文档库 最新最全的文档下载
当前位置:文档库 › βPPR水力计算表word资料25页

βPPR水力计算表word资料25页

βPPR水力计算表word资料25页
βPPR水力计算表word资料25页

NFβPP-R

上海英泰塑胶有限公司

管道水力计算

4.5.1 水力计算公式由下式计算得出:

i=105C h—1.85d j—4.87q g1.85

式中i—管道单位长度水头损失(kPa/m);

d j—管道计算内径(m);

C h—海澄-威廉系数,C h=140;

q g—设计流量(m3/s)。

本条计算沿程阻力损失的公式引用《建筑给水聚丙烯管道工程技术规范》GB/T50349-2019为20%~30%;参照《建筑给水排水设计规范》GB50015-2019,则生活给水网为25%~30%,生产为20%。

4.5.2 管道计算内径是根据不同的管系列S确定。为方便使用,表3.2.2-1列出了空调用NFβPP-R常用的四种管系列的计算内径。

4.5.3 水温修正系数K1按下式确定:

K 1=??

?

??υυ"0.226

式中 υ—计算表格中采用的水的运动粘滞系数(cm 2/s );

υ″—选用工作水温采用的水的运动粘滞系数(cm 2/s )。

4.5.4 空调用NF βPP-R 水利摩阻比钢管小,其粗糙系数n=0.0014~0.002,阻力系数为0.015~0.021,故选用流速时可适当提高,但不宜大于3.0m/s 。

附 录A 水力计算表

A.0.1 当管内水温为10℃时,NF βPP-R 管水力计算表分别按管系列S5、S4、S3.2编制,见本附录表A.0.1-1、A.0.1-2、A.0.1-3、A.0.1-4。

A.0.2 当管内水温为60℃时,NF βPP-R 管水力计算表分别按管系列S5、S4、S3.2编制,见本附录表A.0.2-1、A.0.2-2、A.0.2-3、A.0.2-4。

第 3 页

第 4 页

第 5 页

第 6 页

第 7 页

第 8 页

第 9 页

第 10 页

第 11 页

第 13 页

水利工程施工课程设计计算书

《水利工程施工》课程设计计算说明书 一、基本资料 某工程截流设计流量Q=4150 m3/s,相应下游水位为39.51m,采用单戗立堵进占,河床底部高程30m,戗堤顶部高程是44m,戗堤端部边坡系数n=1,龙口宽度220m,合龙中戗堤渗透流量Q s0=220m3/s,合龙口的渗流量可近似按如下公式计算,Qs= Q s00 z(Z为上下游落差,Z0 为合龙闭气前 /z 最终上下游落差),请设计该工程在河床在无护底情况下的截流设计。已知上游水位~下泄流量关系如下: 截流设计是施工导流设计重要组成部分,其设计过程比较复杂,一般有多种设计方法,本次设计针对立堵截流。一般设计步骤分为:戗堤设计及截流水力分区设计,本次设计只涉及截流水力计算。 截流的水力计算中龙口流速的确定一般有图解法和三曲线法两种。以下采用三曲线法设计。 截流设计流量的确定,通常按频率法确定,也即根据已选定的截流时段,采用该时段内一定频率的某种特征流量值作为设计流量。一般地,多采用5%~10%的月平均或者旬平均流量作为设计标准。

二、计算过程含附图(三曲线法) 无护底时绘制V~Z 和V~B 曲线 步骤:1、作Q~Z 关系曲线,将已知的泄流水位Q d ~△H 上转化为Q d ~Z 关系, 并做Q d ~Z 曲线; 其中:Qs= Q s0 0/z z =22023.3/z ; Q d 可根据Z 值在Q d ~Z 曲线上查得; 由Q 0=Q+Q d +Q s 绘制龙口流量与下游落差Q~Z 关系曲线,曲线由以 下表格绘制:

2、计算Z B 和Z C (1)、B 点为非淹没流梯形断面与三角形断面分界点。 Z B =2 2241?α?g +(224αn Q g )2/5 -h s 其中,α为断面动能修正系数,常取1.0; ψ为流量系数,为0.85—0.95;此时取0.91; n 为戗堤端部边坡系数,取n=1; h s =39.51-30=9.51m ;

导流水力计算补充资料

导流水力学计算补充资料 导流水力学计算目的: 拟定泄水建筑物尺寸;确定围堰高程及高度;为计算导流方案工程量提供依据。分为四类介绍:分段围堰法前期之束窄河床导流水力计算、导流后期之底孔与缺口导流水力计算、隧洞导流水力计算、明渠导流水力计算。 一、分段围堰法之前期导流的水力计算 要求:束窄河床流速校核;确定上、下游围堰的高程及长度;确定纵向围堰的高程及长度。 1、上游水位计算(上游水位壅高计算,其中下游水位按实测水位流量关系确定)绘出束窄河床导流水位计算简图如下: 图中z为上下游水位差,m;v 0为上游围堰前(原河床)水流的行近流速,m/s;v c 为束 窄河床段水流收缩断面处的流速,m/s。 (1)计算公式[教材公式(1-3)] 上述计算简图中,可近似假定h c =h d ,按能量方程: 式中,河床束窄断面处流v c 为:(公式1-4) Q D 为导流设计流量,m3/s、 设上游围堰前水位壅高后,河床过水面积为A u : 则v 0为而A u 与河床地形与z有关、 A u =f(Hu)=f(z)

(2)试算法求z: 已知:导流设计流量Q D ;河床水位-面积曲线H-A(或图上得量H对应的A值); 下游水位-流量关系曲线h d -Q;K及其它系数。 计算步骤: step1:由Q D ,K求v c ,校核v c 就是否小于允许流速[v c ],并选定各种系数值; step2:设z=z s ,求h u ,=h d +z s 。并查得A u ; step3:求v 0=Q D /A u ; step4:将v c 与v 代入公式(1-3),求出z; step5:比较判定 |z-z s |

取水工程课程设计计算书

《城市水资源与取水工程》课程设计任务书 一.任务书 本课程设计的任务就是根据所给定的原始资料设计某城市新建水源工程的取水泵房。 一、设计目的 本课程设计的主要目的就是把《泵与泵站》、《城市水资源与取水工程》中所获得的理论知识加以系统化,并应用于设计工作中,使所学知识得到巩固与提高,同时培养同学们有条理地创造性地处理设计资料的独立工作能力。 二、设计基本资料 1、近期设计水量6,8,10万米3/日,要求远期9,12,15万米3/日(不包括水厂自用水)。 2、原水水质符合饮用水规定。河边无冰冻现象,根据河岸地质地形以决定采用固定式泵房由吸水井中抽水,吸水井采用自流管从取水头部取水,取水头部采用箱式。取水头部到吸水井的距离为100 米。 3、水源洪水位标高为73、2米(1%频率);估水位标高为65、5米(97%频率);常年平均水位标高为68、2 米。地面标高70、00。 4、净水厂混合井水面标高为9 5、20米,取水泵房到净水厂管道长380(1000)米。 5、地区气象资料可根据设计需要由当地气象部门提供。 6、水厂为双电源进行。 三、工作内容及要求 本设计的工作内容由两部分组成: 1、说明说 2、设计图纸 其具体要求如下: 1、说明书 (1)设计任务书 (2)总述 (3)取水头部设计计算

(4)自流管设计计算 (5)水泵设计流量及扬程 (6)水泵机组选择 (7)吸、压水管的设计 (8)机组及管路布置 (9)泵站内管路的水力计算 (10)辅助设备的选择与布置 (11)泵站各部分标高的确定 (11)泵房平面尺寸确定 (12)取水构筑物总体布置草图(包括取水头部与取水泵站) 2、设计图纸 根据设计计算成果及取水构筑物的布置草图,按工艺初步设计要求绘制取水头部平面图、剖面图;取水泵房平面图、剖面图及机组大样图,图中应绘出各主要设备、管道、配件及辅助设备的位置、尺寸、标高。绘制取水工程枢纽图。 泵站建筑部分可示意性表示或省略,在图纸上应列出泵站与取水头部主要设备及管材配件的等材料表。 二、总述 本次设计为一级泵站,给水泵站采用圆形钢筋混凝土结构,泵房设计外径为16m,泵房上设操作平台。自流管采用DN800的钢管,吸水管采用DN600的钢管,压水管为DN450的钢管,输水干管采用DN600的钢管。筒体为钢筋混凝土结构,所有管路配件均为钢制零件。水泵机组采用14sh—13A型水泵,JS—116—4型异步电动机,近期二用一备,远期三用一备。起重机选用DL型电动单梁桥式,,排水设备选用WQ20-15型潜水泵,通风设备选用T35-11型轴流风机两台。 三、取水头部设计计算 1、设计流量Q的确定: 考虑到输水干管漏损与净化场本身用水,取水用水系数α=1、05,所以 近期设计流量为: 2、取水头部的设计与计算

截流水力计算

截流水力计算(课程设计资料) 土木水电学院水利水电工程系二零零六年十二月

截流水力计算 一切将河道水流截断的工程措施,统称截流。截流的方法很多,用的最多的是抛石截流。抛石截流又分为平堵截流和立堵截流。由于立堵截流不需要架桥,施工简单,截流费用低,因此现在国内外绝大部分工程均采用立堵截流。下面仅研究立堵截流水力计算。 抛石截流计算最主要的任务是确定抛投体的尺寸的重量,而抛投块的稳定计算国内外广泛采用的是兹巴什公式,即 V =(1) 式中 V ——石块极限抗冲流速; d ——石块化引为球形的粒径; s γ、γ——分别为石块和水的容重; K ——综合稳定系数。 由(1)式可知,抛投块体的粒径与抗冲流速的平方成正比。也就是说,抛投块体的粒径在很大程度上取决于龙口流速,因此研究龙口流速变化规律有重要的意义。下面介绍两种计算龙口流速的方法。 一、图解法计算龙口流速(方法一) 一般情况下,合龙过程中截流设计流量0Q 由四部分组成: d s ac Q Q Q Q Q =+++ (2) 式中 Q ——龙口流量; d Q ——分流量(分流建筑物中通过的流量) ac Q ——上游河槽中的调蓄流量; s Q ——戗堤渗透流量。 当s Q 和ac Q 不计算,则有: 0d Q Q Q =+ (2-1)

龙口流量按宽顶堰公式计算: 3 2 Q m - =(3) 式中B - ——龙口平均过水宽度; H——龙口上游水头(龙口如有护底,应从护底顶部算起); m——流量系数,按下式计算: (1Z m H =- Z H小于0.3 淹没流 0.385 m= Z H大于或等于0.3 非淹没流(3-1)由连续方程可得龙口流速计算公式: Q V Bh - =(4)式中V——龙口计算断面平均流速; h——龙口计算断面水深(从护底顶部算起); 在立堵截流中,常常规定:当出现淹没流时, s h h =, s h为龙口底部(或护底) 以上的下游水深(图一);当出现非淹没流时, c h h =, c h为临界水深。 h的计算按下列四种情况考虑: 1.梯形断面淹没流: s h h = 由于进占过程中龙口底部高程不变, s h为常数。 2. 梯形断面非淹没流: c h h = c h按下式计算: 2 33 () 1 c c aQ B nh g B h - - + =(4-1) 式中n——戗堤端部边坡系数; a——计算断面动能修正系数,常取 1.0 a=计算;

施工导流计算

某水利枢纽工程施工导流建筑物为5级,根据《水利水电工程施工组织设计规范》SL303-2004初步确定导流标准为5年一遇(P=20%),5年一遇枯水期洪峰流量为80m3/s,洪水历时为24小时; 采用全段围堰(挡枯水期洪水)泄洪洞导流围堰为不过水土石围堰,初步确定泄洪洞底高程663m宽4-6m,高5-7米,洞长400米; 试根据拟定的泄洪洞尺寸计算堰前最高水位及最大下泄流量。 假设泄洪洞底坡为0.005,出口为自由出流。 分析:Z-V关系曲线(或Z-F关系曲线); 洪水标准及相应设计洪水过程线; 拟定的泄洪建筑物型式与尺寸,并推求q-V关系; 水库汛期的控制运行规则; 初始边界条件(包括起调水位、初始库容、初始下泄流量)。 水位~库容关系曲线表 查魏璇主编《水利水电工程施工组织设计指南》中隧洞导流水力计算水位-泄量关系。 解:1.根据题意及条件绘制Z-V关系曲线如下图

2.洪水标准及洪水过程线 3. 拟定的泄洪建筑物型式与尺寸及相应得水力计算,并推求q-V关系 该泄洪建筑物为矩形泄洪洞,拟定其宽为5m,高为5m,泄洪洞底高程663m,过水面积A=25m2。因为隧洞为自由出流判别式如下: 无压流H/D<1.2 有压流H/D>1.5 半有压流或半有压与有压交替的不稳定流 1.2ic=0.004则底坡为陡坡,泄洪能力不受洞长的影响, (1)水力计算: ①当0﹤H﹤6m时,H/D<1.2此时为无压流; 短洞水力计算: Q=δsmb2gH32(δs=1,m=0.33)

水力计算实例

水力计算实例 该别墅采用机械循环垂直单管顺流式热水采暖系统管路的管径。热 媒参数:供水温度t g ′=95℃,回水温度t h ′=70℃.系统与外网接入。在 引入口外网的供、回水压差为30kPa.散热器内的数字表示散热器的热负荷。层高为3.9m。 轴测图说明: ⑴.⑴⑵⑶⑷⑸⑹管为供水管,⑼⑽⑾⑿⒀为回水管。 ⑵.⑺⒁⒃⒅⒇为立管,⒂⑻⒄⒆为支管,包括上下两根。 计算过程如下: 在轴测图上对立管荷管段进行编号并注明各管段的热负荷荷管长。 确定最不利环路。本系统为单管异程式系统,一般取最远立管 的环路作为最不利环路,最不利环路是从入口到立管V。这个环路包括管段1至管段12.

计算最不利环路各管段直径 管段1:由于G= h g t t Q -86.0=709516343 86.0-?≈562(kg/h) R pj =60~120Pa/m 查附录4.1得,d=25mm,R 和V 有两个值,用插值法计 算如下 R= 4038 .5389.60-×2+53.38=53.76Pa/m V=40 28 .030.0-×2+0.28≈0.28m/s 沿程损失: ΔP y =Rl=53.76×8.8=473.1(Pa) 局部损失: 由V=0.28m/s,查附录4.3得,ΔP d =ρV 2/2=35.34Pa 查表4.2得 一个闸阀:1×0.5=0.5 2个弯头:2×1.5=3.0 Σ ξ =0.5+3.0=3.5 ΔP i =ΣξΔP d =3.5×35.34=123.69 Pa 其他最不利环路管道的管径计算同管道1将确定的各管段d 、R 、v 带入列表最后计算最不利环路的总压力损失Σ(ΔP y +ΔP i )=1680.18 Pa 。入口处的剩余循环压力用调节阀节流。

给排水课程设计计算书

《建筑给水排水工程》课程设计任务书及指导书 一、设计资料 (1)建筑资料 建筑各层平面图、建筑剖面图、厨厕大样图等。 建筑物为六层住宅,采用钢筋混凝土框架结构,层高为3M,室内外高差为0.1M。 (2)水源资料 在建筑物北面有城镇给水管道和城镇排水管道(分流制),据调查了解当在夏天用水高峰时外网水压为190kpa,但深夜用水低峰时可达310kpa;环卫部门要求生活污水需经化粪池处理后才能排入城镇排水管道。每户厨房内设洗涤盆一个,厕所内设蹲式(或坐式)大便器,洗脸盆、淋浴器(或浴盆)及用水龙头(供洗衣机用)各一个。每户设水表一个,整幢住宅楼设总表一个。 二、设计内容 1.设计计算书一份,包括下列内容 (1)分析设计资料,确定建筑内部的给水方式及排水体制。 (2)考虑厨厕内卫生器具的布置及管道的布置与敷设。 (3)室内外管道材料、设备的选用及敷设安装方法的确定。 (4)建筑内部给排水系统的计算。 (5)其它构筑物及计量仪表的选用、计算。 (6)室外管道定线布置及计算(定出管径、管坡等数据及检查井底标高,井径,化粪池进出管的管内底标高等)。 2.绘制下列图纸 (1)各层给排水平面图(1:100)。 (2)系统原理图 (3)厨厕放大图(1:50)。 (4)主要文字说明和图例等。

设计说明书 (一)给水方式的确定 单设水箱供水 由设计任务资料得知,市政给水供水在夏天用水高峰时外网水压为190kpa,但深夜用水低峰时可达310kpa,查规范得知,3层及以下的单位给水供水宜直接市政供水,而4到6层得用户则有水箱供水。 优点:系统简单,投资省,充分利用室外管网水压,节省电耗,拥有贮备水量,供水的安全可靠性较好。 缺点:设置高位水箱,增加了建筑物的结构荷载,降低经济效益,水压长时间持续不足时,需增大水箱容积,并有可能出现断水。 总的来说,整个系统由室外管网供水,下行上给。这种方式不仅节省了材料费用,并且免除了水泵带来的动力费用以及水箱造成的建筑物经济效益降低的问题。 (二)给水系统的组成 整个系统包括引入管、水表节点、给水管网和附件等。 系统流程图为:市政给水管网→室外水表→管道倒流防止器→室外给水环网→户用水表→室内管网 (三)管材及附件的选用 1、给水管材 生活给水管道与室外环网采用不锈钢管,其余配水管采用PP-R给水塑料管。 2、给水附件 DN>50mm的管道及环网上设置闸阀,DN<50mm的管道上设置截止阀。 (四)施工要求 1、室外管道 室外管道采用DN100不锈钢管连接成环状,连接形式为法兰连接,埋设在地下0.7m处,向建筑物内部供水。 2、室内管道 (1)室内管道PP-R给水塑料管采用热熔连接的形式。 (2)室内管道立管采用明装的形式装设在水表间内,支管采用暗装的形式埋在空心墙或暗敷于地板找平层中。同时在管道施工时,注意防漏、防露等问题。 (3)给水管与排水管平时、交叉时,其距离分别大于0.5m和0.15m;交叉处给水管在上。(4)管道穿越墙壁时,需预留孔洞,孔洞尺寸采用d+50mm-d+10mm,管道穿越楼板时应预埋金属套管。 (5)管道外壁之间的最小间距,管径DN≤32时,不小于0.1m;管径大于32mm时,不小于0.15m。 二、排水工程设计 (一)污废水排水工程设计 1、排水体制的选择 根据本工程实际排水条件,该建筑采用污废水合流排水系统,经化粪池处理后排入城市污废水管道。 由于本工程层数较少,采用伸顶通气立管。 2、排水系统的组成 由卫生器具、排水管道、检查口、清扫口、室外排水管道、检查井、化粪池、伸顶通气

庙湖导流

CB34报告单 (葛洲坝[2011]报告011号) 合同名称:南水北调中线一期引江济汉工程渠道3标合同编号:HBNSBD-YJ01-2011-05 说明:本表一式四份,由承包人填写,监理机构、发包人审批后,承包人2份,监理机构、 发包人各1份。

关于庙湖两期围堰与一期围堰方案比较及导流明渠设计的报告 一、工程概况 1、工程概况 引江济汉作为南水北调中线水源区工程之一,是从长江上荆江河段附近引水至汉江兴隆河段、补济汉江下游流量的一项大型输水工程。工程的主要任务是向汉江兴隆以下河段(含东荆河)补充因南水北调中线调水而减少的水量,同时改善该河段的生态、灌溉、供水和航运用水条件。引水干渠的引水口位于荆州市龙洲垸、出水口为潜江市高石碑,线路地跨荆州、荆门两地级市所辖的荆州区和沙洋县,以及省直管市潜江市和仙桃市,干渠全长67.23km 工程区位于江汉平原的腹地,桩号为13+756~18+947,地形平坦开阔,地面高差起伏不大,渠道的两侧均为农田、鱼塘及村庄,地面高程在32~34m之间。 渠道3标长度为5.191km,沿线共布置各类建筑物4座,3座排水倒虹吸,一座分水闸。引水干渠设计引水流量350m3/s,最大引水流量500m3/s。 本标段引水干渠按1级建筑物设计,干渠上的跨渠倒虹吸等主要建筑物按1级建筑物设计,倒虹吸的进出口连接建筑物、消能防冲设施、庙湖分水闸后的输水管、出口连接建筑物、消能防冲设施等次要建筑物按3级建筑物设计。回旋水域建筑等级类别为三类,但水工建筑物按1级设计,其它建筑物按3级设计。 本标段主体工程主要工程量:土方开挖约213万m3,土石方填

筑约98万m3,混凝土约7万m3,钢筋约0.67万t。 2、穿湖段的原招标围堰施工方案 本标段穿湖段桩号为17+306~17+800,其中有两座建筑物,桩号分别是分水闸K17+400,倒虹吸K17+650,为了满足穿湖段在施工过程中湖汊上游来水能顺利泄入湖中而不致影响其施工,因此,进行分期施工,结合工程布置、进场交通条件及施工布置,一期施工桩号17+306~17+660段(含渠道、分水闸、回旋水域及倒虹吸等),纵向围堰轴线桩号17+683,由桩号17+700~17+800段湖汊过流,二期施工桩号17+660~17+800段渠道,由一期已建的倒虹吸过流,庙湖曾家湾倒虹吸设计过流标准为50年一遇,因此满足穿湖段施工20年一遇的度汛洪水要求。 一期围堰形成一个封闭的基坑,在倒虹吸进出口处围堰向外侧折转,总长约1140m,其中纵向围堰长约263m,采用土方填筑,堰底高程26.5m,堰顶高程为29.0m,顶宽10m,两侧边坡均为1∶5,一期基坑渠道填筑在4月底可达到脱险高程,但是纵向围堰不满足度汛要求,在其上采用袋装土填筑到32.0m高程,堰高3m,袋装土堰顶宽2m,两侧边坡均为1∶1。汛期渠道内可继续施工。二期只填筑两条横向围堰与一期横向围堰衔接,堰顶高程29.0m,顶宽10m,两侧边坡均为1∶5,二期围堰共长620m,在合龙后纵向围堰可以拆除,此时一二期基坑合为一个整体。在二期围堰合龙前,倒虹吸进出口前围堰必须拆除,倒虹吸作为二期渠道施工导流建筑物。 一、二期土围堰填筑7.8万m3,袋装土填筑3000m3,土围堰只

完整word版,仅参考工程水文及水力计算课程设计(赋石水库课程设计)

工程水文与水力计算 课程设计 赋石水库水利水电规划 、设计任务 1、选择水库死水位; 2、选择正常蓄水位; 3、计算电站保证出力和多年平均发电量; 4、选择水电站装机容量; 5、推求设计标准和校核标准的设计洪水过程线;6推求洪水特征水位和大坝坝址顶高程。 二、流域自然地理简况,流域水文气象资料概况: 1、流域和水库情况简介 西苕溪为太湖流域一大水系(图KS2-1),流域面积为2260km2,发源于浙江省安吉县天目山,干流全长150km,上游陡坡流急,安城以下堰塘遍布,河道曲折,排泄不畅,易遭洪涝灾害,又因流域拦蓄工程较少,灌溉水源不足,易受灾害。

图KS2-1西苕溪流域水系及测站分布1 赋石水库是一座防洪为主,结合发电、灌溉、航运及水产养殖的综合利用水库,位于安吉县丰城西10km,控制西苕溪主要支流西溪,坝址以上流域面积328km2。流域内气候温和、湿润,多年平均雨量1450km。流域水系及测站分布见图KS2-1 1、水文气象资料情况 在坝址下游1Km处设有潜渔水文站,自1954年开始有观测的流量资料。通过频率计算,得各设计频率的设计年径流量,选择典型年,计算缩放比,成果见表KS2-3典型年径流过程见表KS2-4 根据调查1922年9月1日在坝址附近发生一场大洪水,推算得潜渔站洪峰流量为1350m3s。这场洪水是发生年份至今最大的一次洪水。缺测年份内,没有大于 1160m3s的洪水发生。 经初步审查,可降雨和径流等实测资料可用于本次设计。 表KS2-3 设计年径流量及典型年径流量 表KS2-4 潜渔站设计年径流过程 月~枯水典型年Q~中水典型~丰水典型~~I枯水典型年Q~中水典型~丰水典型

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

一期工程最不利环路水力计算表

一期工程最不利环路水力计算表 序号负荷(MW)负荷(kW)流量(t/h)管径实际管长 (m)计算管长(m)ν(m/s)△Py(Pa)总阻力(Pa) R(Pa/m) 电厂-A 281 281000 4027.67 1000 9825 12772.5 1.45 17 217383 434767 A-B 281 281000 4027.67 1000 1070 1391 1.79 29.6 41163 82326 B-a' 161.66 161660 2317.13 700 518 673.4 1.71 36.6 24675 49349 a'-b' 154.17 154170 2209.77 700 1165 1514.5 1.63 33.3 50471 100942 b'-d' 151.05 151050 2165.05 700 590 767 1.59 32 24536 49073 d'-e' 144.03 144030 2064.43 700 227 295.1 1.52 29.1 8583 17166 e'-f' 141.69 141690 2030.89 700 474 616.2 1.5 28.1 17345 34690 f'-g' 129.83 129830 1860.9 700 646 839.8 1.37 23.6 19847 39694 g'-h' 98.94 98940 1418.14 600 682 886.6 1.42 30.8 27335 54670 h'-j' 96.13 96130 1377.86 600 482 626.6 1.38 29.1 18237 36474 j'-k' 82.09 82090 1176.62 600 139 180.7 1.18 21.2 3835 7670 k'-l' 68.36 68360 979.83 600 891 1158.3 0.98 14.7 17048 34096 l'-m' 68.36 68360 979.83 600 235 305.5 0.98 14.7 4496 8993 m'-o' 68.36 68360 979.83 600 400 520 0.98 14.7 7653 15307 o'-p' 68.36 68360 979.83 600 215 279.5 0.98 14.7 4114 8227 p'-q' 37.35 37350 535.35 500 207 269.1 0.77 11.4 3079 6158 q'-r' 37.35 37350 535.35 500 206 267.8 0.77 11.4 3064 6129 r'-y 34.85 34850 499.52 500 580 754 0.72 10 7511 15023 y-u 24.87 24870 356.47 500 343 445.9 0.51 5.1 2262 4524 u-t 11.23 11230 160.96 500 343 445.9 0.23 1 461 923 t-14 11.23 11230 160.96 250 250 325 0.93 39.4 12794 25587

9.水系统水力计算

9 空调水系统方案确定和水力计算 9.1 冷冻水系统的确定 9.1.1 冷冻水系统的基本形式 9.1.1.1 双管制、三管制和四管制系统 (1)双管制系统夏季供应冷冻水、冬季供应热水均在相同管路中进行。优点是系统简单,初投资少。绝大多数空调冷冻水系统采用双管制系统。但在要求高的全年空调建筑中,过渡季节出现朝阳房间需要供冷而背阳房间需要供热的情况,这时改系统不能满足要求。 (2)三管制系统分别设置供冷、供热管路,冷热回水管路共用。优点是能同时满足供冷供热的要求,管路系统较四管制简单。其最大特点是有冷热混合损失,投资高于两管制,管路复杂。 (3)四管制系统供冷、供热分别由供回水管分开设置,具有冷热两套独立的系统。优点是能同时满足供冷、供热要求,且没有冷热混合损失。缺点是初投资高,管路系统复杂,且占有一定的空间。 9.1.1.2 开式和闭式系统 (1)开式水系统与蓄热水槽连接比较简单,但水中含氧量较高,管路和设备易腐蚀,且为了克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统。 (2)闭式水系统不与大气相接触,仅在系统最高点设置膨胀水箱。管路系统不易产生污垢和腐蚀,不需克服系统静水压头,水泵耗电较小。 9.1.1.3 同程式和异程式系统 (1)同程式水系统除了供回水管路以外,还有一根同程管,由于各并联环路的管路总长度基本相等,各用户盘管的水阻力大致相等,所以系统的水力稳定性好,流量分配均匀。高层建筑的垂直立管通常采用同程式,水平管路系统范围大时宜尽量采用同程式 (2)异程式水系统管路简单,不需采用同程管,水系统投资较少,但水量分配。调节较难,如果系统较小,适当减小公共管路的阻力,增加并联支管的阻力,并在所有盘管连接支路上安装流量调节阀平衡阻力,亦可采用异程式布置。 9.1.1.4 定流量和变流量系统 (1)定流量水系统中的循环水量保持定值,负荷变化时可以通过改变风量或改变供回水温度进行调节,例如用供回水支管上三通调节阀,调节供回水量混合比,从而调节供水温度,系统简单操作方便,不需要复杂的自控设备,缺点是水流量不变输送能耗

给水排水管网课程设计说明书及计算书

前言 水是人类生活、工农业生产和社会经济发展的重要资源,科学用水和排水是人类社会发展史上最重要的社会活动和生产活动内容之一。特别是在近代历史中,随着人类居住和生产的程式化进程,给水排水工程已经发展成为城市建设和工业生产的重要基础设施,成为人类生命健康安全和工农业科技与生产发展的基础保障。给水排水系统是为人们的生活、生产、和消防提供用水和排除废水的设施的总称。它是人类文明进步和城市化聚集居住的产物,是现代化城市最重要的基础设施之一,是城市社会文明、经济发展和现代化水平的重要标志。尤其是在面临全球水资源极其缺乏的今天,给排水管网的作用显得尤为重要。 由于城市给排水系统在新的时期赋予了新的内涵,与人们的生产和生活息息相关。看似平凡的规划设计却有着不平凡的现实意义,在满足规范和其它技术要求的条件下,根据城市的具体情况,科学规划设计城市给排水管网系统是一个非常重要的课题。 课程设计是学习计划的一个重要的实践性学习环节,是对前期所学基础理论、基本技能及专业知识的综合应用。通过课程设计调动了我们学习的积极性和主动性,培养我们分析和解决实际问题的能力,为我们走向实际工作岗位,走向社会打下良好的基础。 本设计为玉树囊谦县香达镇给排水管道工程设计。整个设计包括三大部分:给水管网设计、排水管网设计。给水管网的设计主要包括管网的定线、流量的设计计算、清水池容积的确定、管网的水力计算、管网平差和消防校核。排水管网设计主要包括排水管网定线、设计流量计算和设计水力计算。

目录 第一章设计任务书 (4) 第二章给水管网设计说明与计算 (6) 2.1给水管网的设计说明 (6) 2.1.1 给水系统的类型 (6) 2.1.2 给水管网布置的影响因素 (6) 2.1.3 管网系统布置原则 (7) 2.1.4 配水管网布置 (7) 2.2给水管网设计计算 (8) 2.2.1 设计用水量的组成 (8) 2.2.2 设计用水量的计算 (8) 2.2.3 管网水力计算 (12) 2.3二级泵站的设计 (20) 2.3.1 水泵选型的原则 (20) 2.3.2 二级泵站流量计算 (20) 2.3.3二级泵站扬程的确定 (20) 2.3.4 水泵校核 (21) 第三章排水管网设计说明与计算 (23) 3.1排水系统的体制及其选择 (23) 3.2排水系统的布置形式 (23) 3.3污水管网的布置 (23) 3.4污水管道系统的设计 (24) 3.4.1 污水管道的定线 (24) 3.4.2 控制点的确定 (24) 3.4.3 污水管道系统设计参数 (24) 3.4.4 污水管道上的主要构筑物 (25) 3.5污水管道系统水力计算 (26) 3.5.1 污水流量的计算 (26) 3.5.2 集中流量计算 (27) 3.5.3 污水干管设计流量计算 (27) 3.5.4 污水管道水力计算 (29) 3.6管道平面图及剖面图的绘制 (30)

施工导流计算书

(四)设计计算书 1、施工导流水力计算 一期围堰高程的设计 河流行进流速v 0=Q/A=3380/4408=0.77m/s 束窄河床平均流速v c =Q/ε(A -A 1)=3380/0.95(4408-2204)=1.61 m/s 水位雍高 m g v v Z c 154.09.81 ×277.09.81×2×85.061.122g φ2 2 20222=-=-= 一期上游围堰设计围堰高程H u =h d +z+h a +δ=85.6+0.154+0.424+0.5=86.678m 一期下游围堰设计围堰高程H d =h d +h a +δ=85.6+0.424+0.5=86.524m 二期围堰高程的设计 一期下游围堰设计围堰高程H d =h d +h a +δ=82.362+0.424+0.5=83.286m 二期上游围堰设计 2.3953866210 55.162.114.324 .34/622Re 6 2=????= = -υ vd Re>2320时为紊流。 81.017 .1024 .8== = χ A R 巴甫洛夫斯基公式y R n C 1= ,当R<1.0m 时,164.0012.05.15.1===n y 5.8081.0012 .01 164.0=?= C 谢才公式RJ CA vA Q RJ C v ===,,改写后得l R A C Q l R C v h f 222 22==, 此式与达西—魏斯巴赫公式g v R l h f 242 λ=,可得λg C 8=,可推出 0121.05.8081 .9882 2=?== C g λ 短管自由出流 00221 gH A A gH d l vA Q c μζ λα=++= =∑∑ 式中746.05.024 .380 0121.011 1 =+? += ++= ∑ζλ αμd l c

管路水力计算(最新)

一、管路水力计算的基本原理 1、一般管段中水的质量流量G,kg/h,为已知。根据G查询热水采暖系统管道水力计算表,查表确定比摩阻R后,该管段的沿程压力损失P y=Rl就可以确定出来。 局部压力损失按下式计算 (1) Σξ--------表示管段的局部阻力系数之和,查表可知。 可求得各个管段的总压力损失 (2)2、也可利用当量阻力法求总压力损失: 当量阻力法是在实际工程中的一种简化计算方法。基本原理是将管段的沿程损失折合为局部损失来计算,即 (3) (4) 式中ξd ——当量局部阻力系数。 计算管段的总压力损失ΔP可写成 (5) 令ξzh = ξd +Σξ 式中ξzh|——管段的这算阻力系数

(6) 又(7) 则(8) 设 管段的总压力损失 (9) 各种不同管径的A值和λ/d值及ξzh可查表。 根据公式(9)编制水力计算表。 3、当量长度法 当量长度法是将局部损失折算成沿程损失来计算的一种简化计算方法,也就是假设某一管段的局部压力损失恰好等于长度为l d的某段管段的沿程损失,即 (10) 式中l d为管段中局部阻力的当量长度,m。 管段的总压力损失ΔP可写成 ΔP = P y+ P j = Rl + Rl d = Rl z h (11) 式中l z h为管段的折算长度,m。 当量长度法一般多用于室外供热管路的水力计算上。

二、热水采暖系统水力计算的方法 1、热水采暖系统水力计算的任务 a、已知各管段的流量和循环作用压力,确定各管段管径。常用于工程设计。 b、已知各管段的流量和管径,确定系统所需的循环作用压力。常用于校核计算。 c、已知各管段管径和该管段的允许压降,确定该管段的流量。常用于校核计算。 2、等温降法水力计算方法 2-1 最不利环路计算 (1)最不利环路的选择确定 采暖系统是由各循环环路所组成的,所谓最不利环路,就是允许平均比摩阻最小的一个环路。可通过分析比较确定,对于机械循环异程式系统,最不利环路一般就是环路总长度最长的一个环路。 (2)根据已知温降,计算各管段流量 式中Q——各计算管段的热负荷,W; t g——系统的设计供水温度,℃; t g——系统的设计回水温度,℃。 (3)根据系统的循环作用压力,确定最不利环路的平均比摩阻R pj

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

第6章 水力计算及管径的确定

第6章 水力计算及管径的确定 1、画出水力计算简图,进行管段编号,立管编号并注明各管段的热负荷和管长,如附录3所示。 2、选择最不利环路 本系统为单管异程式系统,取最远立管的环路作为最不利环路。由附录中水力简图可见,水力计算分为两部分分别计算,左半部分和右半部分,其中左半部分的最不利环路是从入口到立管6的环路。这个环路包括管段1、2、3、4、5、6、7、8、9,10, 11, 12, 13, 14, 15;右半部分的最不利环路是从入口到立管11的环路,这个环路包括管段1、20、21、22、23、24、25、26、27、36、9。 3、计算各管段流量 G=0.86∑Q/(t g ′-t h ′) Q ——管段的热负荷,W 'g t ——系统的设计供水温度,℃ 'h t ——系统的设计回水温度,℃ 4、计算最不利环路各管段管径 虽本设计中引入口处外网的供回水压差较大,但考虑系统中各环路的压力损失易于平衡,采用推荐的平均比摩阻R pj 大致为60~120Pa/m 来确定最不利环路各管段的管径。 首先根据上式确定各管段的流量,根据G 和选用的R pj 值,查出各管段d 、R 、v 值,填入表中,然后计算沿程压力损失,局部压力损失,各管段的压力损失,最后算出最不利环路的总压力损失,并将不平衡率控制在15%以内,若有剩余循环压力,用调节阀消耗掉。本系统有左右两部分,故需要计算两部分的最不利环路的阻力。 5、同上述方法,以左半部为例,计算通过除最不利环路立管外离供水立管最远的立管5的环路,从而确定出立管16,17的管径及其压力损失。 如计算立管5的管径: 根据并联环路节点压力平衡原理,立管3的资用压力△P IV =△P 7~10=Pa 立管5包括,管16和17,分别根据G 值确定,查出各管段d,R,v 值,方法如第4步所说,计算出两管路的压力总损失后,与资用压力相比,将不平衡率控制在15%以内,,并校验不平衡率,多余的循环压力用调节阀调节。 6、计算其余各管段管径 与上述方法类似继续计算剩余立管的压力损失,根据各立管的资用压力和立管各管段的流量,选用合适的立管管径,计算压力损失并校验。

建筑给排水课程设计计算书

第1章原始资料 1.1 建筑物修建地区:苏州 1.2工程概况 本工程为江苏省苏州市B区3号楼的建筑给排水设计,主要包括给水系统,排水系统两部分的设计。该建筑共5层,底层设有车库,层高2.2m,一至五层为普通住宅,层高2.9m。整楼分两个单元,一梯两户。 给水系统采用一户一管的给水系统;给水管采用PPR塑料管;排水系统采用污、废合流制,排水管采用塑料管,排水立管设伸顶通气管。 1.3 气候资料:冻土深度: m 1.4土建资料:建筑平面图(首层平面图、标准层平面图)、剖面图 1.5室外给水管网供水压力为0.30Mpa。

第2章给水管网的水力计算 2.1 给水方案确定 2.1.1给水系统的选择:该系统为生活给水系统。根据用户所需水质要求,系统应为生活饮用水系统。 2.1.2 给水方式的选择:给水方式分为—依靠外网压力直接给水、设水箱给水、设水泵升压给水、设水泵,水箱的给水方式、气压给水方式等给水方式。由于本系统为五层,并且是生活用水,所以给水方式初步定为直接给水方式,。由室外给水管网直接供水,利用室外管网压力供水。 利用此方式的优点:可充分利用室外管网水压,节约能源,且供水系统简单。 2.2管道布置: 2.2.1管道定线设计原则 ①应满足最佳水力条件 为充分利用市政外网的水压,建筑给水引入管宜布置在用水量最大处或连续供水处,以保证主体供水可靠,减少管道转输流量及系统的水头损失,并使大管径管道长度最短。 ②便于维护管理 设计中,室内给水管道(明设或暗设)与建筑结构垂直交叉时,应考虑管道或装置位置,要留有足够的空间,以利于使用中,拆修附件及清通管道等维护管理工作;当给水管道在进户与排水管道近邻时,应留有至少 1.0m 净距,以便工程维修时二者互不影响。 ③保护管道不受损坏 必须保证管道周围不出现有荷载或受腐蚀现象,如有不可避免的受损因素影响时,应采取必要的防护措施。

截流水力计算(水工钢筋)

水利工程施工课程设计计算说明书 题目:截流水力计算(水工钢筋) 学院:中央电大伊犁分校 班级:2011年春 指导老师: 姓名:张玉

一、基本资料 某工程截流设计流量Q=4150 m3/s,相应下游水位为39.51m,采用单戗立堵进占,河床底部高程30m,戗堤顶部高程是44m,戗堤端部边坡系数n=1,龙口宽度220m,合龙中戗堤渗透流量Q s0=220m3/s,合龙口的渗流量可近似按如下公式计算,Qs= Q s00 /z z(Z为上下游落差,Z0 为合龙闭气前最终上下游落差),请设计该工程在河床在无护底情况下的截流设计。已知上游水位~下泄流量关系如下: 截流设计是施工导流设计重要组成部分,其设计过程比较复杂,一般有多种设计方法,本次设计针对立堵截流。一般设计步骤分为:戗堤设计及截流水力分区设计,本次设计只涉及截流水力计算。 截流的水力计算中龙口流速的确定一般有图解法和三曲线法两种。以下采用三曲线法设计。 截流设计流量的确定,通常按频率法确定,也即根据已选定的截流时段,采用该时段内一定频率的某种特征流量值作为设计流量。一般地,多采用5%~10%的月平均或者旬平均流量作为设计标准。 二、计算过程含附图(三曲线法)

无护底时绘制V~Z 和V~B 曲线 步骤:1、作Q~Z 关系曲线,将已知的泄流水位Q d ~△H 上转化为Q d ~Z 关系, 并做Q d ~Z 曲线; 其中:Qs= Q s0 /z z =220 23 .3/z ; Q d 可根据Z 值在Q d ~Z 曲线上查得; 由Q 0=Q+Q d +Q s 绘制龙口流量与下游落差Q~Z 关系曲线,曲线由以 下表格绘制:

相关文档
相关文档 最新文档