的坐标是(-cosα,sinα),圆的方程是(x′+cosα)?+(y′-sinα)?=4

几何练习题精选

几何练习题精选 题型一、相似三角形的判定与性质 1、 如图1、在ABC ?中, 90=∠BAC ,BC 边的垂直平分线EM 与AB 及CA 的延长线分别交于D 、E ,连接AM , 求证:EM DM AM ?=2 2、 如图2,已知梯形ABCD 为圆内接四边形,AD//BC ,过C 作该圆的切线,交AD 的延长线于E ,求证:ABC ?相似于EDC ? 3、 如图3,D B ∠=∠,AE ⊥BC , 90=∠ACD ,且AB=6,AC=4,AD=12,求BE 的长。

4、 如图4,O Θ和O 'Θ相交于A ,B 两点,过A 作两圆的切线分别交两圆于C 、D 两点, 连接DB 并延长交O Θ于点E ,证明:(1)AB AD BD AC ?=?;(2)AC=AE 题型二、截割定理与射影定理的应用 1、 如图5,已知E 是正方形ABCD 的边AB 延长线上一点,DE 交CB 于M ,MN//AE 于 N ,求证:MN=MB 2、 如图6,在ABC Rt ?中, 90=∠BAC ,AD 是斜边BC 上的高,若AB :AC=2:1, 求AD :BC 的值。

3、 如图7,AB 是半圆O 的直径,C 是半圆上异于A 、B 的点,CD ⊥AB ,垂足为D ,已 知AD=2,CB=34,求CD 的长。 4、 如图8,在ABC ?中,DE//BC ,EF//CD ,若BC=3,DE=2,DF=1,求AB 的长。 题型三、圆内接四边形的判定与性质 1、 如图9、AB ,CD 都是圆的弦,且AB//CD ,F 为圆上一点,延长FD ,AB 相交于点E , 求证:BD=AC ;(2)DE AF AC AE ?=?

如何对几何习题拓展变式

如何对几何习题拓展变式 “变式”原为心理学上的名词,其含义是变换材料的出现形式。在教学中的所谓变式,即是指对数学概念、定义、定理、公式,以及问题背景不同角度、不同层次、不同情形、不同背景的变化,使其面目不一,而本质特征不变。 在数学教学中,可以充分利用变式,有意识地把教学过程施行为数学思维活动的过程,充分调动和展示学生的思维过程,让学生积极、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。 通过变式练习,可以使学生在全面、深刻的理解和掌握知识的同时,思维品质也获得良好的发展。 通过变式教学,使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,因而能产生主动参与的动力,保持其参与教学过程的兴趣和热情。 通过变式训练,可以帮助学生提出问题、分析问题、解决问题,搞清问题的内涵和外延,提高数学能力。 “变式训练”的实质是根据学生的心理特点在设计问题的过程中,创设认知和技能的最近发展区,诱发学生通过探索、求异的思维活动,发展能力。 对习题的变式可以从以下几种不同的角度进行: 一、一题多解、一题多变、一题多思、多题一法…… 1、一题多解,培养思维的发散性 一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,

又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。这方面的例子很多,尤其是几何证明题。 例如:已知:点O是等边△ABC内一点, OA=4,OB=5,OC=3 求∠AOC的度数。 练习:把此题适当变式: 在△ABC中,AB=AC,∠BAC=90° OA=4,OB=6,OC=2 求∠AOC的度数。 变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135° 试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由. (2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为 边的三角形是一个直角三角形? 2、一题多变,培养思维的灵活性 一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的 B C A B C O A B C O

一道几何常规题的五种解法

一道几何常规题的五种解法 发表时间:2019-06-10T15:11:06.673Z 来源:《知识-力量》2019年8月28期作者:向星[导读] 一道数学题可以涵盖很多知识点。当然,一道数学题的解法也有很多。在数学教学中,教师引导学生探究一道数学题的多种解法是很有必要的。因此,本文就从一道数学常规题出发,探讨了它的多种解法。通过对不同方法的分析,旨在给我们的数学带来一定的启示。(湖北省秭归县归州镇初级中学,湖北省宜昌市 443601) 摘要:一道数学题可以涵盖很多知识点。当然,一道数学题的解法也有很多。在数学教学中,教师引导学生探究一道数学题的多种解法是很有必要的。因此,本文就从一道数学常规题出发,探讨了它的多种解法。通过对不同方法的分析,旨在给我们的数学带来一定的启示。关键词:数学教学;几何题;多种解法 在平常做数学题时,同学们受时间和知识局限等因素的影响,解题方法往往较单一,如果遇到问题多角度的思考,会回忆出更多的基础知识,收获一些解决问题的方法。下面笔者用一个常规题进行说明,供同学们参考。 如图1:正方形ABCD边BC上一点E,过E作AE的垂线交 BCD的外角平分线于点F,求证:AE=EF。 分析:本题是以正方形为条件,证两线段相等问题。对于几何证明题,若能根据已知求证并结合所给图形的特征(数字、关系、结构),通过分析,适当添置辅助线,则能形成证题思路。 方法1:构造全等 本题是最常见的证明线段相等问题,最常规的方法也就是证明全等,观察AE和EF,所在的三角形有两种(并不全等),一个是直角三角形,一个是钝角三角形,很显然要紧扣条件构造全等。 俗话说:“条条大路通罗马”。以上展示了几种解法,都可以解决问题,构造全等(相似),利用对称转化是几何计算证明的常规方法;代几结合是一种数形结合思想所以每道题做完后,不妨再想一想,还有没有其它解法呢?如果能养成这样的思考习惯,或许能开阔我们做题的思路,又能加强数学知识的横向联系。 参考文献 [1]教育部.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2011.

中考数学复习指导:一道几何旋转变换题的变式训练

一道几何旋转变换题的变式训练 如图,分别以△ABC的边AB、AC为一边向外作正方形AEDB和正方形ACFG,连结CE、BG。 求证:BG=CE 变式一:条件不变、增加探究结论 (2)观察图形猜想CE与BG之间的位置关系,并证明你的猜想。 (3)图中哪个三角形是由哪个三角形变换得到?请说出是怎样的变换? 变式二:图形旋转,探究原结论 (4)正方形AEDB绕点A逆时针方向旋转,使AE与AG重合时,如图(1)上述两个结论是否成立?(5)继续旋转到如图(2)位置,上述两个结论是否成立?

变式三:图形旋转,探究新结论 (6)如图(2),连结DF ,求CE :BG :DF 的值. 变式四:添加条件,探索新结论 如图,AB =11,AC =7,连结EG ,求2 2 BC EG +的值 变式五:改变图形,探究原结论 把“正方形AEDB 和正方形ACFG ”改为“矩形AEDB 、ACFG (长宽不等)”且AG AC AE AB =, 线段CE 、BG 有怎样的关系呢?

如图,分别以△ABC 的边AB 、AC 为一边向外作正三角形ABD 和正三角形ACE ,连结CD 、BE 。 (1)求证:BE =DC (2)求直线CD 与直线BE 的所夹锐角 变式七:根据结论,探究条件 如图,在△ABC 中,分别以AB ,AC ,BC 为边在BC 的同侧作等边三角形ABD ,ACE ,BCF (1)求证:四边形DAEF 是平行四边形; (2)探究下列问题 ①当△ABC 满足什么条件时,四边形DAEF 是矩形? ②当△ABC 满足什么条件时,四边形DAEF 是菱形? ③当△ABC 满足什么条件时,以D ,A ,E ,F 为顶点的四边形不存在?

一道解析几何题的研究与思考

一道解析几何题的研究与思考 发表时间:2019-07-19T11:45:05.693Z 来源:《中国教师》2019年9月刊作者:李开成 [导读] 解题的正确思路得出后,选择合理的解题方法才能使“思路”迅速、简捷. 训练解题方法的多样化,并从中评选出最佳方案,是提高解题速度、能力的有效方式. 平时应加强一题多解,一题多变的训练。我以一道典型的解析几何题为例,对其进行解法研究和变式思考。李开成浦江职业技术学校 322200 【摘要】解题的正确思路得出后,选择合理的解题方法才能使“思路”迅速、简捷. 训练解题方法的多样化,并从中评选出最佳方案,是提高解题速度、能力的有效方式. 平时应加强一题多解,一题多变的训练。我以一道典型的解析几何题为例,对其进行解法研究和变式思考。【关键词】思维品质;一题多解;一题多变 中图分类号:G652.2 文献标识码:A 文章编号:ISSN1672-2051(2019)09-188-02 数学教学大纲在教学目的中提出,数学教学要“注意培养学生良好的思维品质”。怎样更好地实现这个目标呢?我在教学中发现,采用一题多解和一题多变的教学方式是比较有效的途径。所谓一题多解就是对同一问题从不同角度去分析、寻找不同的解题途径。通过一题多解可以沟通各种知识的内在联系,使已学知识形成系统,同时,学生也学会从不同角度去观察思考问题,遇到问题时,能多向联想、随机应变,提高学生的应变能力和思维能力。所谓一题多变,就是不断变换所提供的材料或问题呈现的形式,使事物的非本质特征时隐时现,而事物的本质特征却保持不变。通过变式练习,可以使学生在全面、深刻的理解和掌握知识的同时,思维品质也获得良好的发展。 下面我以一个典型的解析几何题为例,对其进行解法研究和变式思考。 题目:在椭圆上求一点,使它与两焦点的连线互相垂直。 解法1(向量法)设点,由题设知 为. ∵, 即(1) 又点P在椭圆上,∴(2) 联立(1)、(2),解得点P的坐标为(3,±4),(-3,±4). 解法2(交轨法)设点, ∵,∴P点在以F1F2为直径的圆上,即,以下同解法1. 解法3(应用斜率)设, ∴,∴, 即.以下同解法1. 解法4(应用焦半径公式)设,∵, 则,. ∵,∴, ∴.以下同解法1. 解法5(面积法)设点,则.由椭圆定义知,∴ =180,又,∴, ∴. ∴,,以下同解法1. 解法6(几何法)如图,以坐标原点O为圆心,以|F1F2|为直径画圆与椭圆交于A、B、C、D四点,由直径所对的圆周角是直角可知:当点P位于A、B、C、D四点时,∠F1PF2为直角,以下同解法2. 比较上述六中解法,笔者认为第六种解法最直观,简洁,易懂,让学生能够很清楚地看到点P在什么位置时是直角,锐角,或者钝角,在下面的变式题目中也有很好的启示作用。对本题的思考还没有结束,接着我们对它尝试着做如下的变式训练: 变式1:椭圆的两个焦点是F1、F2,,点P为它上面一动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是___________。 分析:受原题的启发,无论是钝角还是锐角,都是以直角为参照,该题解法很多,但以几何法最为简洁。当点P位于椭圆上弧AB或弧CD上时,∠F1PF2为钝角;锐角的情况不言而喻,易求点P横坐标的取值范围是。 变式2:双曲线的两个焦点为F1、F2,点P在双曲线上,且PF1⊥PF2,则点P到x轴的距离为_____________。 分析:该题将原题中的椭圆改为双曲线,而点到x轴的距离等于点的纵坐标的绝对值,以|F1F2|为直径作圆与双曲线的交点(即点P)的坐标,易求点P的纵坐标为,故所求距离为。 变式3:已知椭圆的左、右焦点分别为F1、F2,点P在椭圆上,若P、F1、F2为直角三角形的三个顶点,则点P到x轴的距离为() A. B.3 C. D. 分析:该题是将原题中∠为直角改为△为直角三角形,题中没确定哪个角为直角,从而使该题更具有开放性,当∠=90°时,只要找以|F1F2|为直径的圆与椭圆的交点纵坐标,显然以|F1F2|为直径的圆的方程与椭圆无交点,故此种情况无解;当∠=90°或∠=90°时,易求点P到x轴的距离为,故选D。 变式4:已知F1、F2是椭圆C:的两焦点,在C上满足PF1⊥PF2的点P的个数为_____。 分析:该题只将求点的坐标改为判断点的个数,但解法是相同的,只是求以|F1F2|为直径的圆与椭圆的交点个数,显然以|F1F2|为直径的圆方程为,与椭圆C:相切于椭圆短轴端点,故点P的个数为2个。 变式5:设椭圆的两个焦点是F1(-c,0),F2(c,0),c>0,且椭圆上存在点P,使得PF1与PF2垂直,求实数m的取值范围。分析:显然该题在椭圆中引入参数,将求点的坐标改为“求参数的取值范围”的热点问题,解法是相同的,要使椭圆上存在点使

(902)截一个几何体专项练习30题(有答案)ok教学教材

(902)截一个几何体专项练习30题(有答 案)o k

截一个几何体专项练习30题(有答案)1.用平面去截正方体,在所得的截面中,边数最少的截面是()A . 六边形B . 五边形C . 四边形D . 三角形 2.如图所示,用一个平面去截一个圆柱,则截得的形状应为() A . B . C . D . 3.如下图,一正方体截去一角后,剩下的几何体面的个数和棱的条数分别为() A . 6,14 B . 7,14 C . 7,15 D . 6,15 A . 圆柱B . 圆锥C . 长方体D . 正方体 A . 8 B . 6 C . 7 D . 10 6.如图,用平面去截圆锥,所得截面的形状是() A . B . C . D . 7.给出以下四个几何体,其中能截出长方形的几何体共有() A . 4个B . 3个C . 2个D . 1个 8.请指出图中几何体截面的形状()

A . B . C . D . 9.如图是一个长方形截去两个角后的立体图形,如果照这样截去长方形的八个角,那么新的几何体的棱有() A . 26条B . 30条C . 36条D . 42条 A.用一个平面去截一个圆锥,可以是椭圆 B.棱柱的所有侧棱长都相等 C.用一个平面去截一个圆柱体,截面可以是梯形 D.用一个平面去截一个长方体截面不能是正方形 A.长方体的截面一定是长方形B.正方体的截面一定是正方形 C.圆锥的截面一定是三角形D.球体的截面一定是圆 A.圆柱的截面可能是三角形B.球的截面有可能不是圆 C.圆锥的截面可能是圆D.长方体的截面不可能是六边形 13.如图所示,几何体截面的形状是() A . B . C . D . A . 七边形B . 六边形C . 五边形D . 四边形

初中数学变式习题的设计

数学变式习题的设计 习题是训练学生的思维材料,是教师将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体。要想不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种有效的办法。通常可以利用习题变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。如将练习中的条件或结论做等价性变换,变更练习的形式或内容,形成新的练习变式,可有助于学生对问题理解的逐步深化。下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。 一、利用变式来改变题目的条件或结论,培养学生转化、推理、归纳、探索的思维能力。 (一)、一题多问,通过变式培养学生的创新意识和探究、概括能力 牛顿说过:“没有大胆的猜想就做不出伟大的发现。”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。 例题1.如图(1)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.求证:△ABD∽△AEC 此题是很简单的证明题,将图形变式,添加切线BF,则可变为: [变式训练]1. 如图(2)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交CE延长线与F点. 求证:CE:BC=BF:CF 本题需证△BEF∽△CBF,若将条件进一步发展,延长AD交BF于N,则有: 2. 如图(3)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和 E.过B作⊙O的切线交CE延长线于F点,交AE延长线于N点. 求证:BN·DE=BD·EN 本题需证BE平分∠FBC和△ABD∽△CDE,并借助中间比推证,若再将F为BF、CE交点改为F是由C点作切线BN垂线的垂足,则又变为: 3. 如图(4)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和 E.过B作⊙O的切线交AE延长线于N点,作EF⊥BN. 求证:BN·DE=BD·EN

截一个几何体专项练习30题(有答案)ok

截一个几何体专项练习30题(有答案) 1.用平面去截正方体,在所得的截面中,边数最少的截面是() A.六边形B.五边形C.四边形D.三角形 2.如图所示,用一个平面去截一个圆柱,则截得的形状应为() A.B.C.D. 3.如下图,一正方体截去一角后,剩下的几何体面的个数和棱的条数分别为() A.6,14 B.7,14 C.7,15 D.6,15 4.用平面去截一个几何体,如截面为长方形,则几何体不可能是()A.圆柱B.圆锥C.长方体D.正方体 5.一块豆腐切三刀,最多能切成块数(形状,大小不限)是() A.8B.6C.7D.10 6.如图,用平面去截圆锥,所得截面的形状是() A.B.C.D. 7.给出以下四个几何体,其中能截出长方形的几何体共有() ①球;②圆锥;③圆柱;④正方体. A.4个B.3个C.2个D.1个

8.请指出图中几何体截面的形状() A.B.C.D. 9.如图是一个长方形截去两个角后的立体图形,如果照这样截去长方形的八个角,那么新的几何体的棱有() A.26条B.30条C.36条D.42条 10.下列说法中,正确的是() A.用一个平面去截一个圆锥,可以是椭圆 B.棱柱的所有侧棱长都相等 C.用一个平面去截一个圆柱体,截面可以是梯形 D.用一个平面去截一个长方体截面不能是正方形 11.下列说法上正确的是() A.长方体的截面一定是长方形B.正方体的截面一定是正方形 C.圆锥的截面一定是三角形D.球体的截面一定是圆 12.下列说法中正确的是() A.圆柱的截面可能是三角形B.球的截面有可能不是圆 C.圆锥的截面可能是圆D.长方体的截面不可能是六边形 13.如图所示,几何体截面的形状是() A.B.C.D.

图形与几何练习题

六年级数学图形与几何练习题(满分80)一填空(15分) 1、3小时20分=()小时9公顷200平方米=()公顷 2、棱长是1分米的正方体,把它切成棱长1厘米的小正方体,摆成一排长()米。 3、一个棱长总和是48分米的长方体,长、宽、高的比是5:4:3,表面积是(),体积是()。 4、把一个正方体平均分成两个小长方体,其中一个长方体的表面积是原来正方体表面积的()。 5、把一个长20厘米、宽15厘米的长方形按1:5缩小后,长是()厘米,宽是()厘米,面积缩小到原来的()。 6、王丽坐在教室最后一排的最后一列上,她的位置可以表示为(6,8),这个班中共有( )名学生。 7、把高10厘米的圆柱分成16等份,拼成近似长方体,表面积增加了80平方厘米,圆柱的体积是()立方厘米。 8、两个圆的半径分别是3厘米和5厘米,它们周长的比是(),面积的比是()。 9、一个棱长4分米的正方体铁块,熔铸成底面积是32平方分米的圆锥,圆锥的高是() 2倍。( ) 7、如果一个圆柱的底面直径和高相等,那么把圆柱的侧面沿高展开是一个正方形。()

8、一条直线上的两点把这条直线分成两条射线和一条线段,所以射线比直线短。( ) 9、.圆有无数条对称轴,而半圆只有一条对称轴。( ) 10、教室里小华的位置用数对表示是(2,3),他的同桌可以用数对(2,4)表示。( ) 三、选择 1、一架飞机从某机场向南偏东50°方向飞行了1000米,返回时飞机要向( ) A 、南偏东50°方向飞行1000米 B 、 北偏东50°方向飞行1000米 C 、南偏西50°方向飞行1000米 D 、北偏西50°方向飞行1000米 2、把一段圆钢削成一个最大的圆锥,削去部分重4千克,这段圆钢原来重( )千克。 A 、24 B 、6 C 、 12 D 、 8 3、在一个等腰三角形中,已知两条边分别长8厘米和4厘米,这个等腰三角形的周长是( )厘米。 A 、12 B 、 16 C 、 20 D 、 16或20 4、甲、乙两个圆的周长之比是2:5,甲、乙的面积比是( ) A 、2:5 B 、1:5 C 、4:10 D 、 4:25 5、.从上向下看图,应是右图中所示的( ) 四、计算(10分) 3×8×( 31+81 ) 3.2×1.25 ×0.25 0.32×6.7+3.2×0.33 8×(2.5×1.25) 21+41+81+161+321

几何例题训练带答案

小学几何例题训练带答案 【例 1】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一 条直线上. ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以 BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等. 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的43 倍; 三角形ABD 的面积是三角形ADC 面积的3倍. 【例 2】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分 别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积. E B A E B A 【解析】 本题是等底等高的两个三角形面积相等的应用. 连接BH 、CH . C D B A

∵AE EB =, ∴AEH BEH S S =△△. 同理,BFH CFH S S =△△,S =S CGH DGH , ∴1156282 2 ABCD S S ==?=阴影长方形(平方厘米). 【例 3】 如右图,E 在AD 上,AD 垂直BC ,12AD =厘米,3DE =厘 米.求三角形ABC 的面积是三角形EBC 面积的几倍? E D C B A 【解析】 因为AD 垂直于BC ,所以当BC 为三角形ABC 和三角形 EBC 的底时,AD 是三角形ABC 的高,ED 是三角形EBC 的高, 于是:三角形ABC 的面积1226BC BC =?÷=? 三角形EBC 的面积32 1.5BC BC =?÷=? 所以三角形ABC 的面积是三角形EBC 的面积的4倍. 【例 4】 (第四届”迎春杯”试题)如图,三角形ABC 的面积为1, 其中3AE AB =,2BD BC =,三角形BDE 的面积是多少? A B E C D C E B A 【解析】 连接CE ,∵3AE AB =,∴2BE AB =,2BCE ACB S S = 又∵2BD BC =,∴244BDE BCE ABC S S S ===. 【例 5】 (2008年四中考题)如右图,AD DB =,AE EF FC ==,已知阴 影部分面积为5平方厘米,ABC ?的面积是 平方厘

初二上几何证明题题专题训练好题大全

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题,并 判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少? 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥ AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;????? (2)求证:DG=DF . 17. 如图,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,求∠A 的6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

一道初中几何题的多种解法

一道初中几何题的多种解法 【题目】已知:过ABC ?的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E . 求证: FB AF ED AE 2=. 【分析】平行线分线段成比例 【提示】系数2既是难点,又是突破点 【解法1】 证:连BE ,则由同高三角形面积关系得 BCF ACF BEF AEF S S S S FB AF ????==,CDE AEC S S ED AE ??= 根据等比性质得: BCE ACE BEF BCF AEF ACF S S S S S S FB AF ??????= --= ∵D 为BC 的中点, ∴D CE BCE S S ??=2 ∴ DE AE FB AF 2=,即FB AF ED AE 2= 【解法2】 证:过D 作CF DM //交AB 于M , ∵CF DM //, ∴ FM AF ED AE = ∵D 为BC 的中点,CF DM // ∴M 为BF 的中点,即BF MF 2 1 = , ∴BF AF ED AE 2 1 = ,即FB AF ED AE 2= 【解法3】 证:过D 作AB DN //交CF 于N , ∵AB DN //, C D B C C

∴ DN AF ED AE = ∵D 为BC 的中点,AB DN // ∴N 为CF 的中点, ∴DN 为BCF ?的中位线,则BF DN 2 1 = ∴ BF AF ED AE 2 1= ,即FB AF ED AE 2= 【解法4】 证:过B 作CF BG //交AD 延长线于G , ∵CF BG //, ∴ EG AE FB AF = ∵D 为BC 的中点,CF BG // ∴D 为GF 的中点,即DE EG 2= ∴ DE AE FB AF 2=, 即FB AF ED AE 2= 【解法5】 证:过B 作AD BH //交CF 延长线于H , ∵AD BH //, ∴BH AE FB AF = ∵D 为BC 的中点,AD BH // ∴E 为CH 的中点, ∴DE 为BCH ?的中位线,则DE BH 2= ∴DE AE FB AF 2=,即FB AF ED AE 2= 【解法6】 证:过A 作BC AK //交CF 延长线于K , ∵BC AK //, G C C

几何图形初步经典测试题含答案

几何图形初步经典测试题含答案 一、选择题 1.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是(). A.B.C.D. 【答案】B 【解析】 试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题. 解:由图中阴影部分的位置,首先可以排除C、D, 又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意. 故选B. 点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念. 2.下列图形中,是正方体表面展开图的是() A.B.C.D. 【答案】C 【解析】 【分析】 利用正方体及其表面展开图的特点解题. 【详解】 解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体. 故选C. 【点睛】 本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形. 3.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()

A.28°B.32°C.34°D.36° 【答案】B 【解析】 【分析】 根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可. 【详解】 解:如图,设CD和BF交于点O,由于矩形折叠, ∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°, ∵∠AEC=32°, ∴∠ACE=90°-32°=58°, ∴∠BCO=90°-∠ACE=32°, ∴∠BOC=90°-32°=58°=∠DOF, ∴∠BFD=90°-58°=32°. 故选B. 【点睛】 本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等. 4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()

一道几何题的多种解法探索

人教版初中 一道几何题的多种解法探索 有些三角形问题,条件与结论存在比较隐秘的关系,这给问题的解决带来一定的困难. 若能设法添加辅助线,并充分利用图形的几何性质,问题就能巧妙地得到解决. 请看下例 例如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点. 求证:CD=2CE. 一、截长法——将长线段二等分,设法证明其一份长等于短线段长. 证法1如图1,取CD的中点 ..F,连BF,则CD=2CF. ∵BD=AB, ∴BF//AC,且 1 2 BF AC = ∴∠CBF=∠ACB. ∵AB=AC,∴∠ABC=∠ACB.∴∠ABC =∠CBF . ∵ 1 , 2 BE AB =∴BE=BF 又∵BC=BC,∴△BCE≌△BCF. ∴CE=CF. ∴CD=2CE. 点评此法利用截长法,构造三角形全等,并通过三角形全等架通桥梁. 二、补短法——将短线段延长一倍,设法证明延长后的线段等于长线段. 证法2如图2,延长CE到F,使EF=EC. ∵BE=AE,EF=EC,∠BEF=∠AEC, ∴△EFB≌△ECA,∴∠EBF=∠EAC,BF=AC. ∵AB=AC,∴∠ABC=∠ACB. 而∠FBC=∠EBF+∠ABC,∠DBC=∠EAC+∠ACB, ∴∠FBC=∠DBC. 而BD=AB= AC= BF,BC=BC, ∴△CBF≌△CBD,∴CF=CD. 而CF=2CE,∴CD=2CE 点评此法利用AB边上的中线CE,将其延长一倍,并构造全等三角形证得结论. 三、折半法——通过添加辅助线,使辅助线段长等于长线段的一半. 证法3如图3,取AC的中点F,连BF. ∵AB=AC,∴AE=AF, 又∠A=∠A, ∴△ABF≌△ACE,∴CE=BF. ∵BD=AB,AF=FC,∴BF是△ABD的中位线. ∴2 CD BF =,∴CD=2CE. 点评此法取中点配中点,构造三角形中位线(折半),并通过.1. 三角形全等证得结论. 证法4如图4,取BC的中点F,取BD的中点G,连EF、FG,则EF是△ABC的中位线,GF是△BCD的中位线.

六年级数学几何操作题专项训练

六年级数学几何操作题专项训练(总2页)

2 O A B C 1、一个小正方形,它的边长增加8厘米后,面积就增加了224平方厘米。求小正方形的边长多少厘米。(提示用方程解) 2、如左图,已知长方形ABCD 的面积是88平方厘米,E 和F 分别是长和宽的中点。 (1)画出长方形ABCD 的所有对称轴。 (2)求出阴影部分的面积。 3、有一块长120米,宽80米的长方形空地,请你按一定的比例,画出空地的平面图,然后在平面图上用阴影 标出4 1 的草坪。(注意:要标明你所采用的比例尺及相 应的长和宽)。 4、圆的面积与长方形的面积相等,已知圆的周长厘米,求阴影部分的周长。 5、一个圆柱底面直径是10厘米,高是20厘米,把圆柱的侧面沿着它的一条高剪开,再打开,然后按1:10的比例尺画出它的侧面展开图。并标明数据。 的面积是平方厘米,求阴影部分的面积。(单位:厘米) 7、求图形中阴影部分的面积。(单位:厘米) 8、计算下面的阴影部分的面积。(单位:厘米) 9、已知四个等圆的半径分别为6厘米。 (1)求阴影部分的面积和周长。 (2)画出此图的所有对称轴。 10、画两个直径分别为3厘米和1厘米的同心圆,再画出这两个同心圆的两条互相垂直的对称轴。并求出两个 圆之间的环形部分的面积。 11、(1)在下面正方形内,画一个最大的圆,并标出圆心与半径。 (2)计算下面图形阴影部分的面 积。(4%) 已知直径8厘米。 F A B C D E O r 2 3 2 1 2 2 2

12、(1)量出左图的直径是()厘米。 正方形。 (3)以圆的直径为边长 作一个正方形,使圆在正方形 内。 (4)大正方形的周长是()厘米。 (5)小正方形的面积是()平方厘米。 3

初二上几何证明题50题专题训练(好题汇编)

F O E D C B A 八年级上册几何题专题训练50题 1. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB =10°,求∠AEC的度数. 2. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D 3.如图,OP平分∠AOB,且OA=OB. (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。 5. 如图,在△ABC中,AB=AD=DC,∠BAD=28°,求∠B和∠C的度数。

6. 如图,B、D、C、E在同一直线上,AB=AC,AD=AE,求证:BD=CE。 7. 写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC中,∠ACB=90o,D是AC上的一点,且AD=BC,DE AC于D,∠EAB=90o.求证:AB=AE. 9. 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论. 10. 如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为多少?

11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . B A E D C

相关文档