文档库 最新最全的文档下载
当前位置:文档库 › 抽象代数

抽象代数

抽象代数
抽象代数

一、课程目的与教学基本要求

本课程是在学生已学习大学一年级“几何与代数”必修课的基础上,进一

步学习群、环、域三个基本的抽象的代数结构。要求学生牢固掌握关于这三种抽象的代数结构的基本事实、结果、例子。对这三种代数结构在别的相关学科,如数论、物理学等的应用有一般了解。

二、课程内容

第1章准备知识(Things Familiar and Less Familiar)10课时

复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。

1、几个注记(A Few Preliminary Remarks)

2、集论(Set Theory)

3、映射(Mappings)

4、A(S)(The Set of 1-1 Mappings of S onto Itself)

5、整数(The Integers)

6、数学归纳法(Mathematical Induction)

7、复数(Complex Numbers)

第2章群(Groups) 22课时

建立关于群、子群、商群及直积的基本概念及基本性质;通过实例帮助建立抽象概念,掌握群同态定理及其应用;了解有限阿贝尔群的结构。

1、群的定义和例子(Definitions and Examples of Groups)

2、一些简单注记(Some Simple Remarks)

3、子群(Subgroups)

4、拉格朗日定理(Lagrange’s Theorem)

5、同态与正规子群(Homomorphisms and Normal Subgroups)

6、商群(Factor Groups)

7、同态定理(The Homomorphism Theorems)

8、柯西定理(Cauchy’s Theorem)

9、直积(Direct Products)

10、有限阿贝尔群(Finite Abelian Groups) (选讲)

11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)

第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例子。

1、预备知识(Preliminaries)

2、循环分解(Cycle Decomposition)

3、奇偶置换(Odd and Even Permutations)

第4章环论(Ring Theory) 20课时

建立环、环直和、素理想与极大理想、同态及商环的基本概念及基本性质;掌握环同态定理及多项式环及其结构定理;了解主理想整环、欧几里德整环的基本要领及例子。

1、定义与例子(Definitions and Examples)

2、一些简单结果(Some Simple Results)

3、理想,同态与商环(Ideals, Homomorphisms, and Quotient Rings)

4、极大理想(Maximal Ideals)

5、多项式环(Polynomial Rings)

6、有理数域上的多项式(Polynimial over the Rationals)

7、整环的商域(Field of Quotients of an integral Domain)

第5章域(Fields) 12课时

掌握域的基本概念及其基本性质、域扩张、有限扩张、多项式的根及代数闭域的基本概念及基本事实。

1、域的例子(Examples of Fields)

2、向量空间复习(A Brief Excursion into Vector Spaces)

3、域扩张(Field Extensions)

4、有限扩张(Finite Extensions)

5、可构造性(Constructibility)

6、多项式的根(Roots of Polynomials)

一、课程目的及要求

抽象代数是现代数学的一个重要分支,是综合性大学数学系的主干课程之一。从课程的承接上来说是一年级高等代数的继续。我们知道初等代数研究具体的数集上的运算及其规律、高等代数将数集扩展到向量空间、矩阵及多项式上。抽象代数讨论的是更一般的集合上的运算,研究有代数运算的集合的代数结构。

抽象代数即为现代数学、物理学、化学、计算机科学、现代通信以及密码学等提供了语言、理论和研究方法,同时其自身极其经典和丰富,并在不断地发展中。

本课程学习抽象代数的基础知识,包括群、环、域和模的概念以及基本的定理(前4章)。作为典型的例子,对于高等代数中的相关内容加以回顾和整合。作为前面群论学习的引申进一步学习群论的基本技巧(第5章),如群在集合上的作用、Sylow定理等,要求能够解决一些有限群结构的问题。模论着重在主理想环上的模,给出交换群(即整数环上的模)的分解定理和线性变换(多项式环上的模)的分解定理。在群论和域论的基础上对于基地班的同学可以讲完Galois理论(第6章),普通班的同学可视情况加以取舍,比如只讲其求解多项式的根的产生背景及结论而不讲证明。

二、课程内容及学时分配

本课程采用美国Illinois大学Urbana分校(UIUC)数学系Robert B. Ash教授的“Abstract Algebra :The Basic Graduate Year ”,授课内容为该书的前七章(算上预备知识的第零章),用时一学期(20周),每周5学时,共100学时授完,其中习题课20学时。

以下是具体章节以及课时安排:

第零章预备知识(讲授6学时以及1学时习题课)

0.1 基础数论:费马定理、中国剩余定理等

0.2 集合论

0.3 线性代数的回顾(鉴于我系几何代数的授课情况此节不用再讲)

本章重点:整除、同余以及中国剩余定理;良序公理、佐恩引理等内容。

第壹章基础群论(讲授10时,习题课3学时)

1.1群和子群

1.2 置换群

1.3 陪集、正规子群和同态

1.4同态定理

1.5 直积

本章重点:群、子群、陪集、正规子群以及与之相联系的群同态的概念,置换群及其运算,群同态定理。

第貳章基础环论(讲授14时,习题课3学时)

2.1基本定义和性质

2.2理想、同态和商环

2.3环的同态定理

2.4极大理想和素理想

2.5多项式环

2.6唯一分解

2.7主理想整环和欧几里得整环

2.8分式环

2.9不可约多项式

本章重点:环、极大理想、素理想环和商环的的概念以及与之相关的同态定理的结论;唯一分解整环、主理想整环和欧几里得整环的概念、例子以及其间的关系。

第參章基础域论(讲授12时,习题课3学时)

3.1域扩张

3.2分裂域

3.3代数闭包

3.4可分性

3.5正规扩张

本章重点及难点:域扩张以及其构造证明。代数扩张、可分扩张和正规扩张的概念和判定。

第肆章基础模论(讲授12时,习题课3学时)

4.1模和代数

4.2模的同态定理

4.3直和与自由模

4.4同态与矩阵

4.5Smith标准型

4.6基本结构定理

4.7正合列和追图法(正合列的内容可略)

本章重点及难点:模的同态定理、模的直和与自由模、主理想环上的模的结构分解定理和在典型例子上的应用。

第伍章群论的基本技巧(讲授14时,习题课4学时)

(本章五至七节可视进度以及学生接受程度在深度上加以取舍)

5.1群在集合上的作用

5.2 轨道稳定子定理

5.3在组合论的应用

5.4 Sylow定理

5.5 Sylow定理的应用

5.6合成列

5.7可解群和幂零群

5.8生成元与关系

本章重点及难点:群在集合上的作用、轨道稳定子定理、有限群的类方程及其应用;Sylow 定理及其应用、可解群和幂零群以及典型例子。

第陸章Galois理论(讲授12时,习题课3学时)

(本章可视进度以及学生接受程度在深度上加以取舍,至少应讲Galois理论产生的背景和结论)

6.1 不动子域和Galois群

6.2 Galois基本定理

6.3直接计算Galois群

6.4有限域

6.5 分圆域

6.6三次多项式的Galois群

6.7循环扩张和Kummer定理

6.8根式可解

6.9超越扩张

本章重点及难点:域扩张的Galois群的概念、Galois扩张的概念和Galois基本定理;低次多项式的Galois群的计算。

三、主要参考书目:

[1] Robert B. Ash,Abstract Algebra :The Basic Graduate Year,2006 Copyright 2000。

[2]Dummit, D.S. and Foote,R.M., Abstract algebra, Prentice-Hall, Upper Saddle River, NJ,1999.

[3]Lang, S., Algebra,the revised verse, 世界图书出版公司。

[4]莫宗坚,代数学(上册),北京大学出版社,1986。

[5]丘维声,抽象代数基础,高等教育出版社,2003。

[6]姚慕生,抽象代数学,复旦大学出版社,1998。

[7]丁石孙,代数学,

[8]Hungerford T.W.,代数学,冯克勤译,湖南教育出版社,1985。

--------------------------------------------------------------------------------

从近世代数看数系扩充

从近世代数看数系的扩充现行中小学数学教材中,关于数的概念的发展历程如下: N0 正分数Q+ 负分数 Q 无理数 R 虚数 C 上式中N0:非负整数集;Q+:非负有理数集;Q:有理数集;R:实数集;C:复数集. 在教学中,前两次扩充都是从实践需要来说明其必要性的.这样处理学生易于理解,符合可接受性原则.若从数学本身发展的需要出发,则常从以下两方面来说明:(l)某一运算的逆运算在原有数集中不封闭;(2)某一方程在原有数集中没有解. 事实上,这两个方面是相互等价且互为补充的.我们说某一运算的逆运算在原数集中不封闭,则必定存在与此运算有关的方程在此数集中无解;反之,若存在某一方程在原数集中无解,则此方程中涉及到未知数运算的逆运算并不封闭·例如,在N0中减法不封闭,这意味着当a>b时,方程a+x=b在N0中无解. 从代数系统(A,?)扩充到代数系统(B,。),必须满足以下四个条件:(1)A?B;(2)a°b=a?b,?a,b∈A;(3)在(B,°)中,方程a°x=b有唯一确定的解;(4)如果(C,十)也满足性质(1)~(3),则存在(B,。)到(C,+)的同构映射,这个映射使A中 的元素及运算保持不变. 满足上述条件的数集的扩充可能有多种方法.在中学数学教学中,数集扩充的方法是在已知的集合A上补充新数的集合A,构成扩集B,使B=A∪A这种扩充 思想虽易于接受,但不太严密,且不易了解数的结构思想. 另一种途径是从数学结构的角度,用旧数系中的数为材料构成一个新数集B,然后使它的某个子集与旧数系A相等(严格地说,是同构).下面说明通过这种途 径来建立数系的过程. 一自然数集N 自然数是最简单、最基本的数,皮亚诺四条公理揭示了自然数的根本性质. 在给出加法运算,乘法运算的定义之后,可以证明(N,十,?)是具有加法、乘法交换律和加法、乘法结合律以及分配律的代数系统. 在N中,序关系(<)是利用自然数的加法来定义的.可以证明“<”满足反对 称性、传递性、可比性以及最小数原理.所以(N,<)不仅是一个全序集,而且是一个良序集. 在(N,+,·)中,方程a+x=b,a?x=b不一定有解,因此,在N中,加法、乘法的逆运算都不封闭.对于减法要限制施行.对于除法则分两种情况讨论:(l)a整除b,(2)带余除法. 二从N到有理数域Q的扩充 定理可换半群(A,+)可扩充的充分必要条件是运算“+”是可消去的. 证明必要性:若a+c=a+b,a,b,c∈A,设(B,+)是(A,+)的扩充,则在(B,+)中,a+x=a+b有唯一解x=b;又由a+c=a+b,知c满足a+x=a+b,所以b=c.

《抽象代数基础》习题解答

《抽象代数基础》习 题 答 解 于延栋编 盐城师范学院数学科学学院二零零九年五月

第一章 群 论 §1 代数运算 1.设},,,{c b a e A =,A 上的乘法”“?的乘法表如下: 证明: ”“?适合结合律. 证明 设z y x ,,为A 中任意三个元素.为了证明”“?适合结合律,只需证明 )()(z y x z y x ??=??. 下面分两种情形来阐明上式成立. I.z y x ,,中至少有一个等于e . 当e x =时,)()(z y x z y z y x ??=?=??; 当e y =时,)()(z y x z x z y x ??=?=??; 当e z =时,)()(z y x y x z y x ??=?=??. II .z y x ,,都不等于e . (I)z y x ==.这时,)()(z y x e x x z z e z y x ??=?===?=??. (II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ??=?==?=??. (III)z y x ,,中有且仅有两个相等. 当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =?=??)(,z u x z y x =?=??)(,从而,)()(z y x z y x ??=??.同理可知,当z y =或x z =时,都有)()(z y x z y x ??=??. 2.设”“?是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=n i i a 1为: 111a a i i =∏=,111 1+=+=????? ??=∏∏r r i i r i i a a a . 证明: ∏∏∏+==+==???? ??????? ??m n k k m j j n n i i a a a 1 11.

抽象代数期末考试试卷及答案

抽象代数试题 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、6阶有限群的任何子群一定不是( )。 A 、2阶 B 、3 阶 C 、4 阶 D 、 6 阶 2、设G 是群,G 有( )个元素,则不能肯定G 是交换群。 A 、4个 B 、5个 C 、6个 D 、7个 3、有限布尔代数的元素的个数一定等于( )。 A 、偶数 B 、奇数 C 、4的倍数 D 、2的正整数次幂 4、下列哪个偏序集构成有界格( ) A 、(N,≤) B 、(Z,≥) C 、({2,3,4,6,12},|(整除关系)) D 、 (P(A),?) 5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有( ) A 、(1),(123),(132) B 、12),(13),(23) C 、(1),(123) D 、S3中的所有元素 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、群的单位元是--------的,每个元素的逆元素是--------的。 2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1----------。 3、区间[1,2]上的运算},{min b a b a =ο的单位元是-------。

4、可换群G 中|a|=6,|x|=8,则|ax|=——————————。 5、环Z 8的零因子有 -----------------------。 6、一个子群H 的右、左陪集的个数----------。 7、从同构的观点,每个群只能同构于他/它自己的---------。 8、无零因子环R 中所有非零元的共同的加法阶数称为R 的-----------。 9、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为--------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链? 2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。S 1+S 2也是子环吗? 3、设有置换)1245)(1345(=σ, 6)456)(234(S ∈=τ。 1.求στ和στ-1; 2.确定置换στ和στ-1的奇偶性。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

近世代数初步_习题解答(抽象代数)

《近世代数初步》 习题答案与解答

引 论 章 一、知识摘要 1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=?的一个映射就称为A 的一个代数运算(二元运算或运算). 2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈? (1),ba ab = (2)),()(bc a c ab = (3)存在单位元e 满足,a ae ea == (4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素. 则称G 为一个交换群. (i)若G 只满足上述第2、3和4条,则称G 为一个群. (ii) 若G 只满足上述第2和3条,则称G 为一个幺半群. (iii) 若G 只满足上述第2条,则称G 为一个半群. 3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足: I. F 对加法构成交换群. II. F*=F\{0}对乘法构成交换群. III..)(,,,ac ab c b a F c b a +=+∈? 就称F 为一个域. 4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足: I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元). II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1). III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈? 就称R 为一个环. 5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =?==?=∈?且 6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子. 7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合. 8.群G 中的任意元素a 及任意正整数n,定义: 个 n n a aa a ...=, 个 n n a a a a e a 1 110...,----==. 则由广义结合律知,,,Z n m G a ∈?∈?有 .)(,)(,1m m mn n m n m n m a a a a a a a --+=== (在加法群中可写出相应的形式.)

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

代数表示论简介

代数表示论简介 在数学研究中,我们随处可见表示的思想。例如,复数可以用实平面上的点(或数对)表示;有限维复向量空间上的线性变换可以用它的Jordan标准形表达。狭义的表示是指一个代数系统(如群,结合环,李代数等)在某个向量空间上的作用,这些作用常常自然地出现在数学和物理的研究中。比如,分子的对称性可以用某个群刻画,利用这个群的表示理论可以大大简化分子振动微分方程的求解问题。20世纪30年代,德国女数学家Noether系统地发挥了表示的思想,她把表示解释为模,由此奠定了现代表示论的基础。 有限维(结合)代数是抽象代数中的一个古老的分支。它的起点是Hamilton在1843年发现的有名的四元数代数。此后,历经许多大数学家之手,终于由Wedderburn在20世纪初建立了半单代数的表示理论。目前人们研究的主要是各种各样的非半单代数的表示理论。代数表示论的主要目标是研究有限维代数上的不可分解模以及它们之间的同态映射。一个有限维代数A通常可以用一个箭图Q(即有向图)及某种关系表示, 研究代数A上的模相当于研究箭图Q上的表示。给定一个域k, 所谓箭图Q的一个表示,是指如下的要素:在Q的每个顶点处放一个(有限维)k-向量空间,在Q的每条边上放一个k-线性映射。对于Q的两个表示,可以建立它们之间的同态映射。我们关心的是表示的同构类。把箭图Q的全体表示放在一起,就构成了表示的范畴。这是代数表示论的最基本的研究对象。 例如,不难看出,在复数域上如下箭图的表示的同构类与复数矩阵的Jordan标准形一一对应: 上世纪70年代初,瑞士数学家Gabriel证明了如下的著名结果:箭图Q是表示有限型的(即Q的不可分解表示的同构类只有有限多个)当且仅当Q的底图是有限多个如下形式的图的不交并: A (n≥1):??…?? n 1 2 n-1 n ? 2 D (n≥4):??…?? n 1 3 n-1 n ? 3 E (n=6,7,8):????…?? n 1 2 4 5 n-1 n

抽象代数

近世代数练习题 一、填空题 1、设集合A={1,2,3,?,m},B={1,2,3,?,n},是正整数n m ,,集合B A ?含有 个元素。 2、设集合{},,,A e f m n =,{}ργβα,,,=B ,则集合A 到B 之间可以建立 个映射。 3、设集合A 含有m 个元素,则A 上的变换共有 个 4、n 次对称群n S 的阶是 。 5、在模5的剩余类加群的子集{}]1[=A 生成的子群是 。 6、设R 是模2 n (N N n ,∈为自然数集)的剩余类环,[]x R 中的多项式2 x 在R 里有 个根。 7、由13 =x 的三个根对于普通乘法构成的群里,阶数大于2的元的个数是 。 8、一个 环是域。 9、设μ一个环R 的一个不等于R 的理想,如果除了R 和μ以外,没有包含μ的理想,那么μ叫作一个 。 10、若域F 的一个扩域E 的每一个元都是F 上的一个代数元,那么E 叫做F 的 。 二、选择题 1、设集合{}3,2,1=A ,则下列集合A 上的变换不是一一映射的是( ) 。 332211:→→→τA 133221:→→→ρB 233221:→→→δC 132231:→→→σD 2、下列说法错误的是( ) 域是除环A 域是整环B 可交换除环是域C 可交换整环是域D 3、在一个有限群里,阶数大于2的元的个数一定是( )。 奇数A 偶数B 0C 整数D 4、下列环中不是除环的是( ) 整数集A 有理数集B 实数集C 复数集D 5、设有理数域Q 上的一元多项式环[]x Q ,理想()()() =+++11 35 2 x x x ( ) 。

()1A ()12 +x B ()135 ++x x C () 2235 +++x x x D 6、对于实数的普通乘法,以下实数域R 的变换中同态满射的是( ) αασ→:A 2:αατ→B ααρ-→:C ααδ→:D 7、设2 2?R 是数域R 上的一切22?矩阵构成的集合,它对于矩阵的加法和乘法做成一个环,则 以下矩阵可作为环2 2?R 的零因子的是( )。 ???? ??0000A ???? ??0001B ???? ??0111C ??? ? ??1101D 8、整数环Z 中,可逆元的个数是( )。 1A 2A 3C 4A 9、剩余类加群Z 18的子群有( )。 个3A 个4B 个5C 个6D 10、设有理数域Q 上的一元多项式环[]x Q ,理想()()() =+++11 35 2x x x ( ) 。 ()1A ()12 +x B ()135 ++x x C () 2235 +++x x x D 三、计算题 1、设集合{}1174,1,,=A ,{}642,,=B ,求A ?B , A ? B ,B A ?。 2、设集合{}864,2,,=A ,{}963,,=B ,求A ?B , A ? B , B A ?。 3、试举出一个由正实数集+ R 到实数集R 的一一映射。 4、设6元置换 ???? ??=???? ??=???? ??=254613654321;456132654321;245316654321 ρτπ (1)求1 -π ,τρ (2)求π, τ和ρ的循环置换表达式,并求||π, τ, ρ。 5、求出3次对称群3S 的所有子群。 6、求出剩余类加群8Z 的所有子群。 7、设{} Q Q b a b a R ,,2∈+=是有理数集,问R 对于普通加法和乘法能否构成一个域。

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

近世代数学习系列二十二 群论与魔方

群论与魔方:群论基础知识 要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1)

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

抽象代数

代数系统Mathematical Structure或Mathematical System 关于代数系统与计算机科学的关系 为什么抽象代数是计算机科学的理论基础之一? 1)抽象代数研究的对象与计算机科学研究的对象都是一般的通用客体 2)代数系统为计算机系统(包括理论系统、计算机系统组成的结构、工具与环境系统的结构、应用系统的结构、系统的结构分类以及它们之间的关系等)提供必要的理论模型; 3)不论是计算机科学的基础学科、技术学科和应用学科,还是计算机科学的边缘学科,抽象代数都给它们提供了最基本的思维方法 代数系统和以前我们所了解的代数学有什么不同? 1)对象:以前的代数学中研究的对象都是数(实数和复数)或用字母表示的数;代数系统研究的对象是某集合元素的总体,甚至有时并不指出这个集合是什么,也不指出集合中是元素是什么; 2)运算:以前的代数学中研究的运算是数的四则运算;而代数系统研究的对象不仅仅是加、减、乘、除四则运算,而是满足一定抽象条件的运算,有时也不指出具体的运算是什么; 3)两者的关系:以前我们所了解的代数只是代数系统的一个特例。 代数系统究竟是什么? 定义一个代数系统时,并不是一个具体的代数系统,而是满足一定抽象条件的一类代数系统的总体,因此,研究的是代数系统的总体结构,提出一个同属于某一大类的所有代数结构的理论模型。 如果对代数系统的对象和运算进行不同的解析,只要在这个解析下可满足这种抽象的结构,则形成一个具体的代数系统。 代数系统和计算机有什么关系? 计算机是一个通用的计算模型,其通用性在于:任何一个可计算的问题,如果问题本身是有结果的(例如,最后总可以回答“是”或“非”的),只要不考虑时间和空间的可能性,原则上都可以在计算机上得到结果。 计算机的结构也是一个通用结构。只要根据某具体需求解的问题,而对计算机系统的对象(数据模型)和运算(所做的操作)进行解析,则计算机系统就成为解决这个问题的具体理论模型。 代数系统的思维方法如何决定计算机科学的思维方法? 代数系统的基本思维方法是构造的方法和公理的方法。

近世代数期末考试题库

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的( ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射 2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 A 、2 B 、5 C 、7 D 、10 3、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样) - 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。 5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B ---------。 2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。 3、环的乘法一般不交换。如果环R 的乘法交换,则称R 是一个------。 4、偶数环是---------的子环。 5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。 ~ 6、每一个有限群都有与一个置换群--------。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。 8、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么---------。 9、一个除环的中心是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换σ和τ分别为:? ? ????=6417352812345678σ,??? ???=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。 , 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数期末考试试题和答案解析

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

抽象代数复习题及答案

《抽象代数》试题及答案 本科 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案, 并将正确答案的序号填在题干的括号内。每小题3分) 1. 设Q 是有理数集,规定f(x)= x +2;g(x)=2 x +1,则(fg )(x)等于( B ) A. 2 21x x ++ B. 2 3x + C. 2 45x x ++ D. 2 3x x ++ 2. 设f 是A 到B 的单射,g 是B 到C 的单射,则gf 是A 到C 的 ( A ) A. 单射 B. 满射 C. 双射 D. 可逆映射 3. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 32)不能交换的元的个数是( C )。 A. 1 B. 2 C. 3 D. 4 4. 在整数环Z 中,可逆元的个数是( B )。 \ A. 1个 B. 2个 C. 4个 D. 无限个 5. 剩余类环Z 10的子环有( B )。 A. 3个 B. 4个 C. 5个 D. 6个 6. 设G 是有限群,a ∈G, 且a 的阶|a|=12, 则G 中元素8 a 的阶为( B ) A . 2 B. 3 C. 6 D. 9 7.设G 是有限群,对任意a,b ∈G ,以下结论正确的是( A ) A. 111 ) (---=a b ab B. b 的阶不一定整除G 的阶 C. G 的单位元不唯一 D. G 中消去律不成立 8. 设G 是循环群,则以下结论不正确...的是( A ) A. G 的商群不是循环群 B. G 的任何子群都是正规子群 [ C. G 是交换群 D. G 的任何子群都是循环群 9. 设集合 A={a,b,c}, 以下A ?A 的子集为等价关系的是( C ) A. 1R = {(a,a),(a,b),(a,c),(b,b)} B. 2R = {(a,a),(a,b),(b,b),(c,b),(c,c)} C. 3R = {(a,a),(b,b),(c,c),(b,c),(c,b)} D. 4R = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)} 10. 设f 是A 到B 的满射,g 是B 到C 的满射,则gf 是A 到C 的 ( B ) A. 单射 B. 满射 C. 双射 D. 可逆映射 11. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 2)能交换的元的个数是( B )。 A. 1 B. 2 C. 3 D. 4 … 12. 在剩余类环8Z 中,其可逆元的个数是( D )。 A. 1个 B. 2个 C. 3个 D. 4个 13. 设(R ,+,·)是环 ,则下面结论不正确的有( C )。 A. R 的零元惟一 B. 若0x a +=,则x a =-

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数学习系列三 环

环 简介 一个具有两种二元运算的代数系统。在抽象代数产生的19世纪,数学家们开始研究满足所有合成律(即加法交换律、结合律,乘法交换律、结合律,以及乘法对加法的分配律等等)或者满足其中的一部分的集合。倘若一个集合具有加法、乘法和相应的运算性质,它就称为环。整数集Z就构成一个(数)环。 在20世纪,数学家们开始研究一种新型结构叫“环”。环是一个集合,其中的元素能通过一种类似加法运算按下面的方式结合起来: 1. 若a和b都是环中的元素,那么a+b也是环中的元素; 2. 加法符合结合律:若a、b和c都属于这个环,那么a+(b+c)=(a+b)+c; 3. 在环中存在一个类似于0的元素--甚至也可以称它为0--具有性质:对于环中的任一元素a,有0+a=a; 4. 对于环中的每个元素a和b,a+b=b+a都成立。 在环中,还对这些元素定义了另一个类似于乘法的运算,它具有下面两个性质: 1. 若a和b属于环,那么它们的乘积ab也属于环; 2. 若a、b和c属于环,那么结合律成立:a(bc)=(ab)c。 环的乘法通常不满足交换律(ab=ba 一般不成立),而且并不是环中的每个元素都有一个乘法的逆元。各种n×n矩阵的集合连同运算选出来,就形成一个具体的环的例子。 在20世纪的前30多年中,由于德国数学家诺特(Emmy Noether,1882-1935年)的工作,环的结构的研究变得非常重要。 环论往往相当抽象。虽然许多对环论感兴趣的数学家常常用字母表示环中的元素,但是由于他们对矩阵的理解非常深刻,给出了许多卓有成效的解释,所以有时把一个特殊的环表示成一个n×n矩阵的集合。这类矩阵表示,不仅能使数学家们把环理解成具体的,甚至是可以计算的问题,而且能使数学家们去运用数学理论家的那种非常抽象的思想。这种用矩阵集合表示环或群的方法,已经成为

《近世代数》教学大纲

《近世代数》课程教学大纲 一、课程性质与目标 (一)课程性质 《近世代数》是数学专业本科生专业基础课,是现代数学的基本内容,培养并提高学生的抽象思维能力,从中掌握分析与解决问题的方式、方法。 (二)课程目标 通过本课程的学习,使学生初步掌握基本的系统的代数知识和抽象严谨的代数方法,进一步熟悉和掌握代数处理问题的方法;进一步提高才抽象思维能力和严格的逻辑推理能力;进一步理解具体和抽象、特殊与一般、有限与无限的辩证关系。能应用所学理论指导中学数学教学以及其它工作,培养学生独立提出问题、分析问题和解决问题的能力,培养学生的数学基本素质,同时为今后继续学习奠定基础。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 (1)把握概念、推理证明相结合的基本原则 (2)注意教学内容与其他相关课程的联系和渗透 2、课程基本内容 群、环、域是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法。重点:群、正规子群、商群、循环群、环、理想、商环、同态基本原理等。难点:商群、理想、商环等。 (二)课程教学 1、注重数学思想与数学素养的培养,阐述所讲内容在整个理论体系中的作用和地位。 2、在传授基础理论,基本概念的掌握的同时,加强学生逻辑推理能力和计算能力的培养。 3、注重课堂讲授、习题课、习题批改等环节。 三、课程实施与评价 (一)学时 本课程总学时为54学时(讲授46学时,习题课8学时)。 (二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 (1)配备多媒体教学设备。 (2)配置与教学内容相关的图书、期刊、音像资料等。 (三)课程评价 1、对学生能力的评价 (1)基础理论,基本概念的掌握。 (2)逻辑推理能力,包括逻辑思维的合理性和严密性

相关文档
相关文档 最新文档