文档库 最新最全的文档下载
当前位置:文档库 › 开关电源小信号模型建立

开关电源小信号模型建立

开关电源小信号模型建立
开关电源小信号模型建立

小信号模型及环路设计

开关电源的小信号模型及环路设计 文章作者:万山明吴芳 文章类型:设计应用文章加入时间:2004年8月31日22:9 文章出处:电源技术应用 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型

图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为 L(dil/dt)=-Uo (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得

开关电源的小信号建模详解

详解:开关电源的小信号建模 开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。本文想重点介绍下主回路的数学建模方法。 首先来介绍下小信号的分析法。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化。这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例, 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个区 域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,

进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。要对一个变换器进行小信号建模,必须满足三个条件。 首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该 远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远 小于开关频率。这个假设称为小纹波假设。其次为了保证这个扰动是在静态工作 点附近,因此有第三个假设条件: 3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小 信号分析法进行建模。对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。 在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成 分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用 的“小纹波假设”在谐振槽路的小信号建模中不再适用。对于谐振变换器,通常 采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号 模型。 对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间 其状态方程为

Buck电路小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路 设计 华中科技大学电气与电子工程学院作者:万山明,吴芳 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路 S导通时,对电感列状态方程有 L=U in-U o (1) S断开,D1续流导通时,状态方程变为 L=-U o (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为 L=D(U in-U o)+(1-D)(-U o)=DU in-U o(3) 稳态时,=0,则DU in=U o。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L=(D+d)(U in+)-(U o+) (4)

反激变换器小信号模型Gvd(s)推导__1210

一、反激变换器小信号模型的推导 1.1 DCM 1.1.1 DCM buck-boost 小信号模型的推导 根据状态空间平均法推导DCM buck-boost 变换器小信号模型如下: +-v in (t)v o (t)一般开关网络 图1 1理想Buck-Boost 变换器开关网络 1231d d d ++= (1) 首先,定义开关网络的端口变量1122,,,v i v i ,建立开关周期平均值 1 1 2 2 ,,,s s s s T T T T v i v i 之间的关系: 11()s g T g pk s s v t v i d T d T L L <>= = (2) 根据工作模态:113()()()0s s s L T g T T v t d v t d v t d <>=<>+<>+ (3) []1 1 ()()()s s s t T t T L T L s t t s s s di L v t v d L d i t T i t T T d T τττ++<>= = =+-? ? (4) DCM 下,()()0s i t T i t +==,所以()0s L T v t <>=,结合(3)式: 11()()0s s g T T d v t d v t <>+<>= (5) 21()(t)=-(t)()s s g T T v t d d v t <><> (6) 根据工作模态:1123()()0()(()())()()s s s s T g T T g T v t d t d t v t v t d t v t <>=+<>-<>+<>(7) 消去上式的2d 和3d 得:1()()s s T g T v t v t <>=<> (8) 根据工作模态:2123()()(()())()0(()) s s s s T g T T g T v t d t v t v t d t d v t <>=<>-<>++-<>

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计 万山明,吴芳 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路

S 导通时,对电感列状态方程有 O U Uin dt dil L -= ⑴ S 断开,D 1续流导通时,状态方程变为 O U dt dil L -= (2) 占空比为D 时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D )T s 的时间(T s 为开关周期),因此,一个周期内电感的平均状态方程为 ())()(O in O O in U DU U D U U D dt dil L -=--+-=1 稳态时,dt dil =0,则DU in =U o 。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in 成 正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L =(D +d )(U in +)-(U o +) (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d 为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L =D +dU in - (5) 由图1,又有 i L =C + (6) U o =U c +R e C (7)

第四章 放大电路基础(2)小信号模型及三种基本电路2016 [兼容模式]

§4.3 放大电路的分析方法 ——小信号模型分析法
思路:在Q点附近,三极管特性曲线可近似看为线性的,把非线性问题转为 线性问题求解。条件:输入为交流小信号(微变信号) 式中各量均是全量,包 一、H参数等效电路: 含直流和交流两部分
1、H参数的导出:
v BE = VBE + vbe
iB = I B + ib iC = I C + ic
iC iB
+
vCE = VCE + vce
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
电气工程学院 苏士美
T
+
输入回路关系 输出回路关系
v BE 2016/3/7
PDF pdfFactory Pro
v CE -
1
https://www.wendangku.net/doc/e55074189.html,

小信号模型分析法
考虑微变关系,对两式取全微分:
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
式中: dvBE = vbe , diB = ib , dvCE = vce , diC = ic
dvBE=
?vBE ?iB
? diB +
vCE
?vBE ?vCE
? dvCE
iB
vbe=hie ib + hre vce
在小信号情况下: H参数,具有不同的 量纲,混合参数
共e下BJT的输入 电阻rbe(欧姆) 电流放大系数β
输出对输入的反作 用μr(无量纲) 输出电导1/rce
?iC diC= ?iB
2016/3/7
PDF pdfFactory Pro
vCE
?iC ? diB + ?vCE
? dvCE
iB
电气工程学院 苏士美
ic=hfe ib + hoe vce
2
https://www.wendangku.net/doc/e55074189.html,

小信号分析法重点笔记讲解

开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化,这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个 区域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。 因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。 要对一个变换器进行小信号建模,必须满足三个条件,首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该

远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远小于开关频率。这个假设称为小纹波假设。 其次为了保证这个扰动是在静态工作点附近,因此有第三个假设条件:3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小信号分析法进行建模。 对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用的“小纹波假设”在谐振槽路的小信号建模中不再适用。 对于谐振变换器,通常采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号模型。对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间。其状态方程为 当开关管S断开时,二极管D导通,忽略二极管D的压降,可得到等效电路

开关电源的小信号模型和环路原理

开关电源的小信号模型和环路原理 本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为

L(dil/dt)=-Uo (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L[d(il+il')/dt]=(D+d)(Uin+Uin')-(Uo+Uo') (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L(dil'/dt)=DUin'+dUin-Uo' (5) 由图1,又有 iL=C(duc/dt)+Uo/R0 (6) Uo=Uc+ReC(duc/dt) (7) 式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt)) (8)

DCDC开关电源的设计

引言 随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。 负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。 传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。 为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。 图1 传统的非隔离负电压开关电源电路结构1 图2 传统的非隔离负电压开关电源电路结构2

图3 两种开关电源滤波电容的充电电流波形 1 工作原理分析 本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器LT1935内部的功率三极 管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再 次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935内部功率三极管的导通和关断期间均通过输出电感L1,这很大程度上抑制了输出电流的波动,降低了输出纹波 电流的影响,进而大大增加系统的带负载能力和效率。 反馈控制回路采用了峰值电流控制。相比传统的电压控制,峰值电流控制一方面能很好的改善电源的动态响应,另一方面还能 实现快速的过电流保护,很大程度上提高了系统的可靠性。由于采用了电源控制器LT1935,其内部集成了峰值电路控制电路和斜 坡补偿电路,非隔离负电压DC/DC开关电源反馈回路设计即转换为补偿网络设计,进而大大简化了反馈回路的设计。 为防止过高的直流电源对电源控制器的危害,这里使用稳压管VD2和VD3实现过电压保护。

开关电源的建模和环路补偿设计 上

开关电源的建模和环路补偿设计上 如今的电子系统变得越来越复杂,电源轨和电源数量都在不断增加。为了实现最佳电源解决方案密度、可靠性和成本,系统设计师常常需要自己设计电源解决方案,而不是仅仅使用商用砖式电源。设计和优化高性能开关模式电源正在成为越来越频繁、越来越具挑战性的任务。 电源环路补偿设计常常被看作是一项艰难的任务,对经验不足的电源设计师尤其如此。在实际补偿设计中,为了调整补偿组件的值,常常需要进行无数次迭代。对于一个复杂系统而言,这不仅耗费大量时间,而且也不够准确,因为这类系统的电源带宽和稳定性裕度可能受到几种因素的影响。本应用指南针对开关模式电源及其环路补偿设计,说明了小信号建模的基本概念和方法。本文以降压型转换器作为典型例子,但是这些概念也能适用于其他拓扑。本文还介绍了用户易用的LTpowerCAD设计工具,以减轻设计及优化负担。 确定问题 一个良好设计的开关模式电源(SMPS) 必须是没有噪声的,无论从电气还是声学角度来看。欠补偿系统可能导致运行不稳定。不稳定电源的典型症状包括:磁性组件或

陶瓷电容器产生可听噪声、开关波形中有抖动、输出电压震荡、功率FET 过热等等。 不过,除了环路稳定性,还有很多原因可能导致产生不想要的震荡。不幸的是,对于经验不足的电源设计师而言,这些震荡在示波器上看起来完全相同。即使对于经验丰富的工程师,有时确定引起不稳定性的原因也是很困难。图 1 显示了一个不稳定降压型电源的典型输出和开关节点波形。调节环路补偿可能或不可能解决电源不稳定问题,因为有时震荡是由其他因素引起的,例如PCB 噪声。如果设计师对各种可能性没有了然于胸,那么确定引起运行噪声的潜藏原因可能耗费大量时间,令人非常沮丧。 图1:一个“不稳定” 降压型转换器的典型输出电压和 开关节点波形 对于开关模式电源转换器而言,例如图 2 所示的 LTC3851 或LTC3833 电流模式降压型电源,一种快速确

BJT放大电路的小信号模型简化及输出电阻求解

BJT放大电路的小信号模型简化及输出电阻求解① 宋飞飞(南京医科大学康达学院江苏连云港 222000) 【摘要】在模拟电子技术教学中,BJT的H参数及小信号模型简化过程是学习的基础,但也是最难以理解的内容,该文详细介绍了小信号模型的简化过程。随着大规模集成电路的发展,多级放大电路各个参数的求解至关重要,运用欧姆定律求解放大电路的输出电阻比较麻烦,提出一种等效变换法来求解放大电路的输出电阻,并通过单极放大电路和多级放大电路的例子,证明等效变换求解放大电路的输出电阻是最有效的方法。 【期刊名称】科技资讯 【年(卷),期】2016(014)011 【总页数】4 【关键词】H参数小信号模型欧姆定律等效变换输出电阻 【文献来源】https://https://www.wendangku.net/doc/e55074189.html,/academic-journal-cn_science-technology-information_thesis/0201257423723.html 模拟电子技术不仅是电类各专业的一门技术基础学科,也是生物医学工程、医学影像技术等医学相关专业的基础学科,它主要研究各种半导体器件的性能、电路及应用。而晶体三极管构成的基本放大电路,又是模拟电子技术最基本的、最重要的内容,因此,BJT的H参数及小信号模型的建立和简化,是掌握分析放大电路的基础。在实际的工程应用中,晶体三极管的单极放大倍数有限,大规模集成电路的发展,提高了电路的放大倍数,实现了将微弱的电信号进行放大的作用,那么在设计集成电路时,对多级放大电路各个参数的求解将显得尤为重要,特别是放大电路的输出电阻求解,而欧姆定律法求解输出电阻过于复

开关电源的小信号模型及环路设计

摘要建立了电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。关键词开关电源;小信号模型;电压模式控制;电流模式控制引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动例如启动过程和负载剧烈变化过程并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用电路,工作在定频控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。范文先生网收集整理1电路电感电流连续时的小信号模型图1为典型的电路,为了简化分析,假定功率开关管和1为理想开关,滤波电感为理想电感电阻为0,电路工作在连续电流模式下。为滤波电容的等效串联电阻,为负载电阻。各状态变量的正方向定义如图1中所示。导通时,对电感列状态方程有=-1断开,1续流导通时,状态方程变为=-2占空比为时,一个开关周期过程中,式1及式2分别持续了和1-的

时间为开关周期,因此,一个周期内电感的平均状态方程为=-+1--=-3稳态时,=0,则=。这说明稳态时输出电压是一个常数,其大小与占空比和输入电压成正比。由于电路各状态变量总是围绕稳态值波动,因此,由式3得[+]=++-+4式4由式3的稳态值加小信号波动值形成。上标为波浪符的量为波动量,为的波动量。式4减式3并略去了两个波动量的乘积项得=+-5由图1,又有=+06=+7式6及式7不论电路工作在哪种状态均成立。由式6及式7可得+=1+8式8的推导中假设这说明稳态时电感电流平均值全部流过负载。对式8中各变量附加小信号波动量得式9减式8得+=1+10将式10进行拉氏变换得=·[1+1+]11=11一般认为在开关频率的频带范围内输入电压是恒定的,即可假设=0并将其代入式5,将式5进行拉氏变换得=-12由式11,式12得=[1+2+++1]13=[1+2+++1]·14式13,式14便为电路在电感电流连续时的控制-输出小信号传递函数。2电压模式控制电压模式控制方法仅采用单电压环进行校正,比较简单,容易实现,可以满足大多数情况下的性能要求,如图2所示。图2中,当电压误差放大器增益较低、带宽很窄时,波形近似直流电平,并有=15=16式16为式15的小信号波动方程。整个电路的环路结构如图3所示。图3没有考虑输入电压的变化,即假设=0。图3中,一般为0及分别为电压给定与电压输出的小信号波动;=,为反馈系数;误差为输出采样值偏离稳态点的波动值,经电压误差放大器放大后,得;为脉冲宽度调制器增益,==1;为主电路增益,==;为输出滤波器传

PSPICE“交流小信号分析”运用到PWM型开关电源上

计算机仿真在增强器四极铁电源设计中的应用 上海原子核研究所李瑞、卢宋林 摘要:本文分析了增强器磁铁电源的工作原理,讨论了伯德图在动态电源跟踪性能设计上的指 导作用,并将PSPICE“交流小信号分析”运用到PWM型开关电源上,最后仿真得到电源在上 升时间段450ms内全程具有好于0.1%误差的跟踪能力。 关键词:增强器磁铁电源动态跟踪仿真 一.引言 对于将建造的上海同步辐射装置(SSRF),在束流由300MeV至3.5GeV加速过程中,依据物理设计要求,增强器采用动态注入和引出方案,增强器主二、四极磁铁电源的输出电流均为1Hz 周期的电流脉冲,其上升时间为450ms,下降时间小于550ms,对电流的返回曲线不做要求。各主磁铁电流之间保持预定的比率关系,从而保证束流工作点误差值在容许范围内,使加速器具有较高的注入效率,这就要求增强器磁铁电源能够有好的动态性能。增强器二极磁铁电源的给定是采用下装表格的形式,增强器四极磁铁电源以增强器二极磁铁电源的输出电流为参考,要求在电流上升时间450ms内都能够以优于0.1%的精度跟踪二极磁铁电源的输出电流曲线,同时该电源的输出峰值高达500A/380V。负载电感量为72mH,等效电阻为730mΩ,时间常数为0.1S。 对这样大功率、宽范围、高跟踪精度动态开关电源,国内外都没有现成的产品。BNL和APS 实验室均采用的是12相可控硅整流结构,这类电源工作频率低,动态响应慢,可勉强达到0.1%的跟踪精度,国内也没有实验室研制出该类电源。本文结合实际经验、自动控制理论和计算机仿真,对电源的动态跟踪性能进行可行性研究,获得该电源设计的理论依据。 二.增强器四极磁铁电源工作原理简述 图1 增强器磁铁电源原理框图 由原理框图1可知,三相交流电经过三相感应调压器调压、隔离之后,经过三相全波整流、滤波后为斩波器提供直流源。电流给定和电流反馈的误差信号经过放大、校正网络之后,送到工作频率为20kHz的PWM 调制器产生相应的脉宽调制信号,该脉宽信号经过驱动电路放大,控制斩波器功率管的开关,获得频率为20kHz的矩形电压脉冲,经过滤波之后,获得纹波在容许范围内的直流输出。反馈电流的取样点选在负载回路,参见仿真电路图4。该类电源工作频率高,动态响应快,效率可高达0.9以上。

开关电源小信号模型

开关电源小信号模型 1Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo(1) S断开,D1续流导通时,状态方程变为 L(dil/dt)=-Uo(2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo(3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L[d(il+il’’’’)/dt]=(D+d)(Uin+Uin’’’’)-(Uo+Uo’’’’)(4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D的波动量。式(4)减式(3)并略去了两个波动量的乘积项得L(dil’’’’/dt)=DUin’’’’+dUin-Uo’’’’(5) 由图1,又有 iL=C(duc/dt)+Uo/R0(6) Uo=Uc+ReC(duc/dt)(7) 式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt))(8) 式(8)的推导中假设Re 式(9)减式(8)得

开关电源(Buck电路)的小信号模型及环路设计

摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路 S导通时,对电感列状态方程有 L=U in-U o (1) S断开,D1续流导通时,状态方程变为 L=-U o (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U in-U o)+(1-D)(-U o)=DU in-U o(3)

完整word版,boost小信号建模

3 (30分)Project: Control Loop Design and Simulation of a Boost Converter Fig.1 shows a circuit diagram of a boost converter and the parameters for circuit elements. Fig.1. Boost converter circuit diagram and system parameters 1)Derive the large-signal average model of the boost converter and draw the corresponding circuit diagram. 2)Derive the small-signal model of the boost converter and draw the corresponding circuit diagram. 3)From the small-signal model, derive the control to output transfer function (G vd) and plot its frequency-domain response (Bode plot) with MATLAB ‘bode’ command. 4)Design a controller to compensate the open-loop Bode plot with MATLAB ‘sisotool’ toolbox. Clearly mark the poles and zeros of the designed controller and the phase margin of the compensated system. Write down the controller transfer function. 5)Simulate the performance of the compensated converter system in MATLAB/Simulink with the converter average model and the designed controller. Add disturbances to the input voltage and load power and record the output voltage waveforms. A report containing the above five aspects is required.

开关电源小信号分析方法

Why is it Important to Plot a Power Stage Small-Signal Response? Christophe Basso, ON Semiconductor | Power Electronics Sep. 16, 2013 Christophe Basso is an Application Engineering Director at ON Semiconductor in Toulouse, France, where he leads an application team dedicated to developing new offline controllers specifications. He has originated numerous integrated circuits among which the NCP120X series has set new standards for low standby power converters. Read more about Christophe at the end of this article. QUESTION: Why is it Important to Plot a Power Stage Small-Signal Response? ANSWER: This is the first question you must ask if you are serious about compensating a power supply. Too often, I have seen engineers building a prototype and throwing arbitrarily-selected component values at the error amplifier, hoping it would let the power supply at least stabilize after start up. Then, by tweaking compensating components values on-the-fly as the output undergoes a transient step, the power supply is more or less stabilized by taming undershoots and ringing portions. A few prototypes later, the design is validated for pilot run and here we go for mass production! This is a scenario that I have seen many times while visiting power supply designers as an application engineer for ON Semi. Even if trials and errors must absolutely be banned when it comes down to loop control, I cannot blame these gentlemen for their method. The reason is simple, 99% percent of an engineer’s time is spent on safety tests, making sure the converter dies peacefully, without smoke – sometimes without noise! – when resistance R236 is open or short circuited or when the controller pin 1 is shorted to pin 2 or even worse, to any of the other pins, including high voltage ones! Believe me, testing and solving for safety is an extremely long and tedious exercise, furthermore if extreme cost and time pressure exists. If you overlook important parts of the design (safety limits, stability margins and so on…) no wonder the telephone rings a few months later, asking the design engineer to urgently fly to the remote factory as most of power supplies do not pass the simple start-up sequence: the overshoot trips the Over Voltage Protection (OVP) circuit and the converter safely latches off. The money the company believed it has saved by cutting the development time, instantaneously vanishes if a factory enters a line-down situation or worse, if a product re-call is necessary. In short, do NOT neglect stability design by thinking that a simple 0.1-μF capacitor across the TL431 will do the job. Spend the necessary time on it, read some of the reference books and you will quickly realize how new tools can make the stabilization process quite simple at the end. The power stage response is the first thing you need to stabilize your converter. This is how your converter responds to an ac stimulus applied to its control pin while operating in various conditions (light load, full load, high or low line and so on). Without it, there is nothing you can do besides trial and errors as already described. I can see several ways to obtain this transfer function:

相关文档
相关文档 最新文档