文档库 最新最全的文档下载
当前位置:文档库 › 平面的法向量

平面的法向量

平面的法向量
平面的法向量

高二数学学案 姓名 班级

高二数学 平面的法向量与平面的向量表示

学习目标:

1、掌握平面的法向量;会求平面法向量

2、利用平面的法向量判定线面、面面的位置关系;

学习重点:法向量的应用

学习过程

(一)、预习检测

1、设平面 的法向量为(1,2,-2),平面 的法向量为(-2,-4,k),若 ,则k= ;若 则 k= 。

2、已知 ,且

的方向向量为(2,m,1),平面的法向量为(1,1/2,2),则m= .

3、若 的方向向量为(2,1,m),平面 的法向量为(1,1/2,2),且 ,则m= .

4.设 分别是平面α,β的法向量,根据下列条件,判断α,β的位置关系.

(二)、复习:

1、 直线l 的向量方程:

2、与a ,b 共面(a ,b 不共线)

(三)、引入新课

1、平面的法向量及求法

如果表示向量n 的有向线段所在的直线垂直于平面α,称这个向量垂直于平面α,记作n ⊥α,这时向量n 叫做平面α的法向量. n

在空间直角坐标系中,如何求平面法向量的坐标呢?

如图,设a =( x 1,y 1,z 1)、b =(x 2,y 2,z 2)是平面α内的两个不共

线的非零向量,由直线与平面垂直的判定定理知,若n ⊥a

且n ⊥b ,则n ⊥α.换句话说,若n ·a = 0且n ·b = 0,则

n ⊥α.可按如下步骤求出平面的法向量的坐标.

第一步(设):设出平面法向量的坐标为n =(x,y,z).

,α//αβαβ⊥//l αl l αl α⊥(1)(2,2,5),(6,4,4)(2)(1,2,2),(2,4,4)(3)(2,3,5),(3,1,4)

u v u v u v =-=-=-=--=-=--

第二步(列):根据n ·a = 0且n ·b = 0可列出方程组11122200

x x y y z z x x y y z z ++=??++=? 第三步(解):把z 看作常数,用z 表示x 、y.

第四步(取):取z 为任意一个正数(当然取得越特殊越好),便得到平面法向量n 的坐标.

2、平面的向量表示:0AM n =

3、设1n 、2n 分别是平面α、β的法向量,那么

α//β或α与β重合?1n //2n αβ⊥?12n n ⊥?120n n =

(四)典例分析

1、法向量的求解:

例1在棱长为2的正方体ABCD-A 1B 1C 1D 1中,O 是面AC 的中心,求面OA 1D 1的法向量.

2、法向量的应用

1、判断直线与平面的位置关系

直线L 的方向向量为a ,平面α的法向量为n ,且L ?α. ①若a ∥n ,即a=λn ,则L ⊥α

②若a ⊥n ,即a ·n = 0,则L ∥α.

高二数学学案姓名班级

例2棱长都等于2的正三棱柱ABC-A1B1C1,D、E分别是AC、CC1的中点,求证:

(I)A1E⊥平面DBC1;

(II)AB1∥平面DBC1

1

2、平面与平面的位置关系

平面α的法向量为n1 ,平面β的法向量为n2

①若n1∥n2,即n1=λn2,则α∥β

②若n1⊥n2,即n1·n2= 0,则α⊥β

巩固练习:练习A 1、2、 3

作业:练习B 1、2、

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

向量公式大全

向量公式大全 『ps.加粗字母表示向量』1.向量加法 羈AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 罿AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积

定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

求法向量的练习题

求法向量的作业化考试-----2014-11-28 一、选择题(每小题6分,共24分) 1、m ={8,3,a },n ={2b ,6,5},若m ∥n ,则a +b 的值为( ) A.0 B.25 C.2 21 D.8 2、已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC u u u r u u u r 与的夹角为( ) A. 0 30 B.0 45 C.0 60 D.0 90 3、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 共面,则实数λ等于( ) A.627 B.637 C.607 D.657 4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A. 6 B.552 C.15 D.10 二、解答题(每小题15分,共计75分) 1.如图,已知正四棱柱ABCD -A 1B 1C 1D 1的棱长AA 1=2,AB=1,按图中所建立的坐标系,求平面BDC 1,平面A 1BC 1,平面ABC 1D 1的法向量。 2如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点, 2CF AB CE ==,1::1:2:4AB AD AA = (1) 求异面直线EF 与1A D 所成角的余弦值; (2) 求平面1A ED 、1A ED F --的法向量。 3.如图,已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求平面ABC 1D 1的法向量。 4.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1、 平面ABCD 的法向量。 A 1 B 1 C 1 D 1 A B C D x y z y x D 1 A 1 D B 1 C 1 C B A F E D 1 C 1 B 1 A 1 D C B A o z y E z D 1 y A C 1 B 1 A 1 B D C

向量公式汇总

向量公式汇总 平面向量 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx'+yy'。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律);

整理法向量的快速求法

法向量的快速求法 在数学考试过程中,大部分同学往往因为时间不够而没法做完一份完整的试卷,有些同学也因为时间不够,计算速度加快而出现计算错误等原因导致失分,所以能够简便而快速的算出结果是很多同学梦寐以求的。用向量方法做立几题,必须会的一种功夫是求平面的法向量。不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法。 新教材对平面几何的要求,重点在于求平面的法向量,常见的待定系数法解方程组,运算量大,学困生容易算错,最简单快捷的方法是行列式法。 结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量. 如果用二阶行列式表示,则 n =( 1122y z y z ,-1 122x z x z ,1 12 2 x y x y ) ,这更便 于记忆和计算. 结论证明(用矩阵与变换知识可以证明,此处略去),但你可以验证 n 一定满足 m a m b ??=?? ?=???111222 0x x y y z z x x y y z z ++=??++=?; 而且∵a 、b 不共线,∴n 一定不是0. 怎样用该结论求平面的法向量呢?举例说明. 例、向量a =(1,2,3),b =(4,5,6)是平面 α内的两个不共线向量,求平面α的法向量 解:设平面α的法向量为n =(x ,y ,z ), 则0 n a n b ??=???=???2304560x y z x y z ++=?? ++=? 令z =1,得n =(1,-2,1). 注意: ① 一定按上述格式书写,否则易被扣分. ② n 的计算可以在草稿纸上完成,过程参照 右边“草稿纸上演算过程”. a =(1,2, b =(4,5,交叉相乘的差就是求y 时,a 、b 的纵坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差的时,a 、b 的竖坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差就是 ∴n =(-3,6

空间平面法向量求法

空间平面法向量求法 一、法向量定义 定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。 二、平面法向量的求法 1、内积法 在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)], 在平面内任找两个不共线的向量,。由,得·=0且·=0,由此得到关于x,y的 方程组,解此方程组即可得到。 2、 任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。 Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量=(A,B,C);若平面与3 个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 3、外积法 设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两 者交角,且0<θ<π,而与,, 皆垂直的向量。通常我们采取“右手定则”,也就是右手四指 由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。 设=(x1,y1,z1),=(x2,y2,z2),则×= (注:1、二阶行列式:;2、适合右手定则。) Code public double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1, ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3) { try { double a = 0, b = 0,c=0; //方程参数

常用的一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ()() 123 123 1 2 3123 123 123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv d r v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

高中数学平面向量公式

1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ①当且仅当a、b同向时,左边取等号; ②当且仅当a、b反向时,右边取等号。 4、定比分点

向量公式大全83635

向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b

平面法向量的一种简单求法和在求角

平面法向量的一种简单求法和在求角、距离中的应用 云南李学元 一、法向量的定义: 与平面垂直的向量叫平面的法向量 (根据定义可知:平面的法向量有多个,方向有两种:向上或向下)二、向量的数量积 a·b=∣a︳︳b∣cos cos= 若a=(x1,y1,z1)b=(x2,y2,z2),则a·b= ∣a︳= 三、向量积:a×b a×b的结果仍然是一个向量(使两个向量的起点相同) 方向:右手手指指向a的方向,自然弯向b,则大拇指所指的方向就是向量a×b的方向(即:a×b垂直平面) 大小:等于a,b为邻边的平行四边形的面积。 如图所示: (由此我们可以通过求两个向量的向量积求平面的法向量)

a×b的坐标计算 设a=(x1, y1, z1) b=(x2 , y2, z2) 则:a×b =(︳y1y z1z︱,-︱x1x z1z︱,︱x1x y1y︱)其中:二阶行列式︱a b c d︱=ad-bc 习惯上:作a×b时,把a写在上,把b写在下 作b×a时,把b写在上,把a写在下 练习:已知a=(2,1,0) b =(-1,2,1) (1)求a×b。(2)求b×a 解:a×b= b×a= 注:根据上述分析要求一个平面的法向量,只要在平面内找出两个同起点的向量作向量积即可。

例:如图所示,正方体ABCD-A1B1C1D1中,棱长为2,E、F分别是DD1、DC的中点。求平面AEF的一个法向量 解:以D ∴A( E( F( ∴AF=( AE=( ∴平面AEF的法向量n=( ) 四、法向量在求角中的应用。 1、用法向量求线面角。如图 Θ=1 2 π- Θ=- 1 2 π 两种情况下都有:sinΘ=︱cos︱因为

(完整版)高考平面向量公式(教师)

第七辑 平面向量专题 一,基本概念 1,向量的概念:有大小有方向的量称为向量。 2,向量的表示:几何表示为有向线段(如图);字母表示为a 或者AB 。 3,向量的大小:即是向量的长度(或称模) 4,零向量:长度为0的向量称为零向量,记为,零向量方向是任意的。 5,单位向量:长度为一个单位的向量称为单位向量,一般用、 1= 1= 6,平行向量(也称共线向量):方向相同或相反的向量称为平行向量,规定零向量与任意向量平行。若平行于,则表示为∥。 7,相等向量:方向相同,大小相等的向量称为相等向量。若a 与b 相等,记为a =b 8,相反向量:大小相等,方向相反的向量称为相反向量。若a 与b 是相反向量,则表示为=-;向量-= 二,几何运算 1,向量加法: (1)平行四边形法则(起点相同),可理解为力的合成,如图所示: (2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, (3)两个向量和仍是一个向量; (4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式): = << = 2,减法: (1)两向量起点相同,方向是从减数指向被减数,如图=- (2)两向量差依旧是一个向量; (3)减法本质是加法的逆运算:CB CA AB CB AC AB =+?=- 3,加法、减法联系: (1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,=- (2=,则四边形ABCD 为矩形 B A a C B A ? a b a b a b b a +

4,实数与向量的积: (1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: 当0>λ时,a λ与a 方向相同;当0<λ时,a λ与a 方向相反;当0=λ时,0=a λ;当0=a 时,0=a λ ;=λ(2)实数与向量相乘满足:)()(λμμλ= μλμλ+=+)( λλλ+=+)( 5,向量共线: (1)向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ= (2)如图,平面内C B A ,,三点共线的重要条件是存在三个不为零的实数q n m ,,, 使得=++n m q ,且0=++q n m ,反之也成立。 (3)AC AB λ=,则OC OA OB λλ+-=)1((证明略) 6,向量的数量积 (1 )数量积公式:= ?=?θθcos cos (2)向量夹角θ:同起点两向量所夹的角,范围是[] 0180,0∈θ (3)零向量与任一向量的数量积为0,即00=?a (4 )数量积与夹角关系:b a ≤?≤ 00=θ 00900<<θ 090=θ 0018090<<θ 0180=θ =? 0>?> 0=? >?>0 =?(5 = θcos 称为b 在a = θcos a 在b 的方向上的投影 (6)重要结论:直角三角形ABC 中,2 =? (7)向量数量积的运算律: 2a = e =(向量e 为与a 方向相同的单位向量) ?=? )()()(λλλ?=?=? =?+)(?+? 2222)(+?+=+ 2222)(+?-=- 2 2)()(-=-?+ b a b a b a b a b a

答平面向量的所有公式

答:平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点

法向量详解

专题:法向量的详解 高中数学法向量的定义:如果向量⊥ a平面α,那么向量a叫做平面α的法向量。但是对于法向量在立体几何中的运用却没有详细介绍,其实灵活运用法向量去求解某些常见的立几问题如“求点到平面的距离”、“求异面直线间的距离”、“求直线与平面所成的角”、“求二面角的大小”、“证明两平面平行或垂直”等是比较简便的,现介绍如下: 一、求点到平面的距离 设A是平面α外一点,AB是α的一条斜 线,交平面α于点B,而是平面α 那么向量在方向上的正射影长就是点A到平面α的距离h, 所以h= ? = ※ 例1:已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1和C1D1的中点,求点A1到平面DBEF的 距离。 解:如图建立空间直角坐标系, =(1,1,0),=(0, 2 1,1), 1 DA= (1,0,1) 设平面DBEF的法向量为n=(x,y,z), 则有:

?????=?=?00,即?????=+=+02 1 0z y y x 令2 1 11=-==z y x ,,, 取=(1,-1,2 1 ),则A 1到平面DBEF 的距离1== h 注:此题A 1在平面DBEF 的射影难以确定,给求解增加难度,若利用(※)式求解,关键是求出平面DBEF 的法向量。法向量的求解有多种,根据线面垂直的判定定理,设n =(x ,y ,z ),通过建立方程组求出一组特解。 二、求异面直线间的距离 假设异面直线a 、b ,平移直线a 至a ',且交b 于点A ,那么直线a '和 b 确定平面α,且直线a ∥α,设n 是平面α的法向量,那么n ⊥a ,n ⊥。所以异面直线a 和b 的距离可以转化为求直线a 上任一点到平面α的距离,方法同例1。 结论:12,l l 是两条异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离,则|||| CD n d n ?=。 例2:已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求直线DA 1和AC 间的距离。 解:如图建立空间直角坐标系, 则=(-1,1,0),1DA =(1,0,1) 连接11C A ,则AC C A //11,设平面D C A 11的法向量为

平面向量公式

平面向量 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度.零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质: ①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212 ,a b x x y y +=++. 向量减法运算: b a C B A

⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同; 当0λ<时,a λ的方向与a 的方向相反; 当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠共线. 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当 12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. (当1=λ时,为中点公式。) 平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??=.②当a 与b 同向时,a b a b ?=;当a

平面向量的所有公式

平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。

立体几何中的法向量

立体几何中的法向量 现行高中数学教科书第二册(下B)第九章提到了法向量的定义:如果向量⊥平面α,那么向量a叫做平面α的法向量。但是对于法向量在立体几何中的运用却没有详 细介绍,其实灵活运用法向量去求解某些常见的立几问题如“求点到平面的距离”、“求异面直线间的距离”、“求直线与平面所成的角”、“求二面角的大小”、“证明两平面平行或垂直”等是比较简便的,现介绍如下: 一、求点到平面的距离 设A是平面α外一点,AB是α的一条斜线,交平 面α于点B,而n是平面α的法向量,那么向量BA在n 方向上的正射影长就是点A到平面α的距离h, 所以 h= =(1) 例1:已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1和C1 D1的中点,求点A1到平面DBEF的距离。 解:如图建立空间直角坐标系, =(1,1,0),=(0, 2 1 ,1), 1 DA=(1,0, 1) 设平面DBEF的法向量为n=(x,y,z),则有: n0 = ?DB即x+y=0 = ? 2 1 y+z=0 令x=1, y=-1, z= 2 1 , 取n=(1,-1, 2 1 ),则A1到平面DBEF的距离1 = = h 注:此题A1在平面DBEF的射影难以确定,给求解增加难度,若利用(1)式求解,关键是求出平面DBEF的法向量。法向量的求解有多种,可直接利用向量积,在平面内找两个不共线的向量,例如DB和DF,那么n=DB×DF。但高中教材未曾涉及向量积,这里根据线面垂直的判定定理,设=(x,y,z),通过建立方程组求出一组特解。二、求异面直线间的距离 假设异面直线a、b,平移直线a至a*且交b于点A,那么直线a*和b确定平面α,且直线a∥α,设是平面α的法向量,那么⊥,⊥。所以异面直线a和b

相关文档
相关文档 最新文档