文档库 最新最全的文档下载
当前位置:文档库 › 等腰三角形的存在性问题

等腰三角形的存在性问题

等腰三角形的存在性问题
等腰三角形的存在性问题

等腰三角形的存在性问题

解题策略

如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况. 已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.

解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.

代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.

例题精讲

1.如图,在平面直角坐标系xOy 中,已知点D 在坐标为(3,4),点P 是x 轴正半轴上的一个动点,如果△DOP 是等腰三角形,求点P 的坐标.

解析.因为D (3,4),所以OD =5,3

cos 5

DOP ∠=. ①如图1,当PD =PO 时,作PE ⊥OD 于E . 在Rt △OPE 中,3cos 5OE DOP OP ∠=

=,52OE =,所以256OO =

.此时点P 的坐标为25

(,0)6

. ②如图2,当OP =OD =5时,点P 的坐标为(5,0).

③如图3,当DO =DP 时,点D 在OP 的垂直平分线上,此时点P 的坐标为(6,0).

2.如图,在矩形ABCD 中,AB =6,BC =8,动点P 以2个单位/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1个单位/秒的速度从点C 出发,沿CB 向点B 移动,当P 、Q 两点中其中一点到达终点时则停止运动.在P 、Q 两点移动过程中,当△PQC 为等腰三角形时,求t 的值.

解析.在Rt △ABC 中,10862222=+=+=

BC AB AC .因此4cos 5

ACB ∠=

. 在△PQC 中,CQ =t ,CP =10-2t .

①如图1,当CP CQ =时,102t t =-,解得

10

3

t =

(秒). ②如图2,当QP QC =时,过点Q 作QM ⊥

AC 于M ,则CM =1

52

PC t ==-. 在Rt △QMC 中,45cos 5CM t QCM CQ t -∠=

==,解得259

t =(秒). ③如图3,当PC PQ =时,过点P 作PN ⊥BC 于N ,则CN =11

22

QC t =

=. 在Rt △PNC 中,1

42

cos 5102t

CN

PCN CP t

∠===-,解得8021t =(秒). 综上所述,当t 为秒秒、秒、21

80

925310时,△PQC 为等腰三角形.

3.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,点P 是x 轴正半轴上的一个动点,直线PQ 与直线

AB 垂直,交y 轴于点Q ,如果△APQ 是等腰三角形,求点P 的坐标.

解析.由y =2x +2得,A (-1,0),B (0,2).所以OA =1,OB =2. 如图,由△AOB ∽△QOP 得,OP ∶OQ =OB ∶OA =2∶1. 设点Q 的坐标为(0,m ),那么点P 的坐标为(2m ,0).

因此AP 2=(2m +1)2,AQ 2=m 2+1,PQ 2=m 2+(2m )2=5m 2.

①当AP =AQ 时,AP 2=AQ 2,解方程(2m +1)2=m 2+1,得0m =或4

3

m =-

.所以符合条件的点P 不存在. ②当PA =PQ 时,PA 2=PQ 2,解方程(2m +1)2=5m 2,得25m =±.所以(425,0)P +. ③当QA =QP 时,QA 2=QP 2,解方程m 2+1=5m 2,得1

2

m =±

.所以(1,0)P . 4.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;

(2)求经过A 、O 、B 的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形若存在,求点P 的坐标;若不存在,请说明理由.

解析.(1)如图,过点B 作BC ⊥y 轴,垂足为C . 在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =

所以点B 的坐标为(2,23)--.

(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4),

代入点B (2,23)--,232(6)a -=-?-.解得3

a =-

. 所以抛物线的解析式为23323

(4)y x x x x =--=-+.

(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).

①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±. 当P 在(2,23)时,B 、O 、P 三点共线.

②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-. 综合①、②、③,点P 的坐标为(2,23)-.

5.如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D . (1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;

(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).

图1 图2 解析.(1)因为PC //DB ,所以

1CP PM MC

BD DM MB

===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).

(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.

①当AP =AD 时,2(4)m -24m =+.解得3

2

m =

(如图1).

②当PA=PD时,24

m+2

44(2)

m

=+-.解得

4

3

m=(如图2)或4

m=(不合题意,舍去).

③当DA=DP时,2

(4)

m

-2

44(2)

m

=+-.解得

2

3

m=(如图3)或2

m=(不合题意,舍去).

综上所述,当△APD为等腰三角形时,m的值为3

2

4

3

2

3

[另解]第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图1,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.

所以

1

2

PC MB

CM BA

==.因此

1

2

PC=,

3

2

m=.

②如图2,当PA=PD时,P在AD的垂直平分线上.

所以DA=2PO.因此42

m m

-=.解得

4

3

m=.

(3)点H所经过的路径长为

5

4

π.思路是这样的:

如图4,在Rt△OHM中,斜边OM为定值,因此以OM为直径的⊙G经过点H,也就是说点H在圆弧上运动.运动过的圆心角怎么确定呢如图5,P与O重合时,是点H运动的起点,∠COH=45°,∠CGH=90°.

6.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式;

(2)若m=8,求x为何值时,y的值最大,最大值是多少

(3)若

12

y

m

=,要使△DEF为等腰三角形,m的值应为多少

解析.(1)因为∠EDC与∠FEB都是∠DEC的余角,所以∠EDC=∠FEB.

又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此

DC EB

CE BF

=

,即8m x x y -=. 整理,得y 关于x 的函数关系为218

y x x m m =-

+. (2)如图1,当m =8时,22

11(4)288

y x x x =-+=--+.因此当x =4时,y 取得最大值为2.

(3) 若12

y m =,那么21218x x m m m

=-+.整理,得28120x x -+=.解得x =2或x =6.

要使△DEF 为等腰三角形,只存在ED =EF 的情况. 因为△DCE ∽△EBF ,所以CE =BF ,即x =y . 将x =y =2代入12y m =

,得m =6(如图2); 将x =y =6代入12

y m

=,得m =2(如图3).

第6题图1 第6题图2 第6题图3

7.如图,在△ABC 中,AB =AC =10,BC =16,DE =4.动线段DE (端点D 从点B 开始)沿BC 以每秒1个单位长度的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF //AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),联结DF ,设运动的时间为t 秒(t ≥0). (1)直接写出用含t 的代数式表示线段BE 、EF 的长;

(2)在这个运动过程中,△DEF 能否为等腰三角形若能,请求出t 的值;若不能,请说明理由; (3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.

解析.(1)4BE t =+,5(4)8

EF t =+.

(2)△DEF 中,∠DEF =∠C 是确定的.

①如图1,当DE =DF 时,DE EF

AB BC =

,即5

(4)481016t +=.解得15625

t =. ②如图2,当ED =EF 时,54(4)8

t =+.解得125

t =.

③如图3,当FD =FE 时,FE AC DE BC

=

,即5

(4)

108416t +=.解得0t =,即D 与B 重合.

第7题图1 第7题图2 第7题图3

(3)MN 是△FDE 的中位线,MN //DE ,MN =2,MN 扫过的形状是平行四边形. 如图4,运动结束,N 在AC 的中点,N 到BC 的距离为3; 如图5,运动开始,D 与B 重合,M 到BC 的距离为34

所以平行四边形的高为3934

4

-=,面积为9924

2

?=.

第7题图4 第7题图5

8.如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB =3,BC =32,直线y =323-x 经过点C ,交y 轴于点G .

(1)点C 、D 的坐标分别是C ( ),D ( );

(2)求顶点在直线y =323-x 上且经过点C 、D 的抛物线的解析式;

(3)将(2)中的抛物线沿直线y =323-x 平移,平移后的抛物线交y 轴于点F ,顶点为点E (顶点在y 轴右侧).平移后是否存在这样的抛物线,使△EFG 为等腰三角形 若存在,请求出此时抛物线的解析式;若不存在,请说明理由.

解析.(1)(4,23)C ,(1,23)D .

(2)顶点E 在AB 的垂直平分线上,横坐标为52

,代入直线y =323-x ,得3y =.

设抛物线的解析式为253()2

y a x =-+,代入点(4,23)C ,可得23a =.

所以物线的解析式为22353()2

y x =-+.

(3)由顶点E 在直线y =323-x 上, 可知点G 的坐标为(0,23)-,直线与y 轴正半轴的夹角为30°, 即∠EGF =30°.

设点E 的坐标为(,323)m m -,那么EG =2m ,平移后的抛物线为223()323y x m m =-+-.所以点F 的坐

标为223(0,323)m m +-.

①如图1,当GE =GF 时,y F -y G =GE =2m ,所以22332m m m +=.

解得m =0或332

-.m =0时顶点E 在y 轴上,不符合题意.

此时抛物线的解析式为223373(3)32

y x =-++-.

②如图2,当EF =EG 时,FG =23E x ,所以2233233

m m m +=.解得m =0或32

此时抛物线的解析式为22333()3

2

2

y x =--.

③当顶点E 在y 轴右侧时,∠FEG 为钝角,因此不存在FE =FG 的情况.

第8题图1 第8题图2

9.如图,已知△ABC 中,AB =AC =6,BC =8,点D 是BC 边上的一个动点,点E 在AC 边上,∠ADE =∠B .设BD 的长为x ,CE 的长为y .

(1)当D 为BC 的中点时,求CE 的长;

(2)求y 关于x 的函数关系式,并写出x 的取值范围; (3)如果△ADE 为等腰三角形,求x 的值.

备用图 备用图

解析.(1)当D 为BC 的中点时,AD ⊥BC ,DE ⊥AC ,CE 83

=

. (2)如图1,由于∠ADC =∠ADE +∠1,∠ADC =∠B +∠2,∠ADE =∠B , 所以∠1=∠2.

又因为AB =AC ,所以∠C =∠B .

所以△DCE ∽△ABD .因此DC CE AB BD =,即86x y

x

-=.

整理,得214

63

y x x =-+.x 的取值范围是0≤x ≤8.

(3)①如图1,当DA =DE 时,△DCE ≌△ABD .因此DC =AB ,8-x =6.解得x =2. ②如图2,当AD =AE 时,D 与B 重合,E 与C 重合,此时x =0.

③如图3,当EA =ED 时,∠DAE =∠ADE =∠B =∠C ,所以△DAC ∽△ABC .因此

8668x -=.解得7

2

x =.

第9题图1 第9题图2 第9题图3

全等三角形中等腰三角形证明题专训

全等三角形、等腰三角形 1、已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC .,求证:BD =CE . 2、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点, BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 4、如图:AE=BD ,AB=DE ,求证:∠A=∠D 5、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .试问DE ,AD ,BE 具有怎样的等量关系?并加以证明. 6、已知:如图,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作等边三角形 △ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:CP=CQ . 7、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。求证:∠C=∠F 。 A B C D E F A B C D E F

9、如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB ,求∠A 的度数。 10、如图,在Rt △ABC 中,在斜边AB 上截取AE=AC ,BD=BC ,求∠DCE 的度数。 11、在△ABC 中,∠A =90°,AB=AC ,D 为BC 的中点. (1)如图1,E ,F 分别是AB ,AC 上的点,且BE=AF ,求证:△DEF 为等腰直角三角形;(2)如图2,若E ,F 分别是AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,?那么△DEF 是否仍为等腰直角三角形?证明你的结论. 12、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE⊥DF,交AB 于点E ,连结EG 、EF.(1)求证:BG =CF. (2)请你判断BE+CF 与EF 的大小关系,并说明理由. 13、如图,已知∠BAC=90o,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,求证:FM=FD 。 图1 图2 F E D C B A G C B

等腰三角形存在性问题的解决策略

《等腰三角形存在性问题的解决策略》学习单 问:等腰三角形有哪些主要的性质? 出示问题1:已知△ABC中,一边AB=3,另两边BC=t,AC=2t-4, 若△ABC是等腰三角形则t= 出示问题2:如图在Rt△ABC中, ∠ACB=90°, AB=10cm,AC=8cm,动点D从C出发沿着CB 以1cm/s的速度向终点B移动,动点E从B出发沿BA以3cm/s的速度向终点A移动,两点同时出发,当一点到达终点时另一点也随之停止。设运动的时间为t(s) (1)用t的代数式表示BE与BD的长;BE= ,BD= ; (2)是否存在时间t ,使△DBE是等腰三角形;若存在,求出所有符合条件的t的值;

(3)以BE,BD为邻边做平行四边形BDFE,是否存在时间t,使得EF平分∠AED或者DF平分∠CDE,若存在求出相应的时间t的值。 问题2拓展:如图在Rt△ABC中, ∠ACB=90°, AB=10cm,AC=8cm,动点D从C出发沿着CB以1cm/s的速度向终点B移动,动点E从B出发沿BA以3cm/s的速度向终点A移动,两点同时出发,当一点到达终点时另一点也随之停止。设运动的时间为t(s) (4)以BE,BD为邻边做平行四边形BDFE,过点D,E,F做圆☉O,当t取何值时,☉O与△ABC的边BC或AB 相切。

问题3、已知△ABC中,AB=AC=5,BC=8,P是线段BC上的动点(不包括端点)作∠APQ=∠B,交AC于Q, (1)求证?ABP ~?PCQ (2)设CP=t,是否存在一点P ,使得△APQ是等腰三角形;若存在求出相应的t值,若不存在说明理由。 拓展:如图,AB是圆O的直径,弦CD⊥AB于点H,连接BC.CD=24,BC=15. (1)求tan∠DCB的值; (2)P是劣弧AC上的动点,连接PD交AB于点E,当△APE为等腰三角形时,求AE的值.

等腰三角形存在性问题(带答案)

等腰三角形存在性问题(两圆一线) 类型一、格点中的等腰三角形 1、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是() 2、.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C, 使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( )个. 3、如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于. 4、如图,在图中能画出与△ABC全等的格点三角形有几个?

类型二、定边几何法讨论:两圆一线 5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来 6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P也在AB 上,这样的等腰三角形能画个(在图中作出点P)

(2)若△DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果) (3)若改变(2)中△DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后 △DOB=. 7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个. 8、线段AB和直线l在同一平面上.则下列判断可能成立的有个 直线l上恰好只有个1点P,使△ABP为等腰三角形 直线l上恰好只有个2点P,使△ABP为等腰三角形 直线l上恰好只有个3点P,使△ABP为等腰三角形 直线l上恰好只有个4点P,使△ABP为等腰三角形 直线l上恰好只有个5点P,使△ABP为等腰三角形 直线l上恰好只有个6点P,使△ABP为等腰三角形.

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

专题等腰三角形存在性问题 题型一:几何图形 1、如图(1),在△ABC中,AB=AC,∠A=36°. (1)直接写出∠ABC的度数; (2)如图(2),BD是△ABC中∠ABC的平分线. ①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程; ②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.

变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒. (1)当t=1时,求△ACP的面积. (2)t为何值时,线段AP是∠CAB的平分线? (3)请利用备用图2继续探索:当t为何值时,△ACP是以AC为腰的等腰三角形?(直接写出结论) 变式二:如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A 开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC 的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t秒.(1)出发2秒后,求PQ的长; (2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由; (3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?

变式三:在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB 的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形. (1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由. 变式四:如图,在矩形ABCD中,AB=4,BC=3,点E是边CD上任意一点(点E 与点C、D不重合),过点A作AF⊥AE,交边CB的延长线于点F,连接EF,交边AB于点G.设DE=x,BF=y. (1)求y关于x的函数解析式,并写出自变量x的取值范围; (2)如果AD=BF,求证:△AEF∽△DEA; (3)当点E在边CD上移动时,△AEG能否成为等腰三角形?如果能,请直接写出线段DE的长;如果不能,请说明理由.

等腰三角形计算和证明题集锦(全)

一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180°AD、BC的延长线交于点F,DC、AB的延长线交于点E,∠E、∠F的平分线交于点H 求证:EH⊥FH

等腰三角形存在问题

压轴题(等腰三角形存在问题) 解题思路: 一、如果△ABC是等腰三角形,那么存在①________,②________,③_________三种情况. 二、已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线. 三、解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得 解题又好又快.○1几何法一般分三步:分类、画图、计算.○2代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 针对训练 1.如图,在平面直角坐标系xOy中,已知点D在坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标. 2.如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q 两点中其中一点到达终点时则停止运动.在P、Q两点移动过程中,当△PQC为等腰三角形时,求t的值. 3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标.

4.(2016临沂市26题满分13分) 如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC. (1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。

等腰三角形的存在性问题

10.(2016山东省临沂市)如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由. 11.(2016山东省日照市)阅读理解: 我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹. 问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM 交EF于点P,那么动点P为线段AM中点. 理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点. 由此你得到动点P的运动轨迹是:. 知识应用: 如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长. 拓展提高: 如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△A PC和等边△PBD,连结AD、BC,交点为Q. (1)求∠AQB的度数; (2)若AB=6,求动点Q运动轨迹的长.

12.(2016山东省日照市)如图1,抛物线 2 3 [(2)] 5 y x n =--+ 与x轴交于 点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC. (1)求m、n的值; (2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值; (3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由. 13.(2016山西省)综合与探究 如图,在平面直角坐标系中,已知抛物线 28 y ax bx =+-与x轴交于A,B 两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8). (1)求抛物线的函数表达式,并分别求出点B和点E的坐标; (2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由; (3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.

与等腰三角形有关的证明题

与等腰三角形有关的证明题 例1.如图,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE,DE交BC于F。 求证:DF=EF 分析:要证DF=EF,只需设法证明DF与EF所在的三角形全等, 但由于DF所在的△DFB比EF所在的△EFC显然大,故应考虑添加 辅助线。 作DG∥AC,交BC于G,则∠DGB=∠ACB 从而∠DGF=∠ECF(等角的补角相等) 由AB=AC,得∠B=∠ACB 从而∠DGB=∠B,DG=BD=CE 在△DFG与△EFC中,∠DGF=∠ECF,∠DFG=∠EFC(对顶角相等) 故∠GDF=∠FEC 又DG=CE,所以△DFG≌△EFC 所以DF=EF 例2.如图,等腰△ABC中,AB=AC,D是BC上任一点,DE⊥AB于E, DF⊥AC于F。 求证:为定值。 分析:所谓定值是指不论点D在底边BC的何处,DE+DF的大小总是 等于已知的或隐含的某条线段的长,也就是说定值是一个常量。那么本题的 定值究竟是多少呢?我们可以考虑点D所在的特殊位置,当点D与点B重 合时,DE的长度为0,DF等于AC边上的高,可见,(DE+DF)的定值是腰上的高,因此,作△ABC的高BG,然后只需证明DE+DF=BG即可。 要证,可在BG上截取GH=DF,然后只需证BH=DE。连接DH,则只需证明△BDE≌△DBH。易知四边形DFGH是矩形,从而DH∥AC,∠BDH=∠C,∠BHD=∠DHG=90°=∠BED。又AB=AC,∠EBD=∠ABC=∠C,所以∠BDH=∠EBD。所以∠EDB=∠DBH。又BD为公共边,所以△BDE≌△DBH。 如果注意到高,联想到三角形面积,则 可采用如下简单的证法: 连接AD 则由,得: 又AB=AC 边上的高=定值

初中数学 等腰三角形存在性问题

等腰三角形存在性问题 几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法. 等腰三角形存在性问题 【问题描述】 如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形. 【几何法】“两圆一线”得坐标 (1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB. 【注意】若有三点共线的情况,则需排除. 作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.

C 21+23,0() C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13 34C C 、同理可求,下求5C . 显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解: 故C 5坐标为( 196,0) 解得:x = 136 3-x ()2+22=x 2 设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3, BH =2 而对于本题的5C ,或许代数法更好用一些.

【代数法】表示线段构相等 (1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3) , (2)表示线段:5AC = 5BC (3)分类讨论:根据 55AC BC = , (4)求解得答案:解得:236m =,故5C 坐标为23,06?? ??? . 【小结】 几何法:(1)“两圆一线”作出点; (2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标. 代数法:(1)表示出三个点坐标A 、B 、C ; (2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解. 问题总结: (1)两定一动:动点可在直线上、抛物线上; (2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.

(完整版)一次函数与等腰三角形的存在性问题

一次函数与等腰三角形的存在性问题 一.选择题(共3小题) 1.在平面直角坐标系中有两点:A(﹣2,3),B(4,3),C是坐标轴x轴上一点,若△ABC是直角三角形,则满足条件的点C共有() A.2个B.3个C.4个D.6个 2.(2008?天津)在平面直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y=﹣x+2的图象上,且△ABC为直角三角形,则满足条件 的点C有() A.1个B.2个C.3个D.4个 3.(2016?江宁区一模)已知点A,B的坐标分别为(﹣4,0)和(2,0), 在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C 有() A.1个B.2个C.3个D.4个 二.填空题(共4小题) 4.(2015?杭州模拟)在平面直角坐标系xOy中,点A(﹣4,0),B(2,0),设点C是函数y=﹣(x+1)图象上的一个动点,若△ABC是直角三角形,则点C的坐标是. 5.(2009秋?南昌校级期末)在直角坐标系中,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D 的坐标应为. 6.(2009秋?扬州校级期中)在平面直角坐标系中若△ABC的顶点坐标分别为:A(3,0)、B(﹣1,0)、C(2,3)、若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为. 7.(2010春?江岸区期中)一个平行四边形在平面直角坐标系中三个顶点的 坐标分别是(﹣1,﹣1),(﹣2,3),(3,﹣1),则第四个顶点的坐标 为. 三.解答题(共14小题) 8.四边形ABCD中,BD,AC相交于O,且BD⊥AC,求证:AB2+CD2=AD2+BC2.9.如图,直线y=﹣x+3与x轴、y轴分别交于点A,点B,在第一象限是 否存在点P,使以A,B,P为顶点的三角形是等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

北师大版三角形的证明(全章节复习题)

等腰三角形(基础)知识讲解 【学习目标】 1.了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性; 2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图. 3.理解并掌握等腰三角形、等边三角形的判定方法及其证明过程.通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力. 4. 理解反证法并能用反证法推理证明简单几何题. 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线.

(4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝 角(或直角).∠A=180°-2∠B,∠B=∠C=180 2 A ?-∠ . (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。 (2)等腰三角形两底边上的中点到两腰的距离相等. (3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等. (4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等. 要点三、等腰三角形的判定定理 1.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边. 要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. 2.等边三角形的判定定理 三个角相等的三角形是等边三角形. 有一个角是60°的等腰三角形是等边三角形. 3. 含有30°角的直角三角形

二次函数与等腰三角形存在性问题

老师 学生学管师 学科 名称 年级上课时间月日 _ _ :00-- __ :00 课题 名称 等腰三角形的存在问题 教学 重点 教 学 过 程 1.(2011?)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另 一点C(3,0). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由. 2.(2011?)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于

点B. (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 3.(2011?)如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段 AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).

(1)求经过O、P、B三点的抛物线的解析式; (2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;(3)当P移动到点()时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标. 4.(2011?市綦江县潭已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式: (2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由. 4.(2011?贵港)如图,已知直线y=﹣x+2与抛物线y=a (x+2)2 相交于A 、B 两点,点A 在y 轴上,M 为抛物线的顶点. (1)请直接写出点A 的坐标及该抛物线的解析式; C A B y x O P D Q

等腰三角形的证明习题及答案

M E D C B A 等腰三角形 一、选择题 1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33 (C )34 (D )36 2. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CD BC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个 3. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形 的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 二、填空题 1. 边长为6cm 的等边三角形中,其一边上高的长度为________. 2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 . 4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80o ,则∠EGC 的度数为 5. 如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6, 则AD=_______. 6.如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

中考压轴题等腰三角形存在性问题 -

中考压轴题等腰三角形存在性问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题. 在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类. 原创模拟预测题1.如图,抛物线 223 y x x =-++与y轴交于点C,点D(0,1),点P是 抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为. 【答案】(122)或(122). 【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标. 【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作 PE⊥y轴于点E,则E为线段CD的中点,∵抛物线 223 y x x =-++与y轴交于点C,∴C (0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在 223 y x x =-++中, 令y=2,可得 2232 x x -++=,解得x=12 ±,∴P点坐标为(122)或(12, 2),故答案为:(122)或(12,2).

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

等腰三角形计算和证明题集锦全.docx

等腰三角形计算和证明题集锦 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

等腰三角形计算和证明题集锦11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点, 且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上 的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180° AD、BC的延长线交于点F,DC、AB的延长线交于点 E,∠E、∠F的平分线交于点H 求证:EH⊥FH

等腰三角形存在性(讲义+练习含答案)

一次函数与等腰三角形存在性问题 重点内容梳理 一、等腰三角形存在 核心思想:——分类讨论(顶点未知,讨论顶点即可) 1. A为顶点:AP=AB→以A为圆心B为半径画圆(E为共线点) 为顶点:BP=BA→以B为圆心A为半径画圆(F为共线点) 为顶点:PA=PB→AB的中垂线(o为共线点) 求取方法:1.采用两圆一线找到特殊位置点——找交点 2.两点之间距离公式表示等长线段,求取点坐标 ¥ 3.最终结论 注:该类问题相对较综合,点坐标的求取方法较灵活,需综合运用几何与代数相关定理。

引例: 已知,平面内点A(0,2),B(2,0)(1)求,AB所在直线解析式 (2)若坐标轴上存在一点,使△ABC

①— ②A为顶点,AB=AC,A为圆心,AB为半径画圆, ③B为顶点,AB=BC,B为圆心,AB为半径画圆 ④C为圆心,AB中垂线

例题 例题1.——x轴上的点 1.(2019秋?金水区校级月考)如图,直线y=kx+b与x轴、y轴分别交于点A,B,且OA= 8,OB=6. (1)求直线AB的解析式. (2)在x轴上是否有在点Q,使以A,B,Q为顶点的三角形是等腰三角形若存在,请直接写出点Q的坐标;若不存在,请说明理由.

| 【解答】解:(1)∵OA=8,OB=6, ∴A(8,0)、B(0,6), 把点A、B的坐标代入一次函数表达式:y=kx+b, ∴b=6,k=﹣, ∴直线AB的表达式为:y=﹣x+6; (2)设点Q(s,0), 则AB2=100,AQ2=(8﹣s)2,BQ2=s2+36, ①当AB=AQ时,100=(8﹣s)2,解得:s=18或s=﹣2; ②当AB=BQ时,100=s2+36,可得:s=±8(舍去8); ③当AQ=BQ时,(8﹣s)2=s2+36,可得:s=, 、 综上,点Q的坐标为:(18,0)或(﹣2,0)或(﹣8,0)或(,0). 易错:1. 两圆一线找交点,看清点的位置保证不重不漏 2.求取点的坐标,注意舍根

等腰三角形证明专题(汇编)

《等腰三角形》练习题 1、如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠AED=_______________ 2、如图,在直角三角形ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=___________ 3、如图,点D是△ABC的边BC上一点,且AB=AC,AD=AE,∠BAD=30°,则∠EDC=__________ 4、如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数. 5、已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明. 6、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE. (1)求证:△DEF是等腰三角形; (2)当∠A=50°时,求∠DEF的度数.

7、如图,已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数. 8、已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC. 9、如图,D是△ABC中∠ABC和∠ACB的平分线交点,过D作与BC平行的直线,分别交AB、AC于E、F,求证:EB+FC=EF. 10、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.

《等边三角形》练习题 1、已知,等边三角形ABC,D是AB上一点,DE⊥BC,垂足为E,EF⊥AC,垂足为F,FD⊥AB.求证:△DEF为等边三角形的理由; 2、已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形. 3、如图,A、B、C三点在同一直线上,△ABM和△BCN是正三角形,P是AN中点,Q 是CM中点.求证:△BPQ是正三角形.

等腰三角形的存在性问题

解题策略 如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况. 已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线. 解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 例题精讲 1.如图,在平面直角坐标系xOy 中,已知点D 在坐标为(3,4),点P 是x 轴正半轴上的一个动点,如果△DOP 是等腰三角形,求点P 的坐标. 解析.因为D (3,4),所以OD =5,3cos 5DOP ∠=. ①如图1,当PD =PO 时,作PE ⊥OD 于E . 在Rt △OPE 中,3cos 5OE DOP OP ∠==,52OE =,所以256OO =.此时点P 的坐标为25(,0)6 . ②如图2,当OP =OD =5时,点P 的坐标为(5,0). ③如图3,当DO =DP 时,点D 在OP 的垂直平分线上,此时点P 的坐标为(6,0). 2.如图,在矩形ABCD 中,AB =6,BC =8,动点P 以2个单位/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1个单位/秒的速度从点C 出发,沿CB 向点B 移动,当P 、Q 两点中其中一点到达终点时则停止运动.在P 、Q 两点移动过程中,当△PQC 为等腰三角形时,求t 的值. 解析.在Rt △ABC 中,10862222=+=+=BC AB AC .因此4cos 5 ACB ∠=. 在△PQC 中,CQ =t ,CP =10-2t . ①如图1,当CP CQ =时,102t t =-,解得103 t =(秒). ②如图2,当QP QC =时,过点Q 作QM ⊥AC 于M ,则CM =152PC t = =-.

相关文档
相关文档 最新文档