文档库 最新最全的文档下载
当前位置:文档库 › 线性规划与网络流24题 -- 08机器人路径规划问题

线性规划与网络流24题 -- 08机器人路径规划问题

线性规划与网络流24题 -- 08机器人路径规划问题

算法实现题8-8 机器人路径规划问题(习题8-19)

?问题描述:

机器人Rob可在一个树状路径上自由移动。给定树状路径T上的起点s和终点t,机器人Rob要从s运动到t。树状路径T上有若干可移动的障碍物。由于路径狭窄,任何时刻在路径的任何位置不能同时容纳2个物体。每一步可以将障碍物或机器人移到相邻的空顶点上。设计一个有效算法用最少移动次数使机器人从s运动到t。

?编程任务:

对于给定的树T,以及障碍物在树T中的分布情况。计算机器人从起点s到终点t的最少移动次数。

?数据输入:

由文件input.txt提供输入数据。文件的第1行有3个正整数n,s和t,分别表示树T的顶点数,起点s的编号和终点t的编号。

接下来的n行分别对应于树T中编号为0,1,…,n-1的顶点。每行的第1个整数h 表示顶点的初始状态,当h=1时表示该顶点为空顶点,当h=0时表示该顶点为满顶点,其中已有1个障碍物。第2个数k表示有k个顶点与该顶点相连。接下来的k个数是与该顶点相连的顶点编号。

?结果输出:

程序运行结束时,将计算出的机器人最少移动次数输出到文件output.txt中。如果无法将机器人从起点移动到终点,输出“No solution!”。

输入文件示例输出文件示例

input.txt output.txt

3

5 0 3

1 1 2

1 1 2

1 3 0 1 3

0 2 2 4

1 1 3

线性规划与网络流24题 -- 15汽车加油行驶问题

算法实现题8-15 汽车加油行驶问题(习题8-28) ?问题描述: 给定一个N*N的方形网格,设其左上角为起点◎,坐标为(1,1),X轴向右为正,Y 轴向下为正,每个方格边长为1,如图所示。一辆汽车从起点◎出发驶向右下角终点▲,其坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在行驶过程中应遵守如下规则: (1)汽车只能沿网格边行驶,装满油后能行驶K条网格边。出发时汽车已装满油,在起点与终点处不设油库。 (2)汽车经过一条网格边时,若其X坐标或Y坐标减小,则应付费用B,否则免付费用。 (3)汽车在行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为正整数,且满足约束:2 £ N £ 100,2 £ K £ 10。 设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。 ?编程任务: 对于给定的交通网格,计算汽车从起点出发到达终点的一条所付费用最少的行驶路线。 ?数据输入: 由文件input.txt提供输入数据。文件的第一行是N,K,A,B,C的值。第二行起是一个N*N的0-1方阵,每行N个值,至N+1行结束。方阵的第i行第j列处的值为1表示在网格交叉点(i,j)处设置了一个油库,为0时表示未设油库。各行相邻两个数以空格分隔。 ?结果输出:

程序运行结束时,将最小费用输出到文件output.txt中。 输入文件示例输出文件示例 input.txt output.txt 12 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

机器人路径规划方法的研究

第5期(总第156期) 2009年10月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15 O ct 1 文章编号:167226413(2009)0520194203 机器人路径规划方法的研究 李爱萍,李元宗 (太原理工大学机械工程学院,山西 太原 030024) 摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。 关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A 收稿日期:2009201207;修回日期:2009204218 作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。 0 引言 路径规划技术是机器人学研究领域中的一个重要 部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。 1 全局规划方法111 栅格法 栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法 可视图法中的路径图由捕捉到的存在于机器人一 维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法 拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。 114 自由空间法 自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

线性规划问题求解

高中线性规划问题简析 何江南 数学与信息学院学科教学专业 2014级 摘要:线性规划问题是高中阶段一个比较重要的知识点,它是在学习了不等式的基础上,对不等式的应用及延伸。解决线性规划问题是沟通几何知识和代数知 识的桥梁是,数形结合思想的集中体现。高中线性规划一般考的比较简单,但类 型比较多,比较繁琐。因而高中阶段很多学生线性规划这个知识点掌握的不够好, 在考试中经常失分。本文主要针对高中阶段学生作图难的情况,总结了可行域的 画法、简单的线性规划问题的分类、以及解决一些简单线性规划问题的简便方法。 关键词:线性规划问题;作图;分类;简便方法 一、线性规划问题在中学的作用和地位 线性规划这节课是在学习了直线方程和不等式的基础上,介绍直线方程的一 个简单应用,反映了对数学知识在实际应用方面的重视.在实际生活中,经常会 遇到在一定的人力、物力、财力等资源条件下,如何精打细算巧安排的问题.用 最少的资源取得最大的效益就是线性规划研究的基本内容.中学所学的线性规划 体现了数学的工具性、应用性,同时渗透了化归、数形结合的数学思想。因此, 本节内容的学习,既是对前面所学知识的深化与拓展,又是提高学生解决实际问 题能力的一种途径,更是加强学生应用意识的良好素材;其次就是为高等数学的 学习打下基础;而且线性规划问题也经常在高考中出现。 二、线性规划问题的求解步骤 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解;有的是以应用题的形式给出,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解。 在解此类题目时要注意,在实际问题中有些隐含的约束条件,因此在寻找约束条件的时候一定要把所有的约束条件全,还有的题目直接给出约束条件,要求求出目标函数的最优解,相对于第一类问题来说,此类问题相对简单,因为不必去找约束条件。 可行域的画法: 准确的画出可行域是求解线性规划问题的前提,画出可行域最根本的问题是确定二元一次不等式所表示的区域,确定二元一次不等式所表示的平面区域有

机器人路径运行操作步骤

3.23机器人路径运动操作步骤 任务:选取多个点构成一条路径,通过示教器完成机器人路径运动操作 相关知识:机器人路径示教器操作分为手动和自动两种模式 操作步骤: 一、手动模式 1、新建程序 (1)点击首页下拉菜单中“程序编辑器”选项,进入程序编辑器 (2)点击右上角“例行程序”选项,进如程序列表 (3)点击左下角“文件”,选择“新建例行程序”,新建例行程序 并命名 2、程序编写 (1)选择新建好的例行程序,进入程序编辑页面,点击左下角“添 加指令”,在右侧弹出菜单中选择轴运动指令“MoveJ” (2)根据需要修改显示的“MoveJ * ,v1000 , z50 , tool0”指令, *代表坐标点名称,v1000代表速度,z50代表路径选择幅度, tool0与工具坐标有关 (3)根据需要添加路径包含的点坐标并修改,完成全部路径点的设 置 3、调试 (1)从第一行“MoveJ”指令开始,利用示教器旋钮调节机器人至路 径点位,点击“修改位置”,程序与点位一一对应 (2)点位修改完成后,进行手动调试。点击“调试”选择“PP移动 至例行程序”,进入要调试的例行程序,光标选择调试的程序 行,再次点击“调试”,选择“PP移动至光标” (3)在右下角设置选项中选择机器人运行的速度

(4)左手按下示教器使能键,右手按下示教器上的“开始”按钮, 进行机器人路径运行操控 注意:机器人运行过程中不能松开示教器使能键 二、自动模式 1、完成手动调试模式调试后,点击“例行程序”菜单进入程序选择列表, 选择“Main”函数,进入函数编辑页面 2、光标选择,点击“添加指令”,在右侧弹出菜单中选择 “ProcCall”指令,将例行程序添加至主程序中 3、将机器人控制柜模式选择开关调到“自动模式” 4、点击示教器上的选项“确认” 5、按下控制柜上使能键,白色指示灯常亮 6、按下示教器上“开始”按钮,开始自动模式调试 7、自动模式下完成轨迹动作以后把控制柜上的“自动”模式旋转调回“手 动”模式

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

图与网络模型_最大流问题

最大流问题 在许多实际的网络系统中都存在着流量和最大流问题。例如铁路运输系统中的车辆流,城市给排水系统的水流问题等等。 网络系统流最大流问题是图与网络流理论中十分重要的最优化问题,它对于解决生产实际问题起着十分重要的作用。 基本概念 设一个赋权有向图D=(V , A),在V 中指定一个发点(源)vs 和一个收点(汇)vt ,且只能有一个发点vs 和一个收点vt 。(即D 中与vs 相关联的弧只能以 vs 为起点,与vt 相关联的弧只能以 vt 为终点),其他的点叫做中间点。 对于D 中的每一个弧(vi, vj)A ∈,都有一个权cij 叫做弧的容量。我们把这样的图 D 叫做一个网络系统,简称网络,记做D =(V , A, C) 。 Vs Vt 图1 图1是一个网络。每一个弧旁边的权就是对应的容量。 网络D 上的流,是指定义在弧集合A 上的一个函数f={f(vi, vj)}={fij},f(vi,vj)=fij 叫做弧在(vi,vj)上的流量 。 Vs Vt 图2 图2中,每条弧上都有流量fij ,例如fs1=5,fs2=3,f13=2等。 容量是最大通过能力,流量是单位时间的实际通过量。显然,0≤fij≤cij 。网络系统上流的特点: (1)发点的总流出量和收点的总流入量必相等; (2)每一个中间点的流入量与流出量的代数和等于零; (3)每一个弧上的流量不能超过它的最大通过能力(即容量)。网络上的一个流f={fij}叫做可行流,如果f 满足以下条件: (1)容量条件:对于每一个弧(vi,vj)A ∈,有0≤fij≤cij 。

(2)平衡条件: 对于发点vs ,有∑f sj ?∑f js =v (f ) 对于收点vt ,有∑f tj ?∑f jt =?v (f ) 对于中间点,有∑f ij ?∑f ji =0 其中发点的总流量(或收点的总流量)v(f)叫做这个可行流的流量。 网络系统中最大流问题就是,在给定的网络上寻求一个可行流f={fij},其流量v(f)达到最大值,即从vs 到vt 的通过量最大。 最大流问题可以通过线性规划数学模型来求解。图1的最大流问题的线性规划数学模型为 max v =f s 1+f s 2 s.t. { ∑j f ij ?∑i f ij =0 i ≠s,t 0≤f ij ≤c ij 所有弧(v i ,v j ) fs1和fs2是与起点相连的两条弧上的流量。 满足上式的约束条件的解{fij}称为可行解,在最大流问题中称为可行流。 对有多个发点和多个收点的网络,可以另外虚设一个总发点和一个总收点,并将其分别 与各发点、收点连起来,就可以转换为只含一个发点和一个收点的网络。 S T 所以一般只研究具有一个发点和一个收点的网络。 我们把fij=cij 的弧叫做饱和弧,fij0的弧为非零流弧,fij=0的弧叫做零流弧。 在图3(图1与2合并图)中,(v4,v3)是饱和弧,其他的弧是非饱和弧,并且都是非零 流弧。 Vs Vt ,fij )图3 网络D 中,从发点νs 和收点vt 的一条路线称为链(记为μ)。从发点νs 到收点vt 的方向规定为链的方向。

机器人路径动态规划

研究背景 近年来,机器人技术飞速发展,机器人的应用领域也在不断扩展。机器人的工作环境存在高度的多变性和复杂性,因此自主导航是实现真正智能化和完全自主移动的关键技术。机器人的导航问题可以归结为对“我在哪”、“我要去哪”以及“我如何到达那里”三个问题的回答。第三个问题就是路径规划,要求机器人在当前位置与目标位置之间寻找一条安全、合理、高效的路径,保证机器人能够安全地到达目标地点。机器人路径规划是机器人领域的一个研究热点。 一、课题应用 机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 智能移动机器人[1],是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 移动机器人的研究始于60 年代末期。斯坦福研究院(SRI)的Nils Nilssen 和Charles Rosen 等人,在1966年至1972 年中研发出了取名Shakey的自主移动机器人[1]。目的是研究应用人工智能技术,在复杂环境下机器人系统的自主推理、规划和控制。 根据移动方式来分,可分为:轮式移动机器人、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人和游动式机器人等类型;按工作环境来分,可分为:室内移动机器人和室外移动机器人;按控制体系结构来分,可分为:功能式(水平式)结构机器人、行为式(垂直式)结构机器人和混合式机器人;按功能和用途来分,可分为:医疗机器人、军用机器人、助残机器人、清洁机器人等; 一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不 及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。 移动机器人是一种在复杂环境下工作的,具有自行组织、自主运行、自主规划的智能机器人,融合了计算机技术、信息技术、通信技术、微电子技术和机器人技术等。 三、研究意义 路径规划技术是机器人研究领域中的一个重要分支,是机器人智能化的重要标志,是对

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.wendangku.net/doc/eb4993382.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

机器人路径规划方法的研究进展与趋势

机器人路径规划方法的研究进展与趋势 朱明华,王霄,蔡兰 (江苏大学机械工程学院,江苏镇江212013) 摘要:对机器人路径规划的研究进行了概括和总结,阐述了机器人全局路径规划方法、局部路径规划方法及混合方法的研究现状、特点和主要成果,指出了其今后的发展方向及研究重点。 关键词:机器人;遗传算法;路径规划;粗糙集 中图分类号:T P242 文献标识码:A 文章编号:1001-3881(2006)3-005-4 R esearch P rogress and Future Develop m ent on Path P lanni n g for Robot Z HU M inghua,WANG X iao,CA I Lan (M echanical Eng i n eering Institute,Jiangsu Un i v ersity,Zhenjiang Jiangsu212013,China) Abstrac t:T he research of robo t pa t h plann i ng w as s umm arized,the research sta t us quo,character i stic and ma i n producti on of robo t g l obal path p l ann i ng m ethod,l oca l path p l ann i ng m ethod and hybr i d m ethod were expatiated,its deve l op m ent d irec tions and study f o cus w ere po i nted out. K eyword s:R obot;G enetic a l gor it hm s;P ath p lann i ng;R ough set 路径规划技术是机器人研究领域中的一个重要分支,是机器人导航中最重要的任务之一。蒋新松在文献[1]中为路径规划作出了这样的定义:路径规划是自治式移动机器人的一个重要组成部分,它的任务就是在具有障碍物的环境内按照一定的评价标准,寻找一条从起始状态(包括位置和姿态)到达目标状态(包括位置和姿态)的无碰路径。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的。目前,根据对环境的掌握情况,机器人的路径规划问题可以大致分为二大类:基于环境先验信息的全局路径规划;基于不确定环境的传感器信息的局部路径规划。 1 全局路径规划方法(G lobal Pat h Plann i n g) 依据已获取的全局环境信息,给机器人规划出一条从起点至终点的运动路径。规划路径的精确程度取决于获取环境信息的准确程度。全局路径规划规划方法通常可以寻找最优解,但需要预先知道准确的全局环境信息。通常该方法计算量大,实时性差,不能较好地适应动态非确定环境。基于环境建模的全局路径规划的方法主要有:自由空间法、构型空间法和栅格法等。 1 1 自由空间法(Free Space Approach) 自由空间法采用预先定义的如广义锥形[2]和凸多边形[3]等基本形状构造自由空间,并将自由空间表示为连通图,然后通过搜索连通图来进行路径规划,此方法比较灵活,即使起始点和目标点改变,也不必重构连通图,但是算法的复杂程度与障碍物的多少成正比,且不能保证任何情况下都能获得最短路径。因而该方法仅适用于路径精度要求不高,机器人速度不快的场合。按照划分自由空间方法的不同又可分为:凸区法、三角形法、广义锥法。 1 2 构型空间法 为了简化问题,通常将机器人缩小为一点,将其周围的障碍物按比例相应地进行拓展,使机器人在障碍物空间中能够任意移动而不与障碍物及其边界发生碰撞。目前研究比较成熟的有可视图法[4]和优化算法(如D ijkstra法[5]、A*搜索算法[6]等)。 1 2 1 可视图法(V-G r aph) 通过起始点和目标点及障碍物的顶点在内的一系列点来构造可视图。连接这些点使某点与其周围的某可视点相连,即要求机器人和障碍物各顶点之间、目标点和障碍物各顶点以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,也即直线是可视的。从而搜索最优路径的问题就转化为经过这些可视直线从起始点到目标点的最短距离问题。 1 2 2 优化算法(Optm i ization A l gorit hm) 优化算法可以删除一些不必要的连线以简化可视图,从而缩短搜索时间,求得最短路径。但是,优化算法缺乏灵活性,一旦起点和目标点改变,就必须重构可视图,并且搜索效率也较低。 1 3 栅格法(Grids) 栅格法[7]将机器人的工作环境分解成一系列具有二值信息的网格单元,并假设工作空间中障碍物的位置和大小已知且在机器人运动过程中不会发生变化。用尺寸相同的栅格对机器人的二维工作空间进行规划,栅格大小以机器人自身的尺寸为准。若某一栅格范围内不含任何障碍物,则称此栅格为自由栅格;反之,称为障碍栅格。这样,自由空间和障碍物均可表示为栅格块的集成。栅格的表识方法有两种:直角坐标法和序号法。直角坐标法如图1所示,以栅格阵左上角为坐标原点,水平向右为X轴正方向,竖直向

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor , ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS (distributedproblemsolving )和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。

机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果 1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi 图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1 多机器人路径规划方法单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi 图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学 习等;其他方法主要有动态规划、最优控制算法、模糊控制等。它们中的大部分都是从单个机器人路径规划方法扩展而来的。 1)传统方法多机器人路径规划传统方法的特点主要体现在基于图论的基础

机器人路径规划问题

原理 设:U(X)为总引力场,()att U x 为目的地引力场,()rep U x 为障碍物排斥场;F(X)为总引力,()att F x 为引力,()rep F x 为斥力;,k η是正比例位置增益系数,0,,g X X X 分别代表机器人,目标和障碍物在空间中的位置。(,)||g g X X X X ρ=-表示机器人与目标之间的距离。00(,)||X X X X ρ=-为机器人在空间的位置与障碍物之间的距离。常数0ρ代表障碍物的影响距离,应根据障碍物和目标点的具体情况而定。 引力势场函数为: 21()(,)2 att g U X k X X ρ= 斥力势场函数为: 2000000111(,)()2(,)0 rep X X U X X X X X ηρρρρρρ????-≤??=????>? 总势场函数为: ()()()att rep U X U X U X =+ 力函数F(X)是势场函数U(X)的负梯度。 机器人所受的引力为: ()()att g F X k X X =- 斥力为: 00200000111 (,)()(,)(,)0 (,) rep X X F X X X X X X X ηρρρρρρρ???-≤???=????>? 合力为: ()()()att rep F X F X F X =+ 实验步骤 根据上述原理进行做实验,力求确定主要参数影响距离0ρ,引力参数k ,斥力系数η,以及机器人运动的步长l 。步骤: (1) 简历地图,确定机器人目标和障碍的位置,并确定矢量势场模型的矢量初始参数; (2) 计算机器人到球的距离,计算吸引力矢量; (3) 计算球场上障碍物对机器人的位置斥力,判断是否需要避障,计算斥力矢量; (4) 计算引力矢量和斥力矢量的和,并将该和矢量分解到x 和y 轴上,继而确定机器人下一步的位置点; (5)然后回到步骤(2),直到该位置点为终点。 核心代码: void find_Attract(double *Yatx,double *Yaty,int h0,int w0)//求引力

多机器人路径规划研究方法

多机器人路径规划研究方法 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 Abstract:This paper analyzed and concluded the main method and current research of the path planning research for multi robot.Then discussed the criterion of path planning research for multi robot based large of literature.Meanwhile,it expounded the bottleneck of the path planning research for multi robot,forecasted the future development of multi robot path planning. Key words:multi robot;path planning;reinforcement learning;evaluating criteria 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI研究大致可以分为DPS(distributed problem solving)和MAS(multi agent system)两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果[1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、Dempster Shafer 证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划

浅谈网络流算法与几种模型转换

浅谈网络流算法与几种流模型 吴迪1314010425 摘要:最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。只要残量网络中不存在增广路,流量就可以增大,可以证明他的逆命题也成立;如果残量网络中不存在增广路,则当前流就是最大流。这就是著名的增广路定理。s-t的最大流等于s-t的最小割,最大流最小割定理。网络流在计算机程序设计上有着重要的地位。 关键词:网络流Edmonds-Karp 最大流 dinic 最大流最小割网络流模型最小费用最大流 正文: 图论中的一种理论与方法,研究网络上的一类最优化问题。1955年,T.E.哈里斯在研究铁路最大通量时首先提出在一个给定的网络上寻求两点间最大运输量的问题。1956年,L.R. 福特和 D.R. 富尔克森等人给出了解决这类问题的算法,从而建立了网络流理论。所谓网络或容量网络指的是一个连通的赋权有向图 D= (V、E、C),其中V 是该图的顶点集,E是有向边(即弧)集,C是弧上的容量。此外顶点集中包括一个起点和一个终点。网络上的流就是由起点流向终点的可行流,这是定义在网络上的非负函数,它一方面受到容量的限制,另一方面除去起点和终点以外,在所有中途点要求保持流入量和流出量是平衡的。如果把下图看作一个公路网,顶点v1…v6表示6座城镇,每条边上的权数表示两城镇间的公路长度。现在要问:若从起点v1将物资运送到终点v6去,应选择那条路线才能使总运输距离最短?这样一类问题称为最短路问题。如果把上图看作一个输油管道网,v1 表示发送点,v6表示接收点,其他点表示中转站,各边的权数表示该段管道的最大输送量。现在要问怎样安排输油线路才能使从v1到v6的总运输量为最大。这样的问题称为最大流问题。 最大流理论是由福特和富尔克森于 1956 年创立的,他们指出最大流的流值等于最小割(截集)的容量这个重要的事实,并根据这一原理设计了用标号法求最大流的方法,后来又有人加以改进,使得求解最大流的方法更加丰富和完善。最大流问题的研究密切了图论和运筹学,特别是与线性规划的联系,开辟了图论应用的新途径。 先来看一个实例。 现在想将一些物资从S运抵T,必须经过一些中转站。连接中转站的是公路,每条公路都有最大运载量。如下: 每条弧代表一条公路,弧上的数表示该公路的最大运载量。最多能将多少货物从S运抵T? 这是一个典型的网络流模型。为了解答此题,我们先了解网络流的有关定义和概念。 若有向图G=(V,E)满足下列条件: 1、有且仅有一个顶点S,它的入度为零,即d-(S) = 0,这个顶点S便称为源点,或称为发点。 2、有且仅有一个顶点T,它的出度为零,即d+(T) = 0,这个顶点T便称为汇点,或称为收点。 3、每一条弧都有非负数,叫做该边的容量。边(vi, vj)的容量用cij表示。 则称之为网络流图,记为G = (V, E, C) 介绍完最大流问题后,下面介绍求解最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。 三个基本的性质: 如果C代表每条边的容量F代表每条边的流量 一个显然的实事是F小于等于C 不然水管子就爆了 这就是网络流的第一条性质容量限制(Ca pacity Constraints):F ≤ C 再考虑节点任意一个节点流入量总是等于流出的量否则就会蓄水或者平白无故多出水 这是第二条性质流量守恒(Flow Conservation):Σ F = Σ F 当然源和汇不用满足流量守恒 最后一个不是很显然的性质是斜对称性(Skew Symmetry): F = - F 这其实是完善的网络流理论不可缺少的就好比中学物理里用正负数来定义一维的位移一样 百米起点到百米终点的位移是100m的话那么终点到起点的位移就是-100m同样的x向y流了F 的流y就向x流了-F的流 把图中的每条边上的容量于流量之差计算出,得到参量网络。 我们的算法基于这样一个事实:参量网络中任

机器人路径规划

机器人路径规划 摘要:机器人路径规划是机器人技术的重要分支之一,路径规划技术的研究是研究机器人技术不可或缺的技术之一。本文首先介绍了当前研究人员热衷的ROS 系统是如何进行路径规划的,接着论述了作为群智能算法的蚁群算法应用于机器人的路径规划中。研究表明,可以将蚁群算法和ROS系统结合,进一步的进行机器人的路径规划。 关键词:路径规划,ROS系统,蚁群算法,机器人 1.引言 智能移动机器人技术是机器人技术的重要组成部分,应用前景十分广阔:工业,农业,国防,医疗,以及服务业等[1]。文献提出,未来数年内,中国服务机器人发展将超过传统的工业机器人[2],机器人路径规划技术是服务机器人研究的核心内容之一[3]。可见,研究机器人的路径规划问题十分必要。 随着机器人领域的快速发展和复杂化,代码的复用性和模块化的需求原来越强烈,而已有的开源机器人系统又不能很好的适应需求。2010年Willow Garage 公司发布了开源机器人操作系统ROS(robot operating system),很快在机器人研究领域展开了学习和使用ROS的热潮。ROS系统是起源于2007年斯坦福大学人工智能实验室的项目与机器人技术公司Willow Garage的个人机器人项目(Personal Robots Program)之间的合作,2008年之后就由Willow Garage来进行推动。ROS的运行架构是一种使用ROS通信模块实现模块间P2P的松耦合的网络连接的处理架构,它执行若干种类型的通讯,包括基于服务的同步RPC(远程过程调用)通讯、基于Topic的异步数据流通讯,还有参数服务器上的数据存储。ROS系统以其独特优点引起了研究人员的兴趣。 近年来,各国学者致力于机器人路径规划的研究且取得了相当丰硕的研究成果。目前已有多种算法用于规划机器人的路径,文献【4】将其主要分为经典方

线性规划单纯形法(例题)

《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》 ? ? ??≥=+ +=+++++=?? ? ??≥≤+≤++=0 ,,,24 261553).(002max ,,0,24 261553).(2max 14.1843214213 214 321432121212 1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【为初始基变量, 选择43,x x )1000(00)0010(01 )2050(12)6030(24321=?+?-==?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择41x x

3 /1)6/122/10(00 )0210(03 /1)3/1240(10)1200(24321-=?+-?-= =?+?-==?+?-==?+?-=σσσσ 为出基变量。 为进基变量,所以选择32x x 24 /724/528/11012/112/124/1100 021110 120124321-=?+-?-=-=-?+?-==?+?-==?+?-=)()()()(σσσσ 4 33 4341522max , )4 3,415(),(2112= +?=+===x x z x x X T T 故有:所以,最优解为

??? ??? ?≥=+ +=+=+ ++++=?????? ?≥≤+≤≤+=0,,,,18232424).(0002max ,,,0 ,182312212 ).(52max 24.185432152142315 43215432121212 1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【 )000010(00001000000000100520200052300010254321=?+?+?-==?+?+?-==?+?+?-==?+?+?-==?+?+?-=σσσσσ)()()()( 为出基变量。为进基变量,所以选择42x x

相关文档