文档库 最新最全的文档下载
当前位置:文档库 › 工程电磁场涡流损耗

工程电磁场涡流损耗

工程电磁场涡流损耗
工程电磁场涡流损耗

工程电磁场实验报告

-----叠片钢涡流损耗分析

班级:10101901

学号:1010190150

序号:43

姓名:袁路路

一、实验目的

(1)认识钢的涡流效应的损耗,以及减少涡流的方法。

(2)学习涡流损耗的计算方法。

(3)学习用MAXWELL 2D计算叠片钢的涡流。

二、实验内容

作用在磁钢表面的外磁场Hz=3977.77A/m,即Bz=1T,要求;

计算机仿真:叠片钢的模型为四片钢片叠加而成,每一片界面的长和宽分别为12.7mm和0.356mm,两片之间的距离为8.12μm,叠片钢的电导率为

2.086e6S/m,相对磁导率为2000,建立相应的几何模型,并指定材料属性,指定边界条件。分析不同频率下的涡流损耗。

三、实验步骤

1、依照模型建立起第一象限内的模型,将模型的原点与坐标轴的原点重合,

这样做起来比较方便。设置钢片的材质,使之符合实际要求。然后设置边界条件和源,本实验的源为一恒定磁场,分别制定在上界和右边界,然后考虑到对偶性,将左边界和下界设置为对偶。然后设置求解参数,因为本实验是要进行不同的频率下,涡流损耗的分析,所以设定好Frequency后,进行求解。

2、将Frequency分别设置为1Hz、60Hz、360Hz、1KHz、2KHz、5KHz、10KHz,进行求解,注意每次求解时,要将Starting Mesh设定为Initial,表示重新开始计算求解。记录下不同频率下的涡流损耗值P和最低磁通密度B min。

3、进行数据处理,把实验所得数据和理论值进行比较。得出实验结论。

四、实验数据结果

1、f=1HZ时

P=1.933644e-6(W)

H min=3.9777e2(A/m)

2、f=60HZ时

P=6.9567e-3(W)

H min=3.9764e2(A/m)

P=2.45088e-1 (W) H min=3.9314e2 (A/m)

f=1kHZ时

P=1.64842(W)

H min=3.6567e2(A/m)

P=4.58867(W)

H min=3.0164e2

f=5kHZ时

P=9.56412(W)

H min=1.6401e2(A/m)

P=1.28196e1(W)

H min=8.0147e1(A/m)

五、实验数据分析

1、实验数据与低频下损耗的理论计算公式的比较

低频涡流损耗的计算公式为:P=t 2ω2B2σ

24

V,

式中,V为叠片体积;t为叠片厚度;B为峰值磁通密度;σ为叠片电导率;ω为外加磁场角频率。V=12.7×10?3×0.356×10?3×1=4.5212×10?6m3。

低频率下的Bmin和P

F(Hz) Bmin(T) P(w)计算值P(w)实验值

1 1 1.9605E-06 1.93364E-06

60 0.999 0.0070578 6.9567E-03

360 0.987 0.25408 0.245088

1k 0.912 1.9605 1.64842

2k 0.743 7.842 4.58867

5k 0.396 49.012 9.56412

10k 0.191 196.04 12.8196

2、实验结果和高频损耗计算公式的比较

当频率较高时,计算涡流损耗就应该另外寻求公式,查阅资料可得,高频时

的涡流损耗计算公式为P=1

2H t2R s S=H t2

2δσ

=H t2

2

ωμ

S

式中,S为叠片表面积;H t为磁场强度切向分量;σ为叠片电导率;μ为叠片相对磁导率;ω为外加磁场角频率;R s为单位表面积叠片的阻抗;δ为趋肤深度。此公式适用于频率大于10KHZ的情况,为了进行对比,也利用此公式计算2KHZ和5KHZ的情况。

高频下的Bmin和P

F(Hz) Bmin(T) P(w)计算值P(w)实验值

2k 0.743 5.6918 4.588867

5k 0.396 9 9.56412

10k 0.191 12.727 12.8196

3误差分析

误差分析

F(Hz) △P(w)相对误差

1 2.686E-08 1.37%

60 0.0001011 1.43%

360 0.008992 3.53%

1k 0.31208 15.90%

2k(低频) 3.2533 41.50%

5k(低频)39.44788 80.50%

10k(低频) 183.2204 93.40%

2k(高频) 1.102933 19.30%

5k(高频)-0.56412 6.20%

10k(高频) -0.0926 0.73% 经过对比发现,在1k Hz以下频率,仿真结果与低频损耗计算结果吻合较好;在频率(大于)等于5k Hz时,仿真结果与高频损耗计算结果吻合也较好。

六、实验总结

本次实验,通过用Maxwell对叠片钢涡流损耗进行仿真分析的实验,我对涡流有了更深刻的理解和认识,同时对该软件也熟悉了。从中了解到仿真在学习中对我们的帮助很大,我们以后应该多学习有关这方面的认识,这样很多抽象的东西就可以形象化,使我们更容易理解。

铁芯损耗中的磁滞损耗和涡流损耗的区分

1 变压器铁芯损耗中的磁滞损耗和涡流损耗的区分 (盐城师范学院, 江苏 盐城 224002) [摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法. [Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing. 关键词 磁滞损耗 涡流损耗 区分方法 0 引言 在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+= 通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。 本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。 1 测试原理 在通常情况下,铁芯损耗的计算公式为: V B f V fB P P P m c m h c a FC 22 2 σσ+=+= (1) 上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。 令(1)式中的A V B m h =2 σ,B V B m c =2σ,得: 2Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有: Bf A f P FC += (3) 依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采用线性回归法对测试数据进行处理,即可得到(3) 式中的两个常数A 和B 。由Af P h =和2 Bf P c =即可区分出对应于某一f 值的Fe P 中的h P 分量和 c P 分量。 2 测试装置 1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500V A 。) 2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。 3.频率表:Hz D ?3型频率表。 4.功率表:W D ?34型低功率因数瓦特表。测试采用该表的300伏电压档和0.5安电流档。 5.电压表:V D ?26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。 6.电流表:A D ?26型电流表,本次测试采用该表的0.5安档。 3 测试方法 1. 实验装置的电路原理图如下: 2. 在测试中,在改变f 值时应始终保持m B 值不变。

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

效率与损耗

损耗与效率 §1 概述 一、损耗与效率的关系 效率是电机的一个重要性能指标 ↑↑↓→↓↓∑耗材尺寸,,,:,δδB A p B A 效率高低取决→损耗大小p ∑→ 材料性能、绕组型式、电机结构等 高效电机就是设法降低电机的损耗、多用材料。 二、电机损耗分类 铁心中的基本损耗——主要是主磁场在铁心中交变产生的磁滞、涡流损耗 表面损耗:定转子开槽而引起的气隙磁导谐 波磁场在对方铁心表面产生的损耗 空载铁心中附加损耗 脉振损耗:定、转子开槽使对方齿中磁通因电机旋 损耗 转而变化所产生的损耗 电气损耗:工作电机在绕组铜中产生的损耗,包括接触损耗 负载时附加损耗:漏磁场包括谐波磁场在定、转子绕组中、铁心及结构件中引起的各 种损耗 机械损耗:通风损耗、轴承磨擦损耗、电刷和换向器(集电环)磨擦损耗 §2 基本铁耗 产生的原因:由主磁场在铁心内发生变化时所产生的 主磁场的变化:①交变磁化性质:变压器铁心、定转子齿中发生 ②旋转磁化性质:定、转子铁轭中发生的

一、磁滞损耗 1、磁滞损耗系数:单位质量铁磁物质内由交变磁化引起的磁滞损耗h p 2、磁滞损耗耗系数计算 在电机铁心内磁通密度T B 6.10.1≤≤时: 磁密振幅 交变磁化的频率下测在周波频率取决于材料性能的常数------=B f HZ fB p h h h h ) 50(2σσσ (h p 与f 、B 有关,与材料有关) 任意频率下: 2 50 B f p h h σ= 3、旋转磁化引起的磁滞损耗一般较交变磁化放大45-65%(轭磁密一般在1.0-1.5T ) 这在以后计算基本铁耗时用系数a k 考虑。 二、涡流损耗 1、产生的原因: 铁心中的磁场发生变化时,在铁心中感应电势,会产生电流,这电流即涡流。由它引起的损耗为涡流损耗。 2、涡流损耗系数计算 电阻率 钢片密度钢片厚度------??= =ρρπσσFe Fe Fe Fe e e e d d fB p 6) (222 任意频率下: 2)50 ( B f p e e σ= 涡流损耗系数e p 与B 、f 及材料厚度平方Fe ?成正比。 三、轭部及齿部的基本铁耗 1、钢的损耗系数(比损耗) 22)50 (50B f B f p p p e h e h Fe σσ+=+= 2、钢比损耗简便计算 3 .125010 )50 ( f B p p Fe = (瓦/公斤)

软磁材料的损耗(一)

软磁材料的损耗(一) 铁氧体磁性材料处在随时间变化的磁场中,材料所吸收的并以热形式耗散的能量,称为磁性材料的损耗。在低磁通密度下,铁氧体磁性材料的损耗可用损耗角正切 tgò来表示: (1-13) 式中。Rs=仅由磁芯引起的测量线圈的串联电阻(Ω)Ls =带磁芯线圈的串联电感(H) f = 频率(Hz) tgò 损耗角正切的倒数,称为品质因数,用 Q 表示 (1-14) 众所周知,铁氧体磁性材料的总损耗包括涡流损耗tgòe,磁滞损耗 tg òh 以及剩余损耗 tgòr,即: tgò=tgòe+tgòh+tgòr (1-15) 涡流损耗与材料电阻率,磁芯尺寸及使用频率有关,并可由下面近似公式表示: (1-16) 式中,ρ= 材料的电阻率,d = 磁芯尺寸,β=系数。对厚度为 d 的

薄片,β=6;对直径为 d 的园柱体,β=16。在弱磁场条件下,由磁滞现象引起的损耗角正切由下式表示: tgòh=ηBμeB (1-17) 式中,ηB = 材料磁滞常数(T1)B = 测量时磁芯中磁感应强度的峰值(T)μe = 磁芯的有效磁导率。总损耗减去涡流损耗和磁滞损耗的差值,称为剩余损耗。在低频弱磁场条件下,因为频率低,涡流损耗可以忽略,且弱磁场下磁滞损耗很小,所以实际测量磁芯损耗角正切实质上主要是剩余损耗值。当磁芯中有气隙存在时,磁芯损耗因子与有效磁导率μe 有关。在低磁通密度时,只要漏磁通可忽略,比损耗与气隙长度无关,即: (1-18) 因此,常用损耗角正切与相对磁导率之比,来表征磁性材料的优值,有时也用μ·Q 乘积来表示,因为tgò/μ=1/μQ。对于开路状态使用的磁芯(如棒形磁芯、螺纹磁场芯等),磁芯损耗用表观品质因数 Qapp 来表示: (1-19) 式中,Qe = 有磁芯线圈的品质因数;Q0 = 无磁芯线圈的品质因数;损耗的出现导致磁导率的下降。图 1-10 示出高磁导率 MnZn 铁氧体的初始磁导率和损耗与频率的关系。

关于Ansoft maxwell中电机铁耗和涡流损耗计算的说明

考虑到最近很多人在问这个问题,因此专门整理出来,供新手参考。 先谈一下什么情况下需要做铁耗分析。对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P 曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。 以上方法,适用于Ansoft maxwell 13.0.0及以上版本,并适用于所有电机种类。 一、 MAXWELL分析磁场时,电气设备或电气元件(无论是电机还是变压器)主要包括两个部分,一个是励磁线圈,另外一个是磁性材料。所以总的损耗包括线圈损耗(也叫铜损)和磁芯损耗(也叫铁损)两个部分。其中线圈损耗还包括直流损耗(也就是直流电阻的损耗)和交流损耗(交流电流下的趋肤效应和邻近效应产生的损耗),这个交流损耗也叫做涡流损耗,在涡流场和瞬态场中可以通过设置EDDY EFFECTS来计算。而铁损只能在瞬态场中计算。铁损的计算,主要是由磁芯材料供应商提供的各种频率和工作磁感应强度下的测试数据为基础,使用STEINMETZ方程式,采用插值法得到的。这个铁损已经包含了磁芯的所有损耗,即:磁滞损耗,涡流损耗和剩余损耗。铁损的计算分两种,一种主要是软磁铁氧体(POWER FERRITE),另外一种主要是矽钢片(ELECTRICAL STEEL),两种计算公式不同。 二、 SOLIDLOSS(实体导体损耗)是指任何导体材料的损耗,既可以包含源电流,又可以有涡流电流。 SOLID CONDUCTOR(实体导体)又包含两种,一种是主动导体,即有外加电流的导体,另外一种 是被动导体,即没有外加电流。被动导体又有两种情况,短路和开路。定子和转子其实就是被动导体 ,当然有涡流存在,也就是一种SOLIDLOSS。其实应该还有一种导体损耗,DISPLACEMENT (位移电流),但是通常都很小,一般用于交变电场分析,磁场中很少用。 三、关于powerloss和coreloss

Maxwell 铁耗计算和涡流损耗

Maxwell help文件 为Maxwell2D/3D的瞬态求解设置铁芯损耗 一、铁损定义(core loss definition) 铁损的计算属性定义(Calculating Properties for Core Loss(BP Curve) 要提取损耗特征的外特性(BP曲线),先在View/EditMaterial对话框中设置损耗类型(Core Loss Type)是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 以设置硅钢片为例。 1、点击Tools>Edit Configured Libraries>Materials. 或者,在左侧project的窗口中,往下拉会有一个文件夹名为definitions,点开加号,有个materials文件夹,右击,选择Edit All Libraries.,“Edit Libraries”对话框就会出现。 2、点击Add Material,“View/Edit Material”对话框会出现。 3、在“Core Loss Type”行,有个“Value”的框,单击,会弹出下拉菜单,可以拉下选择是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 其他的参数出现在“Core Loss Type”行的下面,例如硅钢片的Kh,Kc,Ke,and Kdc,功率铁氧体的Cm,X,Y,and Kdc。如果是硅钢片,对话框底部的“Calculate Properties for”下拉菜单也是可以使用的,通过它可以从外部引入制造厂商提供的铁损曲线等数据(Kh,Kc,Ke,and Kdc)确定损耗系数(Core Loss Coefficient)。 4、如果你选择的是硅钢片,按如下操作: ①从对话框底部的“Calculate Properties for”下拉菜单中选择损耗系数的确定方法(永磁铁permanent magnet、单一频率的铁损core loss at one frequency、多频率的铁损core loss versus frequency),然后会蹦出BP曲线对话框。 单一频率的损耗:点击图表上面的“Import from file.”可以直接导入BP曲线数据文件,但要“*。Tab”格式文件。如果纵横轴错了,可以点击“Swap X-Y Data”按钮,调换B轴和P 轴的数据,但是B轴和P轴的方向不变。或者直接在左侧的表格中填入对应的B值和P值,行不够了可以点击“Add Row Above”按钮,和“add row below”分别从上面和下面添加行,“append rows”是一口气加好几行,或者删除行“delete rows”。表下面的“frequency”表示当前的BP曲线是在什么频率下的性能。“Thickness”表示硅钢片的厚度,“conductivity”是电导率。点击“OK”确定。 多频率的损耗:打开对话框后左下方有个“Edit”窗口,是添加要设定BP曲线的频率的。分别加上几个频率,如1Hz和2Hz。每填写一个赫兹点一下“Add”按钮,就会把频率添加到上面的表格中。在相应的频率后面有“Edit dataset”按钮,点击可进入BP曲线编辑页面。与单一的相同,可以导入文件或者自己填写BP曲线数据。填完点击“OK”按钮。右侧的图中就会出现设定的BP曲线。在图标下面选择“select frequency”显示单一的左侧亮蓝色的频率下的BP曲线,选择“All frequencies”显示所有频率下的BP曲线。选择“original curve”则BP曲线的第一个点需要从0开始。选择“Regression Curve”则,图中不仅显示设定的BP曲线,还会附加一条BP值的增长趋势曲线。 ②确定BP曲线 ③在“Core Loss Unit”对话框里选择BP曲线的单位 ④输入频率Frequency、硅钢片质量密度Mass Density、导电率Conductivity、厚度Thickness 的值和单位。 Kh——滞后系数(Hysteresis Coefficient) Kc——经典涡流系数(Classical Eddy Coefficient) Ke——过量系数(Excess Coefficient) Kdc——考虑直流偏磁效应的系数

永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永 磁体涡流损耗计算研究 The calculation and analysis of high-speed spindle permanent magnet motor eddy current losses in the permanent magnet 学院:电气工程学院 专业班级:电气工程及其自动化0903班 学号: 学生姓名: 指导教师:(副教授) 2013 年 6 月

摘要 永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。 本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。 首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。 针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。 关键词:永磁同步电机;永磁体;涡流损耗;有限元法 I

详解:集肤效应、邻近效应、边缘效应、涡流损耗

1.集肤效应 1.1 集肤效应的原理 图 1.1 表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度〈skin depth 〉的概念,此深度的电流密度大小恰好为 表面电流密度大小的1/e 倍: 一般用集肤深度Δ来表示集肤效应,其表达式为: 其中:γ为导体的电导率,μ为导体的磁导率, f 为工作频率。 图 1.1. 集肤效应产生过程示意图 图 1.2. 高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图 1.2 所示,由表面向中心处的电流密度逐渐减小。由上图及式 1.1 可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。 1.2 影响及应用

在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使 用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用 方面,利用趋肤效应可以对金属进行表面淬火。 考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形 或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又 增加了导线的机械强度,这些都是利用了集肤效应这个原理。 集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。与一般讯号 线的夸大宣传所言 ,集肤效应并不会改变所有的高频讯号 ,并且不会造成任何相关动能的损失。 正好相 图 2.1 表示了邻近效应的产生过程。 A 、B 两导体流过相同方向的电流 IA 和 IB ,当电流按图中箭头 方向突增时,导体 A 产生的突变磁通 ΦA -B 在导体 B 中产生涡流,使其下表面的电流增大,上表面 的电流减少。同样导体 B 产生的突变磁通 ΦB -A 在导体 A 中产生涡流,使其上表面的电流增大,下 表面的电流减少。这个现象就是导体之间的邻近效应。 当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导 体有效截面面积不同。研究表明 :导体的相对面积越大则导体有效截面越大,损耗相对较小。 图 2.2. 临近效应示意图 反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。同样地,在陈旧的线束 传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。 图 2.1. 临近效应产生过程示意 图

磁滞损耗分析

铁芯的涡流损耗分析 当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。 开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。 变压器生产涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。 单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计算,在方法上是有区别的。但用于计算单激式开关电源变压器涡流损耗的方法,只需稍微变换,就可以用于对双激式开关变压器的涡流损耗进行计算。 例如,把双激式开关电源变压器的双极性输入电压,分别看成是两次极性不同的单极性输入电压,这样就可以实现对于双激式开关电源变压器涡流损耗的计算。因此,下面仅对单激式开关变压器的涡流损耗计算进行详细分析。 当有一个直流脉冲电压加到变压器初级线圈的两端时,在变压器初级线圈中就就有励磁电流通过,并在变压器铁芯中产生磁场强度H和磁通密度B,两者由下式决定:

变压器空载耗中的磁滞损耗和涡流损耗的区分

变压器空载损耗中的磁滞损耗和涡流损耗的区分 1 引言 变压器空载损耗包括磁滞损耗和涡流损耗, 即: 空载损耗( PFe) =磁滞损耗( Ph) +涡流损耗( Pc) 在通常的电工学或者电机学的变压器试验中 ( 如变压器负载损耗和空载损耗的测量) 仅是测出总的空载损耗PFe, 而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量, 给工程设计人员有目的地降低变压器损耗和提高变压器运行效率带来了困难。笔者将简要地介绍用分析测试的方法来区分空载损耗中的磁滞损耗和涡流损耗的测试原理、采用的测试装置、设计的测试方法以及测试数据的处理方法。 2 测试原理 变压器的空载损耗可由空载试验来测定。 在通常情况下, 空载损耗的计算公式为: 变压器的空载损耗可由空载试验来测定。 在通常情况下, 空载损耗的计算公式为: PFe =Ph +Pc =σfB V+σf B V (1) 式中σ、σ———与铁心材料性质有关的系数 f———电源频率,Hz B———铁心中磁感应强度的最大值, T V———铁心材料的体积, mm3 令式( 1) 中的σh B m2V=A, σc B m2V=B,得: PFe=Af+Bf2 可见, 当维持Bm 不变时, A、B 均为与频率无关的常数。则有: PFe(f)=A+Bf (2)

依据式(2) , 在中心频率为50Hz 附近取一系列不同的频率值, 分别测出其对应的PFe 值, 采用线性回归法对测试数据进行处理, 即可得到式( 2) 中的两个常数A 和B 。由Ph=Af 和Pc=Bf 2 即可区分出对应于某一f 值的PFe 中的Ph 分量和Pc 分量。 3 测试装置 ( 1) 被测样品: TB 为单相变压器。( 一次侧额定电压为220V, 二次侧为36V 。一次侧绕组匝数为1000 匝, 二次侧绕组匝数为180 匝, 额定容量为500VA) 。 (2) 变频电源SDF-1型直流电动同步发电机组及KGT-1型可控调速器, 发电机额定功率2.2KW 。 (3) 频率表:D 3-Hz 型频率表。 (4) 功率表:D 34—W 型低功率因数瓦特表。本次测试采用该表的300V 电压挡和 0.5A 的电流挡。 ( 5) 电压表: D 26- V 型电压表及MF- 10 万用表。 本次测试采用上述两表的300V 挡和50V 挡, 分别用于测量测试电路中的U 1 值和U 2 值。 (6) 电流表: D26- A 型电流表, 本次测试采用该表的0.5A 挡。 4 测试方法 试验装置的电路原理如图1 所示。 图1 空载试验测试电路 HZ U1 A U2 TB 变 频 电 源

变压器铁芯损耗中的磁滞损耗和涡流损耗的区分

变压器铁芯损耗中的磁滞损耗和涡流损耗的区分 [摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法. [Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing. 关键词 磁滞损耗 涡流损耗 区分方法 0 引言 在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+= 通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。 本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。 1 测试原理 在通常情况下,铁芯损耗的计算公式为: V B f V fB P P P m c m h c a FC 22 2 σσ+=+= (1) 上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。 令(1)式中的A V B m h =2 σ,B V B m c =2σ,得: 2 Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有: Bf A f P FC += (3) 依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采 用线性回归法对测试数据进行处理,即可得到(3) 式中的两个常数A 和B 。由Af P h =和2Bf P c =即 可区分出对应于某一f 值的Fe P 中的h P 分量和c P 分量。 2 测试装置 1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500VA 。) 2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。 3.频率表:Hz D -3型频率表。 4.功率表:W D -34型低功率因数瓦特表。测试采用该表的300伏电压档和安电流档。 5.电压表:V D -26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。 6.电流表:A D -26型电流表,本次测试采用该表的安档。 3 测试方法 1. 实验装置的电路原理图如下:

铁芯磁滞损耗、涡流损耗的测量

铁芯磁滞损耗、涡流损耗的测量 双激式变压器铁芯磁滞损耗、涡流损耗的测量 ?双激式变压器铁芯的磁滞损耗和涡流损耗在工作原理上与单激式变压器铁芯的磁滞损耗和涡流损耗是有区别的。首先双激式变压器初级线圈输入的电压是双极性脉冲,电源在正负半周期间都向它提供能量。其次,单激式变压器铁芯是靠变压器初级线圈自身产生的反电动势在电路中产生的电流进行退磁的,而双激式变压器铁芯,除了靠变压器初级线圈自身产生的反电动势在电路中产生的电流进行退磁之外,当另一反极性电压脉冲加到变压器初级线圈上时,原励磁电流存储的能量还可以反馈给换相输入电压进行充电。 ?在双激式变压器铁芯中,磁滞损耗也是由流过变压器初级线圈励磁电流产生的磁场在铁芯中产生的;但在单激式变压器铁芯中,有一部分励磁电流存储的能量要转化成反激式电压向负载输出;而在双激式变压器铁芯中,励磁电流产生的能量基本上都是用于充磁与消磁。因此,双激式变压器铁芯的磁滞回线的面积比单激式变压器铁芯磁滞回线的面积大很多,磁滞损耗也大很多。 ?双激式变压器铁芯涡流损耗的机理与单激式变压器铁芯涡流损耗的机理基本是一样的,但双激式变压器铁芯的涡流损耗要比单激式变压器铁芯的涡流损耗大很多,因为,双激式变压器铁芯的磁通密度变化范围比单激式变压器铁芯的磁通密度变化范围大很多。 ?根据(2-65)式和(2-66)式以及图2-19和图2-20的分析结果,我们可以用图2-27电路来测试双激式开关变压器的磁滞损耗和涡流损耗。与图2-25 的工作原理基本相同,图2-27的主要工作原理是,在变压器初级线圈两端加一序列双极性电压方波,然后测试流过变压器初级线圈的电流i ;其中,i

磁损耗

磁性材料在磁化过程和反磁化过程中有一部分能量不可逆地转变为热,所损耗的能量称磁损耗。磁损耗W m包括涡流损耗W e、磁滞损耗W h以及其他磁弛豫或磁后效引起的剩余损耗W r, 即W m=W e+ W h+ W r。在一般情况下,磁损耗在铁氧体中主要是剩余损耗和磁滞损耗;金属磁性材料中则主要是涡流损耗和磁滞损耗。 磁性导体在交变磁场中,由于电磁感应而产生涡电流,这就引起磁场强度H和磁感应强度B的振幅和相位在材料内部的不均匀分布,并使B的相位落后于H的相位而增加一部分能量损耗,称为涡流损耗。对一些金属磁性材料的实验研究表明:测得的磁损耗要比理论计算的涡流损耗和准静态损耗之和大得多。实验与理论之差的额外损耗称为反常损耗。反常损耗部分来源于畴壁移动时通过电磁感应在畴壁附近感生的微涡流;另一部分则是由于畴壁的钉扎或畴壁的变形。值得注意的是,反常损耗在一些金属磁性材料(如硅钢片)总损耗中占很大部分。 磁滞损耗是由于磁性材料中存在不可逆的磁化过程(畴壁的不可逆位移,磁畴的不可逆转动)。在准静态磁化情形下,磁滞损耗与磁滞回线的面积成正比。在中等和强交变磁场下,一些金属磁性材料的 磁滞损耗适合施泰因梅茨型经验公式,f是频率, η和n是与材料有关的常数,例如,对3%Si-Fe合金,n≈1.6,η≈1.2×10-4尔格/(厘米3·高斯)。 剩余损耗指除了涡流损耗和磁滞损耗以外的其他所有损耗。它是由具有不同机制的磁弛豫过程所导致的。在低频和弱磁场中,剩余损

耗主要是磁后效损耗,且与频率无关。高频下剩余损耗主要包括尺寸共振、畴壁共振和自然共振等引起的损耗。在铁氧体中剩余损耗占优势。 磁后效引起的剩余损耗与频率、畴壁位移和磁化矢量转动的阻尼系数成比例。这种损耗大致有两类:里希特型和约旦型损耗。前者与温度和频率有关;后者对温度和频率的依赖性甚小。里希特型损耗主要是由杂质扩散产生的感生各向异性引起的。约旦型损耗则主要是由热涨落引起的。铁氧体的里希特损耗是由于价电子在离子间扩散引起的。 在104赫以上的高频和超高频区,铁氧体磁谱与磁损耗有关的磁导率虚分量μ″在不同频率区域可能出现几个吸收峰,它们对应着共振损耗,也是一种弛豫损耗。随着频率升高,这些吸收峰分别是由尺寸共振、畴壁共振、自然共振和自然交换共振引起的。 参考书目 郭贻诚编著:《铁磁学》,高等教育出版社,北京,1965。 北京大学物理系《铁磁学》编写组编:《铁磁学》,科学出版社,北京,1976。 李荫远、李国栋编:《铁氧体物理学》,修订版,科学出版社,北京,1978。

磁滞损耗

常用的变压器铁芯一般都是用硅钢片制做的。硅钢是一种合硅(硅也称矽)的钢,其含硅量在0.8~4.8%。由硅钢做变压器的铁芯,是因为硅钢本身是 一种导磁能力很强的磁性物质,在通电线圈中,它可以产生较大的磁感应强度,从而可以使变压器的体积缩小。 我们知道,实际的变压器总是在交流状态下工作,功率损耗不仅在线圈的电阻上,也产生在交变电流磁化下的铁芯中。通常把铁芯中的功率损耗叫“铁损”,铁损由两个原因造成,一个是“磁滞损耗”,一个是“涡流损耗”。 磁滞损耗是铁芯在磁化过程中,由于存在磁滞现象而产生的铁损,这种损耗的大小与材料的磁滞回线所包围的面积大小成正比。硅钢的磁滞回线狭小,用它做变压器的铁芯磁滞损耗较小,可使其发热程度大大减小。 既然硅钢有上述优点,为什么不用整块的硅钢做铁芯,还要把它加工成片状呢? 这是因为片状铁芯可以减小另外一种铁损——“涡流损耗”。变压器工作时,线圈中有交变电流,它产生的磁通当然是交变的。这个变化的磁通在铁芯中产生感应电流。铁芯中产生的感应电流,在垂直于磁通方向的平面内环流着,所以叫涡流。涡流损耗同样使铁芯发热。为了减小涡流损耗,变压器的铁芯用彼此绝缘的硅钢片叠成,使涡流在狭长形的回路中,通过较小的截面,以增大涡流通路上的电阻;同时,硅钢中的硅使材料的电阻率增大,也起到减小涡流的作用。 用做变压器的铁芯,一般选用0.35mm厚的冷轧硅钢片,按所需铁芯的尺寸,将它裁成长形片,然后交叠成“日”字形或“口”字形。从道理上讲,若为减 小涡流,硅钢片厚度越薄,拼接的片条越狭窄,效果越好。这不但减小了涡流损耗,降低了温升,还能节省硅钢片的用料。但实际上制作硅钢片铁芯时。并不单从上述的一面有利因素出发,因为那样制作铁芯,要大大增加工时,还减小了铁芯的有效截面。所以,用硅钢片制作变压器铁芯时,要从具体情况出发,权衡利弊,选择最佳尺寸。 变压器是根据电磁感应的原理制成的.在在闭合的铁芯柱上面绕有两个绕组,一个原绕组,和一个副绕组.当原绕组假上交流电源电压时.原饶组流有交变电流, 而建立磁势,在磁势的作用下铁芯中便产生交变主磁通,主磁通在铁芯中同时穿过,{交链]一.二次绕组而闭合由于电磁感应作用分别在一,,二次绕组产生感应电 动势,

工程电磁场涡流损耗

工程电磁场实验报告 -----叠片钢涡流损耗分析 班级:10101901 学号:1010190150 序号:43 姓名:袁路路

一、实验目的 (1)认识钢的涡流效应的损耗,以及减少涡流的方法。 (2)学习涡流损耗的计算方法。 (3)学习用MAXWELL 2D计算叠片钢的涡流。 二、实验内容 作用在磁钢表面的外磁场Hz=3977.77A/m,即Bz=1T,要求; 计算机仿真:叠片钢的模型为四片钢片叠加而成,每一片界面的长和宽分别为12.7mm和0.356mm,两片之间的距离为8.12μm,叠片钢的电导率为 2.086e6S/m,相对磁导率为2000,建立相应的几何模型,并指定材料属性,指定边界条件。分析不同频率下的涡流损耗。 三、实验步骤 1、依照模型建立起第一象限内的模型,将模型的原点与坐标轴的原点重合, 这样做起来比较方便。设置钢片的材质,使之符合实际要求。然后设置边界条件和源,本实验的源为一恒定磁场,分别制定在上界和右边界,然后考虑到对偶性,将左边界和下界设置为对偶。然后设置求解参数,因为本实验是要进行不同的频率下,涡流损耗的分析,所以设定好Frequency后,进行求解。 2、将Frequency分别设置为1Hz、60Hz、360Hz、1KHz、2KHz、5KHz、10KHz,进行求解,注意每次求解时,要将Starting Mesh设定为Initial,表示重新开始计算求解。记录下不同频率下的涡流损耗值P和最低磁通密度B min。 3、进行数据处理,把实验所得数据和理论值进行比较。得出实验结论。 四、实验数据结果 1、f=1HZ时 P=1.933644e-6(W) H min=3.9777e2(A/m)

相关文档
相关文档 最新文档