文档库 最新最全的文档下载
当前位置:文档库 › 一种分析误差的方法

一种分析误差的方法

一种分析误差的方法
一种分析误差的方法

Statistics: 1.5Oneway Analysis of Variance Rosie Cornish.2006.

1Introduction

Oneway analysis of variance(ANOVA)is used to compare several means.This method is often used in scienti?c or medical experiments when treatments,processes,materials or products are being compared.

Example:

A paper manufacturer makes grocery bags.They are interested in increasing the tensile strength of their product.It is thought that strength is a function of the hardwood con-centration in the pulp.An investigation is carried out to compare four levels of hardwood concentration:5%,10%,15%and20%.Six test specimens are made at each level and all24 specimens are then tested in random order.The results are shown below:

Hardwood Standard

Concentration(%)Tensile strength(psi)Mean Deviation

578151191010.00 2.83

1012171318191515.67 2.81

1514181917161817.00 1.79

2019252223182021.17

2.64

All15.96 4.72

Source:Applied Statistics and Probability for Engineers-Montgomery and Runger

As stated above,in ANOVA we are asking the question,“Do all our groups come from popula-tions with the same mean?”.To answer this we need to compare the sample means.However,

even if all the population means were identical,we would not expect the sample means to be exactly equal—there will be always be some di?erences due to sampling variation.The question therefore becomes,“Are the observed di?erences between the sample means simply due to sampling variation or due to real di?erences in the population means?”This question cannot be answered just from the sample means—we also need to look at the variability of whatever we’re measuring.In analysis of variance we compare the variability between the groups(how far apart are the means?)to the variability within the groups(how much natural variation is there in our measurements?).This is why it is called analysis of variance. ANOVA is based on two assumptions.Therefore,before we carry out ANOVA,we need to check that these are met:

1)The observations are random samples from normal distributions.

2)The populations have the same variance,σ2.

Fortunately,ANOVA procedures are not very sensitive to unequal variances—the following rule can be applied:

If the largest standard deviation(not variance)is less than twice the smallest

standard deviation,we can use ANOVA and our results will still be valid.

So,before carrying out any tests we must?rst look at the data in more detail to determine whether these assumptions are satis?ed:

i)Normality:If you have very small samples,it can sometimes be quite di?cult to deter-mine whether they come from a normal distribution.However,we can assess whether the distributions are roughly symmetric by(a)comparing the group means to the medians—in a symmetric distribution these will be equal and(b)looking at boxplots or histograms of the data

ii)Equal variances:We can simply compare the group standard deviations.

In our example the medians are very close to the means.Also the standard deviations in the four groups(see table on page1)are quite similar.These results,together with the boxplots given above,indicate that the distribution of tensile strength at each hardwood con-centration is reasonably symmetric and that its variability does not change markedly from one concentration to another.Therefore,we can proceed with the analysis of variance.

2The ANOV A Model

2.1Notation

In general,if we sample n observations from each of k populations(groups),the total number of observations is N=nk.The following notation is used:

?y ij represents the j th observation in group i(e.g.y13is the3rd observation in the?rst group,y31is the?rst observation in the third group,and so on).

?ˉy i represents the mean in group i

?ˉy represents the mean of all the observations

2.2Sums of squares

The total variation of all the observations about the overall mean is measured by what is called the Total sum of squares,given by:

SS T=

k

i=1

n

j=1

(y ij?ˉy)2

This variation can be split into two components:

1)the variation of the group means about the overall mean(between-group variation)

2)the variation of the individual observations about their group mean(within-group variation) It can be shown that:

k i=1

n

j=1

(y ij?ˉy)2=n

k

i=1

(ˉy i?ˉy)2+

k

i=1

n

j=1

(y ij?ˉy i)2

or

SS T=SS B+SS W

In words this is written as:

Total sum of squares=Between groups sum of squares+Within groups sum of squares Degrees of freedom and mean squares

Each sum of squares has a certain number of degrees of freedom:

SS T compares N observations to the overall mean,so has N?1degrees of freedom.

SS B compares k means to the overall mean,so has k?1degrees of freedom.

SS W compares N observations to k sample means,so has N?k degrees of freedom. Notice that N?1=(N?k)+(k?1)(i.e.the degrees of freedom are related in the same way as the sums of squares:d f T=d f B+d f W).

Degrees of freedom:

The degrees of freedom basically indicates how many‘values’are free to vary.

When we are considering variances or sums of squares,because the sum of the

deviations is always zero,the last deviation can be found if we know all the

others.So,if we have n deviations,only n?1are free to vary.

The mean square for each source of variation is de?ned as being the sum of squares divided by its degrees of freedom.Thus:

MS B=SS B/(k?1)and MS W=SS W/(N?k)

3The F Test in ANOV A

It can be shown that if the null hypothesis is true and there are no di?erences between the (unknown)population means,MS B and MS W will be very similar.On the other hand,if the(unknown)means are di?erent,MS B will be greater than MS W(this makes sense intu-itively—if the population means are very di?erent,we would expect the sample means to be quite far apart and therefore the between group variability will be large).Therefore,the ratio

MS B/MS W is a statistic that is approximately equal to1if the null hypothesis is true but will be larger than1if there are di?erences between the population means.

The ratio MS B/MS W is a ratio of variances,and follows what is called an F distribution with k?1and N?k degrees of freedom.In summary:

To test H0:μ1=μ2=...=μk=μuse the statistic F=MS B

MS W and compare this to

the F distribution with k?1and N?k degrees of freedom.

The F Distribution and F Tests

A statistical test called the F test is used to compare variances from two normal populations.

It is tested by the F-statistic,the ratio of the two sample variances:F=s 1 s22 .

Under the null hypothesis,this statistic follows an F distribution with n1?1and n2?1 degrees of freedom,written F(n1?1,n2?1).

The F distributions are a family of distributions which depend on two parameters:the degrees of freedom of the sample variances in the numerator and denominator of the F statistic.The degrees of freedom in the numerator are always given?rst.The F distributions are not symmetric and,since variances cannot be negative,cannot take on values below zero.The peak of any F-distribution is close to1;values far from1provide evidence against the null hypothesis.Two examples of the F distribution with di?erent degrees of freedom are shown in Figure1.

Figure1:Probability density functions of two F distributions

4The ANOV A Table

When you carry out an analysis of variance on a computer,you will get an analysis of variance (or ANOVA)table,as shown below.

The ANOVA table:Tensile strength of paper

Source of Sum of Degrees of

variation squares freedom Mean square F p

Between groups382.793127.60127.60

6.51=19.61p<0.001 Within groups130.1720 6.51

Total512.9623

From our results we can say that there is strong evidence that the mean tensile strength varies with hardwood concentration.Although the F-test does not specify the nature of these di?erences it is evident from our results that,as the hardwood concentration increases,so does the tensile strength of the paper.It is possible to test more speci?c hypotheses—for example,that there is an increasing or decreasing trend in the means—but these tests will not be covered in this lea?et.

What exactly is the p-value?

If the(true)mean tensile strength of paper made with di?erent concentrations of hardwood were actually constant(i.e.if the hardwood concentration had no e?ect on tensile strength whatsoever),the probability of getting sample means as far apart as,or further apart than, we did(i.e.means of10.0,15.7,17.0,and21.1,or values further apart than this)is incredibly small—less than0.001.The p-value represents this probability.

We turn this around and conclude that the true mean tensile strength is very unlikely to be constant(i.e.we conclude that the hardwood concentration does seem to have an e?ect on tensile strength).

Note:The ANOVA results given above are based on the assumption that the sample size in each group is https://www.wendangku.net/doc/ea3318482.html,ually this will be the case—most experiments are designed with equal sized samples in each experimental group.However,it is also possible to carry out an analysis of variance when the sample sizes are not equal.In this case,the formulae for the sums of squares etc.are modi?ed to take account of the di?erent sample sizes.If you use a statistical package to carry out your analysis,this is done automatically.

5Carrying out oneway ANOV A in SPSS

–Analyze

–Compare Means

–One Way ANOVA

–Choose your outcome variable(in our case tensile strength)to go in Dependent List

–Choose the variable that de?nes the groups as the Factor then click on OK.

The output will look something like the ANOVA table given above.

偏差分析心得体会

偏差分析心得体会 篇一:误差分析及实验心得 误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、 纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获:

(1)、培养了严谨求实的精神和顽强的毅力。通过此 次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以 我在以后的实验中保持严谨的态度。我通过本次实验我学

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

半偏法及其系统误差分析

半偏法及其系统误差分 析 Company Document number:WTUT-WT88Y-W8BBGB-

半偏法及其系统误差分析 1.电流表半偏法 如图是用半偏法测电流表内阻的电路.实验时,先断开开关2S , 闭合开关1S ,调节0R 使电流表指针满偏.然后保持0R 的滑片不动, 闭合开关2S ,调节R,使电流表的指针处于半满偏状态, 则电流表的内阻A R =R . 用如图1所示的电路测电流表的内阻时,设电流表的满偏电流为Ig,则开关2S 断开时 1 R R I A g += ε ① 开关2S 闭合时,有A A R g R R RR R I I ++ = +12 1 ε ② R I R I R A g =2 1 ③ 由①、②、③式,得11R R R R R A A += A R R < ∴测量值小于真实值 当滑动变阻器阻值远大于电阻箱电阻误差较小 2.电压表半偏法 如图是用半偏法测电压表内阻的电路.实验时,先闭合开关2S 和1S , 调节0R 使电压表指针满偏.然后保持0R 的滑片不动(即1R 、2R 不变), 断开开关2S ,调节R,使电压表的指针半满偏,则电压表的内阻V R =R 用如图的电路测电压表的内阻时,设电压表的满偏电压为g U , 则开关2S 闭合时

21 )( R R U R U U g V g g + +=ε ④ 开关2S 断开时, 有21 ( R R U R R U U AB V AB AB +++=ε )(2R R R U U V V g AB += ⑥ 由④、⑤、⑥式,得 0 2 1R R R R R V + = V R R >,∴ V R 的测量值大于真实值. 1、要测量内阻较大的电压表的内电阻,可采用“电压半值法”,其实验电路 如图9所示。其中电源两端的电压值大于电压表的量程, 电阻箱R 2的最大阻值大于电压表的内电阻。 先将滑动变阻器R 1的滑动头c 调至最左端,将R 2的阻值调至最大,依次 闭合S 2和S 1, 调节R 1使电压表满偏,然后断开S 2,保持滑动变阻器 的滑动头c 的位置不变,调节R 2使电压表半偏,此时 R 2的示数即可视为电压表的内电阻值。 (1)实验时,在断开S 2调节R 2的过程中,a 点与滑动变阻器的滑 动头c 之间的电压应 。 (2)实验室备有如下四个滑动变阻器,它们的最大阻值分别为 A .10Ω B .1k Ω C .10k Ω D .100k Ω 为减小测量误差,本实验中的滑动变阻器R 1应选择 。(填序号) 2、(12分)用半偏法测电流表内阻,提供的器材如下:

项目管理偏差分析法的应用

第36卷第8期 2016年8月 Application of deviation analysis method in project management ZHANG Zhen-xin (China Harbour Engineering Co.,Ltd.,Beijing 100027,China ) Abstract :Project cost and schedule performance is an important indicator to measure the progress of a project.Deviation analysis method is considered a system management standard for a trade -off control on the project cost and schedule management,coordination and management,and use of scientific management methods to achieve the desired goal of project management.This paper,based on the implementation of Phase I of Hambantota Port in Sri Lanka and through deviation analysis method,analyzed the reasons of deviation during the implementation of the project and developed appropriate measures to improve management of a project cost and progress.At the same time,the paper proposes ideas and considerations in the application of the deviation analysis method so as to explore the best way for project management.Key words :project management;progress control;cost control;deviation analysis 摘 要:项目成本和进度绩效是衡量项目进展的重要指标。偏差分析法被认为是一种系统管理规范,在项目成本和 进度上进行权衡控制,协调管理,运用科学的管理方法,达到项目管理的预期目标。文章结合斯里兰卡汉班托塔港一期项目的实施,运用偏差分析法对项目的实施过程中产生偏差的原因进行分析,并制定相应纠正偏差措施,以此提高项目成本和进度管理水平。同时提出偏差分析方法在使用方面的见解和思考,探寻管理的最佳效果。关键词:项目管理;进度控制;成本控制;偏差分析中图分类号:U655.1;TU723.3文献标志码:B 文章编号:2095-7874(2016)08-0072-04 doi :10.7640/zggwjs201608017 收稿日期:2016-03-03 修回日期:2016-04-19 作者简介:张振新(1983—),男,四川成都市人,硕士,工程师,工 程管理专业。E-mail :21809307@https://www.wendangku.net/doc/ea3318482.html, 项目管理偏差分析法的应用 张振新 (中国港湾工程有限责任公司,北京 100027) Vol.36 No.8 Aug.2016 中国港湾建设 1工程概况 斯里兰卡汉班托塔港项目一期工程建设任务包括:2个10万吨级集装箱码头(泊位总长度为600 m )、1个10万吨级油码头(泊位长度为310m )、1 个工作船泊位(泊位长度为105m )、总长1200m 进港航道(底标高-17m ,底宽为210耀326m )、西防 波堤长988m 、东防波堤长312m 、进港护岸长2078m ,道路和堆场42万m 2以及其他附属港口设施。 工程于2007年11月10日开工,2011年2月10日竣工。在项目建设过程中,承包单位不断 推进工程创新及新技术应用,不断提升项目工程管理水平,项目质量优良,被评为2014年中国建设工程鲁班奖(境外工程);项目进度控制得力,建设工程按计划如期完工;工程造价管理到位,经济效益非常显著。2偏差分析方法 偏差分析法被认为是一种系统管理规范,在工程实施阶段,承建方首先需要按工程计划确定项目成本和进度计划值,在项目实施过程中,以项目成本和进度的实际发生值与计划值进行动态比较,获取偏差,进而分析查找产生偏差的原因,探寻减少偏差的有效控制措施,最终,有针对性地采取必要的措施,以达到对进度、质量、成本控制的目的[1-6]。

统计公差分析方法概述

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk 指标是1.33并且制程是在中心

统计分析法_误差分析

机械加工误差的综合分析------统计分析法的应用

班级: 学号: 姓名: 一、实验目的 运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1. M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验内容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间内连续加工的零件120件,由此计算出X、σ,并做出尺

寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘 在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调 ---微调---水平调整步骤进行(注意大调和水平调整一般都予 先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将 冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位臵。 4. 检查磨床的挡片,支片位臵是否合理(如果调整不好,将会引 起较大的形变误差)。对于挡片可通过在机床不运转情况下, 用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉, 直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均 尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削 一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑== +???++= 1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????= 21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -= --= 对 (2-4)

(完整版)算法的概念及误差分析方法(精)

3.2算法 3.2.1算法的概念 3.2.1.1 什么叫算法 算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。算法和程序之间存在密切的关系。 算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。 对算法的学习包括五个方面的内容:①设计算法。算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;②表示算法。描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点; ③确认算法。算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④分析算法。算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤验证算法。用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。 3.2.1.2算法的特性 算法的特性包括:①确定性。算法的每一种运算必须有确定的意义,该种运算应执行何种动作应无二义性,目的明确;②能行性。要求算法中有待实现的运算都是基本的,每种运算至少在原理上能由人用纸和笔在有限的时间内完成;③输入。一个算法有0个或多个输入,在算法运算开始之前给出算法所需数据的初值,这些输入取自特定的对象集合;④输出。作为算法运算的结果,一个算法产生一个或多个输出,输出是同输入有某种特定关系的量;⑤有穷性。一个算法总是在执行了有穷步的运算后终止,即该算法是可达的。 满足前四个特性的一组规则不能称为算法,只能称为计算过程,操作系统是计算过程

误差分析

二、误差分析 1.研究误差的目的 物理化学以测量物理量为基本内容,并对所测得数据加以合理的处理,得出某些重要的规律,从而研究体系的物理化学性质与化学反应间的关系。 然而在物理量的实际测量中,无论是直接测量的量,还是间接测量的量(由直接测量的量通过公式计算而得出的量),由于测量仪器、方法以及外界条件的影响等因素的限制,使得测量值与真值(或实验平均值)之间存在着一个差值,这称之为测量误差。 研究误差的目的,不是要消除它,因为这是不可能的;也不是使它小到不能再小,这不一定必要,因为这要花费大量的人力和物力。研究误差的目的是:在一定的条件下得到更接进于真实值的最佳测量结果;确定结果的不确定程度;据预先所需结果,选择合理的实验仪器、实验条件和方法,以降低成本和缩短实验时间。因此我们除了认真仔细地作实验外,还要有正确表达实验结果的能力。这二者是等同重要的。仅报告结果,而不同时指出结果的不确定程度的实验是无价值的,所以我们要有正确的误差概念。 2.误差的种类 根据误差的性质和来源,可将测量误差分为系统误差、偶然误差和过失误差。 系统误差在相同条件下,对某一物理量进行多次测量时,测量误差的绝对值和符号保持恒定(即恒偏大或恒偏小),这种测量误差称为系统误差。产生系统误差的原因有: (1)实验方法的理论根据有缺点,或实验条件控制不严格,或测量方法本身受到限制。如据理想气体状态方程测量某种物质蒸气的分子质量时,由于实际气体对理想气体的偏差,若不用外推法,测量结果总较实际的分子质量大。

(2)仪器不准或不灵敏,仪器装置精度有限,试剂纯度不符和要求等。例如滴度管刻度不准。 (3)个人习惯误差,如读滴度管读数常偏高(或常偏低),计时常常太早(或太迟)等等。 系统误差决定了测量结果的准确度。通过校正仪器刻度、改进实验方法、提高药品纯度、修正计算公式等方法可减少或消除系统误差。但有时很难确定系统误差的存在,往往是用几种不同的实验方法或改变实验条件,或者不同的实验者进行测量,以确定系统误差的存在,并设法减少或消除之。 偶然误差在相同实验条件下,多次测量某一物理量时,每次测量的结果都会不同,它们围绕着某一数值无规则的变动,误差绝对值时大时小,符号时正时负。这种测量误差称为偶然误差。产生偶然误差的原因可能有: (1)实验者对仪器最小分度值以下的估读,每次很难相同。 (2)测量仪器的某些活动部件所指测量结果,每次很难相同,尤其是质量较差的电学仪器最为明显。 (3)影响测量结果的某些实验条件如温度值,不可能在每次实验中控制得绝对不变。 偶然误差在测量时不可能消除,也无法估计,但是它服从统计规律,即它的大小和符号一般服从正态分布。若以横坐标表示偶然误差,纵坐标表示实验次数(即偶然误差出现的次数),可得到图Ⅰ-1。其中σ为标准误差(见第4节). 由图中曲线可见:(1)σ愈小,分布曲线愈尖锐,即是说偶然误差小的, 出现的概率大。(2)分布曲线关于纵坐标呈轴对称,也就是说误差分布具有对称性,说明误差出现的绝对值相等,且正负误差出现的概率相等。当测量次数n 无限多时,偶然误差的算术平均值趋于 零:

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称

为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的 权数一般凭经验确定。 (4)几何平均值 (5)对数平均值 以上介绍的各种平均值,目的是要从一组测定值中找 出最接近真值的那个值。平均值的选择主要决定于一组观 测值的分布类型,在化工原理实验研究中,数据分布较多 属于正态分布,故通常采用算术平均值。 (三)中位数(xM )

偏差分析

偏差分析 数据挖掘中,偏差分析是探测数据现状、历史记录或标准之间的显著变化和偏离,偏差包括很大一类潜在的有趣知识。如观测结果与期 望的偏离、分类中的反常实例、模式的例外等。 在项目管理中偏差分析指实际完成工作与计划完成工作之间的差异。具体分为: 进度偏差(SV)=已完工作的预算费用(BCWP)-计划完成工作的预算费用(BCWS) 成本偏差(CV)=已完工作的预算费用(BCWP)-已完成工作的实际费用(ACWP) 什么是偏差分析? 又称为赢得值法或偏差分析法.挣得值分析法是在工程项目实施中使用较多的一种方法,是对项目进度和费用进行综合控制的一种有效方法。 1967年美国国防部(d0d)开发了挣值法并成功地将其应用于国防工程中。并逐步获得广泛应用。 挣值法的核心是将项目在任一时间的计划指标,完成状况和资源耗费综合度量。将进度转化为货币,或人工时,工程量如:钢材吨数,水泥立方米,管道米数或文件页数。 挣值法的价值在于将项目的进度和费用综合度量,从而能准确描述项目的进展状态。挣值法的另一个重要优点是可以预测项目可能发生的工期滞后量和费用超支量,从而及时采取纠正措施,为项目管理和控制提供了有效手段。 挣得值方法的基本参数? 计划工作量的预算费用(BCWS),即(Budgeted Cost for Work Scheduled)。 BCWS是指项目实施过程中某阶段计划要求完成的工作量所需的预算费用。 计算公式为:BCWS=计划工作量×预算定额。BCWS主要是反映进度计划应当完成的工作量(用费用表示)。? 已完成工作量的实际费用(ACWP),即(Actual Cost for Work Performed)。ACWP是指项目实施过程中某阶段实际完成的工作量所消耗的费用。ACWP主要是反映项目执行的实际消耗指标。 BCWS是与时间相联系的,当考虑资金累计曲线时,是在项目预算s曲线上的某一点的值。当考虑某一项作业或某一时间段时,例如某一月份,bcws是该 作业或该月份包含作业的预算费用。

分析化学练习题(第3章 误差与数据处理)(1)

分析化学练习题 第3章误差与数据处理 一. 选择题 1.定量分析工作要求测定结果的误差() A. 越小越好 B. 等于零 C. 接近零 D. 在允许的误差范围内 2.对某试样进行多次平行测定获得其中硫的平均含量为 3.25%,则其中某个测定值与此平 均值之差为该次测定的() A. 绝对误差 B. 相对误差 C. 系统误差 D. 绝对偏差 3. 滴定分析的相对误差一般要求为0.1%,滴定时耗用标准溶液的体积应控制在() A.<10mL B. 10~15mL C. 20~30mL D. >50mL 4. 滴定分析的相对误差一般要求为±0.1%,若称取试样的绝对误差为0.0002g,则一般至少 称取试样() A. 0.1g B. 0.2g C. 0.3g D. 0.4g 5. 下列有关误差论述中,正确的论述是() A. 精密度好误差一定较小 B. 随机误差具有方向性 C. 准确度可以衡量误差的大小 D. 绝对误差就是误差的绝对值 6. 下列有关系统误差的正确叙述是() A. 系统误差具有随机性 B. 系统误差在分析过程中不可避免 C. 系统误差具有单向性 D. 系统误差是由一些不确定的偶然因素造成的 7.在定量分析中,精密度与准确度之间的关系是() A. 精密度高,准确度必然高 C. 精密度是保证准确度的前提 B. 准确度高,精密度必然高 D. 准确度是保证精密度的前提 8.以下是有关系统误差的叙述,正确的是() A. 对分析结果影响恒定,可以测定其大小 B. 具有正态分布规律 C. 在平行测定中,正负误差出现的几率相等 D. 可用Q检验法判断其是否存在 9. 关于提高分析结果准确度的方法,以下描述正确的是() A. 增加平行测定次数,可以减小系统误差 B. 作空白试验可以估算出试剂不纯等因素带来的误差 C. 回收试验可以判断分析过程是否存在偶然误差 D. 通过对仪器进行校准减免偶然误差 10. 若不知所测样品的组成,则要想检验分析方法有无系统误差,有效的方法是() A. 用标准试样对照 B. 用人工合成样对照 C. 空白试验 D. 加入回收试验 11. 某一分析方法由于试剂带入的杂质量大而引起很大的误差,此时应采用下列哪种方法来 消除?() A. 对照分析 B. 空白试验 C. 提纯试剂 D. 分析结果校正 12.做对照实验的目的是() A. 提高实验的精密度 B. 使标准偏差减小 C. 检查系统误差是否存在 D. 消除随机误差 13.为消除分析方法中所存在的随机误差,可采用的方法是() A. 对照试验 B. 空白试验 C. 校准仪器 D. 增加测定次数 14.能有效减小分析中特定随机误差的方法有()

分析方法偏差汇总

分析方法偏差汇总(2010版药品检验标准操作规范) 1.紫外-可见分光光度法(P58):含量测定时供试品应称取2份,如为对照品比较法,对照品一般也应称取2份。吸收系数检查也应称取供试品2份,平行操作,每份结果对平均值的偏差应在±0.5%以内。作鉴别或检查可取样品1份。吸收系数测定法样品应同时测定2份,同一台仪器测定的2份结果,对平均值的偏差应不超过±0.3%,否则应重新测定。 2.高效液相色谱法(P81):供试品溶液与对照品溶液每份至少进样2次,由全部注样平均值(n≥4)求得平均值,相对标准偏差一般应不大于1.5%。(此规定为05版药品操作规程上描述,10版无此规定) 3.气相色谱法(P102):每份校正因子测定溶液(或对照品溶液)各进样2次,2份共4个校正因子相应值的平均标准偏差不得大于2.0%。多份供试品测定时,每隔5批应再进对照品2次,供试品测定完毕,最后再进行对照品2次,核对下仪器有无改变。 4.旋光度测定法(P165): 4.1比旋度测定时,供试液与空白溶剂用同一测定管,每次测定应保持测定管方向、位置不变。旋光度读数应重复3次,取其平均值,按规定公式计算结果。以干燥品或无水物计算。 4.2含量测定时,取2份供试品测定读数结果其极差应在0.020以内,否则应重做。 5.折光率测定法(P167):取3次读数平均值。 6.非水溶液滴定法(P176): 6.1酸碱滴定液的标定:同一操作者标定不得少于3份。酸、碱滴定液标定和复标的相对平均偏差均分别不得超过0.1%、0.2%,不同操作者标定的平均值的相对偏差不得超过0.1%、0.2%; 6.2供试品每次测定应不少于2份。 6.3原料药用高氯酸滴定液直接滴定者,相对偏差不得过0.2%;用碱滴定液直接滴定者,不得过0.3%。 6.4制剂需提取或蒸干后用高氯酸滴定液滴定者,相对偏差不得过0.5%,如提取洗涤等操作步骤繁复者,相对偏差不得过1.0%。 7.氮测定法(P181):供试品测定2份,常量法相对偏差不得过0.5%、半微量法不得过1.0%;空白2份,极差不得大于0.05ml。

统计公差分析方法概述

统计公差分析方法概述 一、引言 公差设计问题可以分为两类:一类就是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸与公差,确定装配后需要保证的封闭环公差;另一类就是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸与公差,求解组成环的经济合理公差。 公差分析的方法有极值法与统计公差方法两类,根据分布特性进行封闭环与组成环公差的分析方法称为统计公差法、本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二、Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max、)=(20+0、3)+(15+0、25)+(10+0、15)=45、7,出现在A、B、C偏上限之状况 D(Min、)=(20-0、3)+(15-0、25)+(10-0、2)=44、3,出现在A,B、C偏下限之状况 45±0、7适合拿来作设计不? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0、9973=0、0027;在组装完毕后所有零件都有缺陷的机率为:0、0027^3=0、3。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都就是接近极限尺寸的情况非常罕见。 三、统计公差分析法 ?由制造观点来瞧,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想就是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析与计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造与生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的就是『变异』值。

公差分析的方法与比较

公差分析的方法與比較 PSBU-RDD4-MDD 工程師朱誠璞 alex.chu@https://www.wendangku.net/doc/ea3318482.html, 2002/11/14 PM 04:32 version 1.1 A.公差分析的傳統方法( I)----Worst Case 法 首先,必須解釋在公差分析時所用的兩種方法: 公差合成與公差分配. 而在以下兩個例子中用來運算公差範圍的數學方法為 Worst Case 法,這是傳統的做法 : 1.公差的合成(使用Worst Case 法運算) Part A 與 Part B 必須接合在一起,合成後的尺寸與公差範圍會是如何呢? 在這個例子中,可以得到一個很直觀的結果------當Part A 與 Part B相接後所得到的 Part A+B 長度和公差範圍都是Part A + Part B 的結果. 也就是說:合成後的公差範圍會包括到每個零件的最極端尺寸,無論每個零件的尺寸在其公差範圍內如何變化,都會 100% 落入合成後的公差範圍內. 聽起來相當合理,不是嗎? 稍後會解釋這樣做的缺點.

2.公差的分配(使用Worst Case 法運算) 現在 Part A+B 必須放入 Part C 的開口處,而開口的尺寸與公差如圖所示,那麼 Part A 與 B 的分別的公差範圍又應該是多少呢? 我們以最簡單的方法 : 平均分配給其中所有的零件,所以 Part A 與 B 各得50 %,當然也可以按照其他的比例來調整,並沒有絕對的優劣之分. B. Worst Case法的問題 1.控制公差範圍難以被控制在設計的需求範圍中. 由於 Worst Case 法合成時要求100 % 的可以容許單一零件的公差變化,會造成合成後的公差範圍變的較大,對設計者而言,是非常容易造成零件組裝後相互干涉或間隙過大. 在以上的例子中,如果要將 Part A+B 放入 Part C 時,會發生過緊干涉的情況,因為 Part C 最窄只有 10.75 mm,但是 Part A+B 卻可能有 11.50 mm的情況則有 0.75 mm 的干涉;另一方面,當 Part C 最寬11.25 mm,而 Part A+B 為10.5 mm 的最小值時,又有 0.75 mm的間隙產生.由此可知公差範圍過大所造 成的難以控制的缺點. 2.決定公差範圍的過程缺乏客觀及合邏輯的程序 以此類方式決定的公差範圍尺寸,必須仰賴設計者的經驗,且必須經過多次的試作才可真正決定;若生產條件改變:如更換生產廠商,模具修改…等,皆有可能使原訂之公差範圍無法達成,而被迫放寬或產生大量不良品的損失.

相关文档