文档库 最新最全的文档下载
当前位置:文档库 › 秸秆沼气发酵工艺流程

秸秆沼气发酵工艺流程

秸秆沼气发酵工艺流程
秸秆沼气发酵工艺流程

沼气发酵工艺流程

从全社会能源消费与供给的发展趋势,随着工业化发展进程使得矿物质能源日趋枯竭,尽管这是未来将会发生的事,当然也是历史发展的必然结果,将会引起全社会的关注。世界各国都在寻求可再生的替代能源,虽然探矿开采不会立即结束,但是可再生能源的试生产也要立即开始,甚至早已经开始了。沼气工程作为即可处理废弃的有机物又可从中回收能源,这是采用现代化技术开发生物质能源利用的重要组成部分,也是沼气工程产业将会乘胜发展的必然。

我国的沼气产业已从单纯的能源利用发展成为废弃物处理和生物质多层次综合利用,并与养殖、种植业广泛结合,在农村生产和生活中发挥了重要作用

沼气发酵技术确切的应该称为厌氧发酵技术,是指从发酵原料到产出沼气的整个过程,所采用的技术和方法。沼气发酵技术主要包括原料的预处理,接种物的选取和富集,发酵器(在厌氧发酵过程中的发酵器也称反应器,是沼气发酵罐、沼气池、厌氧发酵装置的统称)

1.秸秆预处理:

1.1.预处理:

农作物秸秆通常是由木质素、纤维素、半纤维素、果胶和蜡质等化合物组成,其产气特点是分解速度较慢,产气周期较长。使用这种原料在入池前需进行预处理,以提高产气效果。

常用的预处理方法有物理、化学与生物方法等。物理方法主要有切碎、粉碎、汽爆等。生物法的研究主要集中在菌种的筛选和发酵条件优化方面。目前研究最多的微生物是白腐真菌。生物方法具有环境友好、处理效率高等优点,但需要无菌操作条件和专门的培养设施,目前有关研究较多,实际应用很少。化学法主要利用酸和碱等化学物质对秸秆进行预处理,通过化学作用破坏秸秆的内部结构,从而提高秸秆的厌氧消化性能。化学法具有处理方法简单、时间短、效果好等优点,但化学处理剂有可能产生二次污染。

1.2.青贮:○1青贮池设计以为矩形,若有多个青贮池可并联或串联使用。

○2粉碎的秸秆贮入青贮池后应轧实,减少内部氧气存有量,避免原料浪费。

○3秸秆含水量控制在65%左右,密度以大于500㎏/m3为宜。

2进料:

2.1.将碳铵溶于水,与接种物和青贮好的秸秆一起在进料池中混合均匀,入罐的发酵原料不

要压实,以松散为好,池内进料口下口,直径一米的地方不要存在发酵原料,以便以后畅通进料。

2.2进料池容积一般按一次进料量设计:计算公式为:V=qt/24

V—进料池的有效容积,单位为立方米

Q—进料量,单位为立方米每天

T—原料滞留时间,单位为小时

3.厌氧发酵

3.1厌氧发酵设备

○1厌氧发酵器须设置增温保温措施,应采用中温发酵。

○2厌氧发酵器应密闭,耐腐蚀,设正负保护器。

○3厌氧发酵器宜采用焊接,拼装和利物浦等成型罐体或钢砼结构。

○4厌氧发酵器应设置底部排泥装置。

○5厌氧发酵器应设有一定数量的取样口和测温点。

○6厌氧发酵器的容器体积计算公式:V=W.Ts.K.P/y

v-厌氧发酵装置有效容积,单位为m3

w-物料消耗量,单位为公斤/每天

Ts-进料物质浓度,单位为%

K-总固体消化率,单位为%

P-产气潜力,单位为立方米/千克/每天

y-容器产气率,单位为立方米/立方米

3.2沼气发酵工艺类型

对沼气发酵的工艺分类,从不同角度,有不同的分类方法。大中型沼气工程,强调从工程的运行温度、工程运行的最终目标以及所选用的处理原料进行分类,如下图所示:

3.3.沼气发酵工艺条件

沼气发酵微生物要求适宜的生活条件,对温度、酸碱度、氧化还原势及其它各种环境因素都有一定的要求。在工艺上满足微生物的这些生活条件,才能达到发酵快、产气量高的目的。

3.3.1.厌氧环境

沼气发酵微生物包括产酸菌和产甲烷菌两大类,它们都是厌氧性细菌,尤其是产生甲烷的甲烷菌是严格厌氧菌,对氧特别敏感。它们不能在有氧的环境中生存,哪怕微量的氧存在,生命活动也会受到抑制,甚至死亡。因此,建造一个不漏水、不漏气的密闭沼气池(罐),是人工制取沼气的关键。

沼气发酵的起动或新鲜原料入池时会带进一部分氧,但由于在密闭的沼气池内,好氧菌和兼性厌氧菌的作用,迅速消耗了溶解氧,创造了良好的厌氧条件。

3.3.2.温度

沼气发酵微生物是在一定的温度范围进行代谢活动,可以在8-65℃,温度高低不同产气速度不同。在8-65℃,温度越高,产气速率越大,但不是线性关系。40-50℃是沼气微生物高温菌和中温菌活动的过度区间,它们在这个温度范围内都不太适应,因而此时产气速率会下降。当温度增高到53-55℃生物中的高温菌活跃,产沼气的速率最快。沼气发酵温度突然变化,对沼气产量有明显影响,温度突变超过一定范围时,则会停止产气。一般常温发酵温度不会突变;对中温和高温发酵,则要求严格控制料液的温度。

概括地讲,产气的一个高峰在35℃左右,一个更高的高峰在54℃左右,因为在这两个最适宜的发酵温度中,由两个不同的微生物群参与作用的结果。前者叫中温发酵,后者叫高温发酵。

3.3.3.发酵原料

原料(有机物)是供给沼气发酵微生物进行正常生命活动所需的营养和能量是不断生产沼气的物质基础。

农业剩余物秸秆、杂草、树叶等,猪、牛、马、羊、鸡等家畜家禽的粪便,工农业生产的有机废水废物(如豆制品的废水、酒糟和糖渣等),还有水生植物都可以作为沼气发酵的原料。

常用发酵原料的含水量

3.3.3.1适宜的料液浓度

料液中干物质含量的百分比为料液浓度。对沼气池内发酵料液浓度要求,随季节变化而不同。在夏季,发酵料液浓度可以低些,要求浓度在6% 左右;冬季浓度应高一些,为8%左右。发酵料液的浓度太低或太高,对产生沼气都不利。因为浓度太低时,即含水量太多有机物相对减少,会降低沼气池单位容积中的沼气产量,不利于沼气池的充分利用;浓度太高时,即含水量太少,不利于沼气细菌的活动,发酵料液不易分解,使沼气发酵受到阻碍,产气慢而少。因此,一定要根据发酵料液含水量的不同,在进料时加入相应数量的水,使发酵料液的浓度适宜,以充分合理地利用发酵料液和获得比较稳定的产气率。配制发酵料液的浓度,要根据发酵原料的含水量和不同季节所要求的浓度,再加入一定量的水。

当沼气池容积一定时,如果发酵原料加水量过多,发酵料液过稀,滞留期短,原料未经充分发酵就被排出,这不但影响产气,还浪费了发酵原料;如果加水量太少,发酵料液过浓,使有机酸聚积过多,发酵受阻,产气率降低。

3.3.3.2..产气量、产气速度与产气率

一般认为,自然界的有机物质除矿物油和木质素外,都能被微生物发酵产生沼气,

但不同有机物质的产气量是不同的,如下表所示。因为各种有机物质分解的难易程度不同,所以产气速度相差很大,如下表所示。

3.3.

4.适宜的酸碱度

PH值是指发酵器内料液的PH值,而不发酵原料的PH值。沼气微生物最适宜的PH 值范围是6.8-7.5。一般来说,当PH值<6或>8时,沼气发酵就要受到抑制,甚至停止产气。建议采用测定挥发酸来控制投料量,这样可以做到精确管理。在大中型沼气工程中给发酵器投料时,要根据PH值来控制投料量,若投料量过多,形冲击负荷,会造成产酸过多。在间断投料时,料液的PH值应在7上下为宜,当PH低于6.8时,产甲烷菌的生命活动将受到抑制,正常发酵将遭到破坏。当发酵器出现超负荷情况时,一方面停止进料,一方面在必要时可以投加碱性物质(如石灰水),提高发酵器内的PH值,使发酵过程得到比较快的恢复。在投料以后PH值不应低于6.5。当PH值在<6时,则应大量投入接种物或重新进行起动。

3.3.5.添加剂和抑制剂

许多物质可以加速发酵过程,而有些物质却抑制发酵的进行;还有些物质在低浓度时有刺激发酵作用,而在高浓度时产生抑制作用。沼气池内挥发酸浓度过高(中温发酵0.2% 以上;高温发酵0.36%以上)时,对发酵有阻抑作用;氨态氮浓度过高时,对沼气发酵菌有抑制和杀伤作用;各种农药,特别是剧毒农药,都有极强的杀菌作用,即使微量也可使正常的沼气发酵完全破坏。很多盐类,特别是金属离子,在适当浓度时能刺激发酵过程,当超过一定浓度时对发酵过程会产生强烈的抑制作用。

3.3.6.碳、氮、磷的比例

发酵料液中的碳、氮、磷元素含量的比例,对沼气生产有重要的影响。研究工作表明,碳氮比以20~30:1为佳;碳、氮、磷比例以10:4:0.8为宜。对于以生产农副产品的污水为原料的,一般氮、磷含量均能超过规定比例下限,不需要另外投加。但对一些工业

污水,如果氮、磷含量不足,应补充到适宜值。

3.3.7.接种物

在发酵运行之初,要加入厌氧菌作为接种物(亦称为菌种)。在条件具备时,宜采用生态环境一致的厌氧污泥作为接种物。当没有适宜的接种物时,需要进行菌种富集和培养,即选择活性较强的污泥或是人畜粪便等,添加适量(菌种量的5%-10%)有机废水或作物秸秆等,装入可密封的容器内,在适宜的条件下,重复操作,扩大接种数量。

沼气发酵是沼气微生物群分解代谢有机物产生沼气的过程,沼气微生物像其它生物一样,对环境有个适应范围。上述各项是沼气微生物群维持正常活动所必须的条件,只有满足这些条件要求,沼气发酵方能正常运行下去。

3.4各种厌氧发酵工艺技术参数

3.4.1一体两项厌氧消化工艺

○1适合处理固态秸秆类物料,也可处理混合原料。

○2产酸相和产甲烷相分别在不同反应区中进行

○3顶部设置喷淋设备,底部设置渗滤液收集设施

○4发酵器设置活性淤泥循环接种装置,循环量控制在秸秆量的1-3倍

○5秸秆粉碎在10mm左右,泵进料浓度3-5%,发酵温度在40±2℃,发酵周期在90天,产气率≧0.8.

3.4.2全混合连续厌氧发酵工艺

○1采用立式圆柱形发酵器或卧式厌氧发酵器,并带有循环回流接种装置

○2历史发酵器采用上部进料,下不出料

○3搅拌设备的能力在5-10h内将发酵器内料液循环一次

○4干秸秆粉碎直径在0-10mm左右,泵进料浓度4-6%,发酵温度在38±2℃,发酵周期在40-50天,产气率≧0.8.

3.4.3全混合自载体生物膜法厌氧发酵工艺

○1采用立式或卧式厌氧发酵器,序批式进料,内设强化传热,传热搅拌装置,保证自载体生物膜的形成和厌氧发酵

○2秸秆粉碎直径在10-30mm左右,泵进料浓度≥8%,发酵温度在35-38℃,发酵周期在40-45天

4.气体净化工艺

4.1.水洗工艺

因为二氧化碳和硫化氢在水中的溶解度比甲烷大,所以水洗不但可以去除二氧化碳,还可以去除硫化氢,此吸收过程是纯粹的物理反应。通常沼气通过压缩后从吸收柱底部进入,水从顶部进入进行反相流动吸收。因为硫化氢在水中的溶解度比二氧化碳大,所以水洗也可以去除硫化氢。吸收了二氧化碳和硫化氢的水可以再生循环使用,可以在吸收柱中通过减压或者用空气吸脱再生,当水中的硫化氢浓度比较高的时候,一般不推荐使用空气吹脱,因为水很快又被硫污染。如果有废水可以利用,不推荐对水进行再生。

4.2.聚乙二醇洗涤工艺

聚乙二醇洗涤和水洗一样,也是一个物理吸收过程。Selexol是一种溶剂的商品名,主要成分为二甲基聚乙烯乙二醇(DMPEG)。和在水中一样,二氧化碳和硫化氢在Selexol中的溶解度比甲烷大,不同之处是二氧化碳和硫化氢在Selexol中溶解度比水中大,这样需要Selexol的量也会减少,更加经济和节能。另外,水和卤化烃(填埋场沼气中的成分)也可以elexol洗涤去除。Selexol可以再生重复使用,可以使用水蒸汽或者惰性气体(净化后的沼气和天然气)吹脱Selexol中的元素硫,但是不推荐使用空气。

4.3.碳分子筛工艺

分子筛在分离沼气中特定的气体组成上是一种非常好的产品。通常,分子被松散地吸附在炭孔隙中,并且可以析出。通过不同的网孔大小或者压力可进行选择性的吸收。当压力减小时,分子筛中吸收的化合物组分会释放出来。所以这个过程常常被乘坐“变压吸附(PSA)”。可以用焦炭制作富有微米级孔隙结构的分子筛净化沼气.为了节省压缩气体的所需的能量,需要把一系列分子筛串联在一起。气体压力从一组分子筛中释放后加入接下来的一组。通常

是将四组排为一列,可以同时用来去除二氧化碳和水蒸汽。利用活性炭去除了硫化氢后,冷凝器在四摄氏度下冷凝去除之后,沼气在6*10的5次方帕的压力下通入吸收单元,通过第一个吸收柱后可以使沼气中的水蒸汽分压小于10ppm,甲烷含量超过96%以上。因为第二个柱子和第四个柱子压力相通,而第二四个柱子是先被用来抽真空脱附的,所以二个柱子压力从6*10的5次方pa释放到接近3*10的五次方pa,在接着减至常压,释放出的气体再返回消化罐中以回首甲烷。第三个柱子压力从1*10的五次方减少到0.1*10的五次方pa,放出的气体主要含有二氧化碳,并有少量甲烷,通常都直接排放,也可以设置一个回收装置来回收甲烷。可以用红外检测仪对第一个柱子分离的甲烷进行在线连续检测,如果不能满足所需的沃泊指数(指在同一基准条件下,单位容积燃气的高位发热量与其相对密度的平方根的乘积,一般是各种燃气混合气气质的一个重要的度量指标),气体需要再进行变压吸附,如果甲烷含量足够高的话,可以输送进天然气网或者通过压缩机压缩至250*10的五次方pa进行储存。

4.4.膜分离工艺

膜法分离主要有两种方法,一种是膜的两边都是气相的高压气体分离;另一种是通过液体吸收扩散穿过膜的分子的低压气相-液相吸收分离。

(1)高压气相分离。压缩到36*10的五次方pa的沼气首先通过活性炭床以去除卤化烃和硫化氢,接着便通入滤床和加热器。膜是由醋酸纤维素制成,可以用来分离像二氧化碳、水蒸汽和残留的硫化氢等极性分子,它有一定的选择性,即在不同的区域吸收硫化氢和二氧化碳,但不能分离甲烷中的氮。经验表明,膜可以持续使用三年,在使用一年半后,因为萎缩的缘故,膜的渗透性会减少30%。

(2)气相-液相吸收膜分离。气相-液吸收膜工艺最近才被用在沼气净化上,其实质是沼气中的硫化氢和二氧化碳分子穿过一个多孔的熟睡膜在液相中被吸收去除。从下方进入的气体,其中的硫化氢和二氧化碳分子能够扩散穿过膜,然后被相反方向流过的液体吸收,吸收膜在一个标准大气压下工作。在25摄氏度到35摄氏度,可以非常有效地把沼气中的硫化氢浓度从2%减少到小于250ppm,液相的吸收剂可以用NaOH溶液。吸收了硫化氢的NaOH 溶液可以应用于水处理中以去除重金属。二氧化碳可以通过胺溶液作液相去除,胺溶液可以通过加热再生,释放处纯净的二氧化碳可作工业应用。

5.沼渣沼液利用

沼液的综合利用沼气发酵不仅是一个生产沼气能源的过程,也是一个造肥的过程。在这个过程中,作物生长所需的氮、磷、钾等营养元素基本上都保持下来,因此沼液是很好的有机肥料。同时,沼液中存留了丰富的氨基酸、B族维生素、各种水解酶、某些植物生长素、对病虫害有抑制作用的物质或因子,因此它还可用来养鱼、喂猪、喂牛、防治作物的某些病虫害,具有广泛的综合利用前景。

沼渣的综合利用沼渣是沼气发酵后残留在沼气池底部的半固体物质,含有丰富的机质、腐殖酸、粗蛋白、氮、磷、钾和多种微量元素等,是一种缓速兼备的优质有机肥和养殖饵料。

总结

以秸秆为原料生产沼气,原料来源充足、分布广泛,不受时间和空间限制,不产生沼液、焦油、废水和废气等污染物,可实现秸秆的完全生态循环和高效利用。它不仅可以解决我国大量秸秆的环境污染问题,还可为我国的沼气生产开辟新的大宗原料来源,为在更大规模和更大范围推广沼气提供原料保障,为正在深入发展的社会主义新农村建设服务,具有十分广阔的推广应用前景。

秸秆发酵制沼气

秸秆发酵成沼气,综合利用辟新路 金湖县农村能源办公室 随着农业现代化的发展,秸秆已逐步成为农村污染环境重要污染源,如何变废为宝,高效利用秸秆一直是政府和各界人士所关注的课题。从去年开始,金湖县农村能源办公室通过不同的方法用秸秆制沼气取得成功后,得到广大农户的普遍欢迎,不但解决了因一家一户养殖日趋减少导致户用沼气原料短缺问题,而且为秸秆综合利用找到一条有效途径,实现沼气原料无障碍建设。今年来,全县共推广秸秆制沼气1200多户,年消耗秸秆约1000吨,打造了全县第一个秸秆沼气集中居住小区—闵桥镇闵桥村集中居住小区,该小区被列为全市秸秆沼气示范点,村沼气物业站被评为全市示范站。秸秆沼气已逐渐成为金湖沼气建设新亮点。 一、主要成效: 1、经济效益。通过对农作物秸秆沼气发酵与直接利用效益比较,秸秆沼气发酵与直接燃烧比较,提高了能量的转换和利用效率,秸秆沼气发酵比直接燃烧能量利用效率提高0.2—0.9倍。秸秆沼气为农民提供了优质廉价的生活用能,帮助农民节省了燃料和用电方面的生活支出;根据调查,建设一个8立方米的秸秆沼气池,年产沼气约300立方米、可

以基本满足3-5口之家全年生活用能,每年可节省燃料和电费300-400元;利用沼液喂猪养鱼可节约饲料15%,可增产粮食20%左右,种养业当年可增效1000元左右。增加沼肥400多担,减少化肥和农药使用量25%左右,节支200-300元。 2、生态效益。秸秆沼气不仅解决了农民烧火做饭问题,还解决了农村的肮乱差问题,一只8立方秸秆沼气池,一年可消耗秸秆1吨左右,可减少秸秆焚烧温室气体排放量,有效改善了农村生活生产环境,有效改变收割季节农户将秸秆堆积在田埂路旁、家前屋后或就地付之一炬,或抛入河道、水塘一抛了之的现象。同时,秸秆发酵产生了大量的生态有机肥,改善了土壤理化性状,发展了庭园经济和无公害农产品、绿色食品、有机食品,减少了化肥、农药使用量,降低了农业生产成本,提高了农产品质量,增强了农产品市场竞争力, 3、社会效益。秸秆制沼气的推广,引导农户变废为宝,促进农民生活生产方式的转变,提高农民生活质量,促进农业循环经济的发展和社会主义新农村建设。 二、秸秆制沼气工艺及注意事项。 (一)不同堆沤发酵方法及效果对比: 在30度左右气温下,经测试:一是纯秸堆沤发酵时间长,且产气量低;二是秸秆加菌种、碳铵堆沤发酵可提高产气量

沼气生产工艺流程

沼气生产工艺流程 图7-1工艺流程简图二、工艺流程简述

厌氧消化的主要粪源为项目所在地周边的养殖场的猪粪、秸秆、餐厨垃圾和园区及周边的蔬菜残余,猪粪有干清猪粪和水冲猪粪。干清猪粪、秸秆和蔬菜残余这三种原料采用固体进料系统进料,水冲猪粪和餐厨垃圾采用液体进料系统进料。 秸秆经过X-Ripper破碎机破碎后,通过铲车输送至预混池中,预混池中装有潜水搅拌机,可将破碎的秸秆和水充分混匀(TS为7.5%),混匀后的物料采用螺杆进料泵泵送至生物预处理发酵罐,生物预处理后的秸秆溢流至出料池后用螺杆泵泵送至快速混合系统。 蔬菜残余经X-Ripper破碎机破碎后,用铲车输送至固体进料系统,干清猪粪也被加到固体进料系统中,然后通过无轴螺旋输送机输送至快速混合系统,从厌氧反应器泵出的出料也被输送到快速混合系统。经预处理的秸秆、破碎的蔬菜残余、猪粪、工艺水和反应罐的出料在快速混合系统中混合并最终被输送到厌氧反应罐中。 水冲猪粪、破碎后的餐厨垃圾在混料池中混合均匀后经螺杆泵泵入厌氧反应罐中。 厌氧反应罐内设中轴搅拌装置,罐内物料呈全混状态,在适宜的碱度、温度条件下确保厌氧反应充分进行。厌氧反应产生的沼气经净化系统净化后部分供居民用气,其余部分经由净化提纯、高压储气柜储存后运送至加气站;消化罐内出来的残渣由螺杆泵输送至换热器经热交换后流入缓冲池,再由污泥泵输送入卧螺式离心分离机进行固液分离,分离后的沼渣沼液作为有机肥厂的原料,根据市场需求生产有机肥。出于安全因素的考虑,需要在变压吸附系统前设置一个沼气火炬。 设置换热器回收出料热量,进行余热利用,减少外加热量,进而减少能源消耗。设置燃煤锅炉以补充余热回收热量的不足,在厌氧消化罐内设置加热盘管,维持厌氧反应稳定运行的温度。 1、预处理工艺 秸秆单独收集,收集后先进行粉碎,然后采用生物预处理。 蔬菜残余单独收集,收集后进行破碎。 猪粪经过格栅,去除石块、塑料等大的无机物质。

秸秆厌氧干发酵产沼气的研究

科学研究 秸秆厌萤干发酵产沼与的研皇℃九 陈智远姚建刚 杭州能源环境工程有限公司 摘要:本试验以玉米秸、稻草、烟叶杆、木薯杆为代表的秸秆作为原料,在温度38"C,采用批量发酵工艺进行高浓度厌氧发酵产气研究。试验结果表明,玉米秸、稻草、烟叶杆及木薯杆的Ts产气 率分别为413ml/g、330n1/g、333m]/g、222m1/g,而vs产气率分别为470m1/g、387ml/g、426Tll/g、241m1/u。 关键词:秸秆干发酵产气率 农业固体废弃物是指在整个农业生产过程中被丢弃 的有机类物质,主要包括农业生产和加工过程中产生的 植物残余类废弃物、动物残余类废弃物和农村城镇生 活垃圾等…。据孙永明【11等报道,我国每年产生固体废 弃物高达几十亿吨,而每年产生农作物秸秆总量约7亿 吨,除去用于造纸、饲料及造肥还田外,还有一大部分 未充分利用,大量剩余秸秆的随地堆弃和任意焚烧,造成了大气污染、土壤污染、火灾事故、堵塞交通等大量社会、经济和生态问题【2习j。但实际上秸杆可以通过干发酵工艺得到有效利用,既以固体有机废弃物为原料(总固体含量在20%以上),利用厌氧菌将其分解为CH。、CO。、H。S等气体的发酵工艺【4J。与湿发酵相比,主要优点是可以适应各种来源的固体有机废弃物、运行费用低并提高容积产气率、需水量少或不需水、产生沼液少后续处理费用低等[5】。本文对玉米秸、稻草、烟叶杆及木薯杆的高浓度厌氧发酵产气潜力进行研究。 1.材料与方法 1.1材料与试验装置 玉米秸和稻草取自杭州郊区某农场,烟叶杆与木薯杆分别取自云南昆明郊区某卷烟厂和某农场,经切碎后(2~3cm)左右待用。污泥则取自杭州市种猪试验场的沼气站。原料的TS与VS见表1。厌氧装置采用自制的1.5L发酵装置。采用排水法计量气体,试验装置见图1。 表1原料的TS与VS 项目玉米秸稻草烟叶杆木薯杆污泥TS(%)84.4286.3387.9623.9011.64VS(%)73.9675.0268.6822.007.32 1、止水夹2、胶管3、盖子4、发酵瓶5、胶管 6、集气瓶7、集水瓶 图1反应装置示意图 1.2试验设计 试验设4个试验组和1个为空白组.每组3个平行,在38℃的恒温间内发酵。将1009t-米秸、稻草、烟叶杆分别和8009污泥混合均匀后加入发酵瓶中,将1009木薯杆与6009污泥混合均匀后也加入发酵瓶中,空白则将10009污泥加入发酵瓶中。 1.3分析项目及方法 TS测定是将待测混合物置于已烘干、称重的硬质玻璃杯中,(105±2)℃烘干至恒重,称重计算,而VS测定是将待测混合物置于已烘干、称重的坩埚中.(550-I-10)℃灼烧至恒重,称重计算【6】。PH值采用精密试纸法。 每天定时测定发酵产气量,即测定集水瓶中水的体积量为日产气量。利用沼气分析仪(武汉四方沼气分析仪)及根据沼气燃烧的火焰颜色参照CH。含量标准卡联合检测CH。浓度|7J。 2.结果与讨论 2.1发酵前后的相关测定及分析 从图2可以看出,各试验组发酵前后的TS及VS均有所下降,这说明原料被消耗并生产沼气。图中数据表明玉米秸、稻草、烟叶杆及木薯杆的TS降解率分别为 24 wⅥ唧.ehome.gov.en 万方数据

规模化畜禽养殖场沼气工程设计规范

规模化畜禽养殖场沼气工程设计规范 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

规模化畜禽养殖场沼气工程设计规范 1 范围 本标准规定了规模化畜禽养殖场沼气工程的设计范围、原则以及主要参数选取等。 本标准适用于新建、改建和扩建的规模化畜禽养殖场沼气工程(参见 NY/T667-2003)的设计。畜禽养殖区沼气工程的设计可参照执行。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB12801 生产过程安全卫生要求总则 GB18596 畜禽养殖业污染物排放标准 GB50028 城镇燃气设计规范 GB50052 供配电系统设计规范 GB50057 建筑物防雷设计规范 GB50058 爆炸和火灾危险环境电力装置设计规范 GBJ14 室外排水设计规范 GBJ16 建筑设计防火规范 GBJ65 工业与民用电力装置接地设计规范 CJJ31 城镇污水处理厂附属建筑和附属设备设计标准

CJJ55 污水稳定塘设计规范 CJJ64 城市粪便处理厂设计规范 NY/T667-2003 沼气工程规模分类 3 术语和定义 GB18596-2001、NY/T667-2003中确立的以及下列术语和定义适用于本标准。 3.1沼气工程 biogas plant 以规模化畜禽养殖场粪便污水的厌氧消化为主要技术环节,集污水处理、沼气生产、资源化利用为一体的系统工程。 3.2 “能源生态型”处理利用工艺 Process of “energy ecological”disposing and using 畜禽养殖场污水经厌氧消化处理后作为农田水肥利用的处理利用工艺。 3.3 “能源环保型”处理利用工艺 Process of “energy environment”disposing and using 畜禽养殖场的畜禽污水处理后达标排放或以回用为最终目标的处理工艺。 4 总则 4.1 沼气工程的设计应该符合当地总体规划,与当地客观实际紧密结合,能够正确处理集中与分散、处理与利用、近期与远期的关系。

沼气的利用与发展

沼气的利用和发展 The use and development of biogas 摘要沼气是可再生的清洁能源,既可替代秸秆、薪柴等传统生物质能源,也可替代煤炭等商品能源,而且能源效率明显高于秸秆、薪柴、煤炭等。 Abstract Biogas is a renewable and clean energy, can replace the straw, firewood and other traditional biomass energy sources, and can also replace coal and commodities such as energy and energy efficiency is significantly higher than the straw, firewood, coal. 关键词沼气新能源利用发展 Keywords biogas, new energy, energy use, development 1.沼气的简介 1.1沼气的概念 沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种可燃气体。由于这种气体最先是在沼 泽中发现的,所以称为沼气。人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,即被种类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。沼气是有机物经微生物厌氧消化而产生的可燃性气体。 沼气是多种气体的混合物,一般含甲烷50~70%,其余为二氧化碳和少量的氮、氢和硫化氢等。其特性与天然气相似。空气中如含有8.6~20.8%(按体积计)的沼气时,就会形成爆炸性的混合气体。沼气除直接燃烧用于炊事、烘干农副产品、供暖、照明和气焊等外,还可作内燃机的燃料以及生产甲醇、福尔马林、四氯化碳等化工原料。经沼气装置发酵后排出的料液和沉渣,含有较丰富的营养物质,可用作肥料和饲料。 沼气是一些有机物质,在一定的温度、湿度、酸度条件下,隔绝空气(如用沼气池),经微生物作用(发酵)而产生的可燃性气体。它含有少量硫化氢,所以略带臭味。发酵是复杂的生物化学变化,有许多微生物参与。反应大致分两个阶段:(1)微生物把复杂的有机物质中的糖类、脂肪、蛋白质降解成简单的物质,如低级脂肪酸、醇、醛、二氧化碳、氨、氢气和硫化氢等。(2)由甲烷菌种的作用,使一些简单的

秸秆沼气工程技术探索与研究

秸秆沼气工程技术探索与研究 摘要:本文通过河北省青县新能源系统研发纯秸秆制取沼气技术历程的总结,重点阐述了利用纯秸秆采取中高温高浓度发酵工艺制取沼气工艺技术的发源、发展,通过实例对该工艺技术应用于实体工程中的运行情况进行了详细的介绍,分析了秸秆沼气工程的运行成本、经济、社会和生态环境效益。同时对秸秆气化、户用沼气、天然气、煤炭与秸秆沼气等能源利用进行了对比分析,给出了发展秸秆沼气工程的优势,指出了发展秸秆沼气的重大意义,同时提出了建设运行过程中存在问题和改进建议。这一研发应用实践和新技术对我国发展秸秆沼气工程建设具有很强的指导意义。 关键词:新能源;纯秸秆;中高温高浓度;沼气 6 纯秸秆沼气工程优越于户用沼气、秸秆气化工程 在我们地区,大型秸秆沼气工程与户用沼气、秸秆气化相比具有一定的发展优势。 6.1户用沼气池的不足 就户用沼气而言,户用沼气技术已经十分成熟,不存在技术缺陷,但是存在一些发展瓶颈因素。一是户用沼气物业服务体系滞后。在全国上下大力发展户用沼气池的同时,我县户用沼气建设也得到了一定的发展,但因沼气物业服务体系相对滞后,影响到户用沼气池的使用效果,从而影响到农户建设沼气的积极性。二是农村庭院较小。青县地处平原地区,地势平坦,村庄集中,村内户挨户房连房,除个别农村宅基地较宽松外,多数村户院落较小,不适宜户用沼气建设的发展。三是发酵原料不足。青县实行了畜牧养殖外迁,户用沼气池原料不足,村内不太适宜建设户沼气池。四是经济发达地区不适宜发展户用沼气池。因一家一户建沼气池后,每天都需要有人管护,不然就影响到使用效果。而经济相对发达的地区,农民因打工或做生意,几乎没有时间进行管护,而且管护也非常麻烦,相对成本较高,与其建沼气池,不如买液化气或是用电了。而在经济欠发达地区或是山区还是比较适宜发展户用沼气。 6.2秸秆气化的缺陷 秸秆气化装置产生的气体为秸秆气,也可以说是人工煤气。秸秆气化发展多年来,技术已经十分成熟,但是秸秆气化存在本质的缺陷,因此制约了进一步发展空间。青县耿官屯秸秆气化站2005年到2008年无故障运行三年,是无故障运行时间最长的秸秆气化站。经过近些年的调查了解河北、辽宁、黑龙江、山东等省秸秆气化站建成不少,但存在一些缺陷:一是秸秆气化中除焦油技术没真正过关。通过调查除焦油技术多数是通过增加输气管网的直径来达到增加使用寿命的目的,不仅增加了成本,而且除焦技术仍然不理想;二是安全系数低。秸秆气主要成分是CO,有毒性,其实农村每年冬季采暖炉中煤气的农民,就是CO中毒。秸秆气一旦渗漏后果不堪设想;三是热值低。从青县3年使用效果看,秸秆气因热值低,造成火软,炒菜效果不佳,适宜熬粥、炖肉等不需要爆火的烹调;四是基本不能实现循环经济。秸秆经过不完全燃烧后,产生了秸秆气,剩余物为微量的灰分,而灰分中除了含有少量的钾肥外,没有其他养分,秸秆内多数物质不能循环利用;五是生产成本较高。据调查,多年来秸秆气化工程多数为福利工程,不能靠自身进行自负盈亏自我发展。 6.3秸秆沼气工程的优点 一是原料易得。青县农作物秸秆年产量达60万t,如果全部通过秸秆沼气工程转化成沼气,年可产沼气3亿m3,既能大幅度的缓解地方能源紧张的情况,还保护环境。二是实现了工厂化生产。建造了大型沼气工程,几个人管理,就可生产出全村使用的沼气,实现了集中供气,并且一年四季都能用。避免了每家每户都要有人管理,户用沼气池才能正常使用的情况,极大地解放了农村妇女劳动力,让家庭主妇告别了烟熏火燎。三是生产成本低,效

酶预处理对秸秆类原料厌氧发酵特性的影响_邓媛方邱凌黄辉戴本林王一线徐继明

农 业 机 械 学 报 收稿日期:2014-10-16 修回日期:2014-10-31 ※基金项目:农业部农村能源科技专项资助项目(2013-30)和国家水电水利规划设计总院科研专项资助项目( KY-J2013-122) 作者简介:邓媛方,讲师, 主要从事生物质能源研究,E-mail: dengyf@https://www.wendangku.net/doc/ec3291527.html, 通讯作者:邱 凌,教授,博士生导师,主要从事生物能源与循环农业研究,E-mail: ql2871@https://www.wendangku.net/doc/ec3291527.html, 酶预处理对秸秆类原料厌氧发酵特性的影响 邓媛方1 邱凌2 黄辉1 戴本林1,3 王一线4 徐继明1,3 (1.淮阴师范学院江苏省生物质能与酶技术重点实验室, 淮安 223300; 2.西北农林科技大学机械与电子工程学院,陕西杨凌 712100 3.淮阴师范学院江苏省区域现代农业与环境保护协同创新中心,淮安 223300 4.淮安市农委, 淮安 223001) 摘 要:为探索经木霉培养液预处理的秸秆厌氧消化产气特性,利用实验室自制小型厌氧发酵装置,中温(30±1)℃条件下,分别对经预处理的稻秸、麦秆和稻麦秆混合物进行批式厌氧发酵试验。结果表明:料液质量分数10%、接种物质量分数20%条件下经木霉培养液预处理过的秸秆产气量有明显提升,稻秸、麦秆、稻麦秆混合物总产气量分别达到14555、15103、17130ml ;甲烷含量显著增长,平均甲烷体积分数分别为48.2%,45.4%和47.8%,较对照组提高205.1%、213.1%、214.5%。最高甲烷体积分数分别达60.5%、66.1%和66.8%;原料利用率较大提高,化学需氧量COD 日均降解量分别为522.23、542.50、668.72g·COD/d ,TS 产气率分别达172.84、183.12、205.54ml/gTS ;其中经预处理后的稻麦秆混合物在产气量增加的前提下,大大缩短厌氧发酵时间(DT 90:17d )。发酵过程pH 值、VFA 变化情况均在正常范围。 关键词:酶法预处理 秸秆 沼气 厌氧发酵 中图分类号: X712 文献标识码:A 文章编号: 引 言 秸秆作为重要的可再生资源,主要由木质素、纤维素及半纤维素构成。木质素属高分子芳香类聚合物,难以水解,而纤维素被木质素和半纤维素以共价键形式包裹其中,导致其难以降解[1-2]。因此将秸秆类原料直接用于厌氧发酵,水解酸化阶段往往是其限速步骤,延长发酵周期,难以应用推广。为提高秸秆类原料的甲烷转化率,需对其进行必要的预处理,目的在于破坏木质素结构。Zhu 等[3]采用化学预处理手段对玉米、谷壳原料进行氢氧化钠溶液浸泡,有效提高挥发性固体VS 产气率。孙辰等[4] 采用NaOH 对芦笋秸秆进行碱性化学预处理,大大提高发酵周期,甲烷体积分数最高达70%。闫志英等采用复合菌剂对玉米秸秆进行干式厌氧发酵,其沼气产量及甲烷含量明显高于未加菌剂预处理过的秸秆[5]。刘荣厚等采用氨-生物联合预处理法探讨菌种添加量对小麦秸秆厌氧发酵产气性能的影响,大大缩短厌氧发酵周期同时提高产气量[6]。本文采用生物预处理手段,选择产纤维素酶能力最强的微生物里氏木霉(Trichoderma reesei )为秸秆预处理菌株,其安全无毒,不会对人和环境产生影响[7] ,用其产生的富含纤维素酶培养物分别预处理稻秸、麦秆及稻麦混合原料,探索预处理后秸秆产气规律和特性,以期为秸秆沼气工程研究提供理论和 实践参考。 1 材料与方法 1.1 材料与处理 1.1.1预处理酶液培养 配置0.5%的玉米浆3ml 装入试管,121℃灭菌20min ,接入里氏木霉孢子(Trichoderma reesei )200μl ,在30℃恒温条件下摇床培养(200rpm ,24h )。将试管种子接入浓度为0.5%的100ml 玉米浆摇瓶培养液中,30℃恒温条件下摇床培养(200rpm ,24h ),进行酶液种子扩大培养。 稻秸、麦秆取自淮阴区郊区农田,自然风干,粉碎机粉碎,过筛(8目)。分别称取质量分数3%的稻秸(A )、麦秆(B )及稻麦混合物(质量比1:1,C )的原料于500ml 锥形瓶中,配置成100ml 培养液,每瓶添加必须营养元素(质量分数计):玉米浆0.2%、硫酸铵0.3%、磷酸二氢钾0.2%、氯化钴20mg/L 、硫酸镁0.3g/L 、硫酸亚铁5ml/L 、硫 酸锰1.6mg/L 、硫酸锌1.4mg/L [8], 121℃灭菌20min 。另添加质量分数为0.01%的葡萄糖和0.03%的尿素(115℃灭菌15min ),置于摇床进行纤维素酶扩大培养(30℃,200rpm ,120h ),取样测其纤维素滤纸酶活(FPA ),见表1。 网络出版时间:2015-03-24 09:31 网络出版地址:https://www.wendangku.net/doc/ec3291527.html,/kcms/detail/11.1964.S.20150324.0931.007.html

如何利用秸秆发酵制取沼气

如何利用秸秆发酵制取沼气 聊城市农业委员会梁明磊高爽徐倩 随着畜牧业的集约化发展,家庭养殖越来越少,很多建设户用沼气的农户面临着原料不足的 问题。如何处理好原料短缺的问题成为发挥沼气池效益的一个关键。对于这个问题,聊城市 农委依托本地秸秆资源优势,利用秸秆等作原料,经过大量的实践,最终取得了良好的效果,现在将利用秸秆发酵产生沼气的方法给大家介绍一下: 一、适用范围秸秆沼气发酵制取沼气适合以小麦、玉米秸秆为主要发酵原料制取沼气的原料 配比、预处理、投料启动、日常管理及安全使用的技术要求。用于农村户用水压式沼气池。 所用沼气池必须符合GB/T4750-2002《农村家用水压式沼气池标准图集》的质量要求。投料 前必须按GB/4751-2002《户用沼气池质量检查验收规范》进行严格试压。 二、参照标准 GB/4751-2002《农村家用沼气池发酵工艺规程》 三、沼气发酵原料秸秆沼气的发酵原料目前主要是以农业生产过程中产生的小麦、玉米秸秆 为主。 四、秸秆沼气发酵原料配比 1、秸秆发酵原料浓度一般为6%-8%,冬季宜浓度高,夏季反之。 2、碳氮比秸秆沼气发酵原料的碳氮比要求在25:1左右,由于秸秆的含碳量比较高,所 以必须添加含氮化肥进行调节。 3、一立方米沼气池发酵原料的配比与用量

五、发酵原料的预处理及投料步骤 1、原料粉碎将秸秆原料用粉碎机粉碎成草粉状。把原料用水浸透。加水时要边加水边拌原料,反复搅拌3遍,使水浸透秸秆,用手握成团,指缝滴水而不流为宜。掺入化肥或粪便按照发酵原料配比要求,把50%的化肥掺入浸透的秸秆粉中,如秸秆与粪便混合,应把规定用量的粪便同时加入秸秆中,反复掺匀。堆沤把搅拌的原料装入沼气发酵原料池中(也可在池中搅拌),加盖塑料薄膜进行堆沤。堆沤时间环境温度在15℃左右时,纯秸秆原料堆沤9~10天,秸秆粪便混合原料堆沤7~8天;环境温度在20~25℃时,纯秸秆原料堆沤7~8天,秸秆粪便混合原料堆沤5~6天;环境温度在25℃以上时,纯秸秆原料堆沤6~7天,秸秆粪便混合原料堆沤4~5天。当堆沤原料达到棕红色时,即可投料。投料时间最好在中午气温高投入沼气池,有利于提高池温。 2、沼气池投料及步骤准备沼气池接种物,菌种采用老沼气池的沼液,数量2000Kg。先将堆沤好的沼气发酵原料投入沼气池内。把剩余的50%的尿素溶解于水后在原料上部均匀倒入沼气池内。再把准备好的发酵菌种均匀的从上部倒入沼气池内。从沼气池活动盖口加入清水。加水量与投入的原料的总量达到沼气池总容积的90%为宜,加入沼气池的水取至农户手压井内的水,温度为14℃。原料和接种物入池后,要及时加盖封池。沼气池发酵启动初期产的气体,由于封入池内的空气较多,加上开始产的甲烷气含量较低,不能点燃。因此,当沼气压力表压力达到4Kpa以上时,开始放气试火,放气3-4天全部点燃,投入正常使用。 敬礼

沼气工程施工规程与验收内容、方法及标准汇总

沼气工程施工规程与验收内容、方法及标准汇总 沼气工程验收成功与否关系到沼气工程是否能顺利投入使用,实现废弃物的资源化与价值升级,是沼气工程正常运行的重要一环。本文将就大中型沼气工程主要验收内容、沼气安装工程施工规程及验收标准、沼气工程验收方法与标准进行详述! 一、大中型沼气工程验收内容 大中型沼气工程验收一般包括内业验收和外业验收两项。 1.内业验收 内业验收的内容是施工单位交付的技术文件及资料,内容包括: 1)由设计单位提出的全部设计图纸和设计变更通知单。 2)由设计、建设、施工三方有关技术人员参加的设计图纸会审记录。 3)各单项工程,特别是隐蔽工程的材质、规格、型号和施工验收记录。 4)各类建筑材料、产品的出厂合格证及材料的试验报告单,产品、设备、仪器、仪表的技术说明书和合格证。 5)砂浆、混凝土的实验室配合比报告单。 6)沼气管路的施工及打压记录。 7)施工单位的施工组织设计。 8)重大施工方案的重要会议记录。 2.外业验收 外业验收是对大中型沼气工程进行分步分项工程验收,内容包括: 1)发酵罐及附属工程的土方工程、钢筋工程、混凝土工程、砌筑工程、钢结构工程、附属装置等验收按国家的有关标准、规范执行。 2)贮气罐注水试验,检查是否漏气、漏水。用肥皂水检查气密性;进行升降试验,检查滑轮与导轨接触是否合格,安全限位装置是否好使等。 3)管道的埋深、坡度、防腐、施工工艺、气密性、仪器仪表的安装等的验收。 4)工程综合试运转。 二、沼气安装工程施工规程及验收标准

1.搪瓷拼装罐安装 1)安装前的准备需符合下列要求: a安装使用的吊装设备应根据反应器总重量经过计算配置,并满足20%以上的安全系数; b安装工具及辅料按实际需求配齐,电工工具应认真检查设备绝缘情况,配电箱应符合规范要求;c认真核对材料发货清单,不得随意更换拼装材料,对损坏或变形的拼装构件要采取更换或加固措施; d混凝土基础应达到设计强度80%以上,平整度误差在±5mm之内。 2)安装时应符合下列要求: a应从上到下采用倒装法安装,安装顶板时需按方向标志安装; b钢板紧固部位需擦拭干净,两板贴合时,定位要准确、牢固,防止孔位错位; c打胶需饱满,厚度均匀,钢板边缘挤出的胶需刮平,内部打胶厚度应盖过螺帽,并刮平,防止产生气泡; d钢板紧固程度应以橡胶带厚度被压缩1/3为度; e各工艺套管应按照设计图纸要求进行预留。 3)罐体底部防水需符合下列要求: a基层处理:基层必须平整、牢固、干净、无明水、阴阳角应做成弧形。旧层面应把原破裂、起鼓的防水层及尘土除净,低凹破损处修平、渗漏处须先进行堵漏处理,基层要平整,不得有明水; b底涂施工:将水与涂料按1:3重量比例混合、搅拌均匀后使用,使用底涂料可提高涂料对基层的渗透性、增强粘结力。 c涂抹涂料:施工采用滚、刮、刷的方法均可,宜采用薄层多涂布法,每次涂刷不能太厚,一般分为3-4次涂刷,总厚度达1.5-2.0mm,待先涂的涂层干燥后方可涂布后一遍涂料,薄弱环节宜加铺胎体增强材料。用量约2kg-3kg/m2。 4)罐体试水、打压应符合下列要求: a罐体安装完毕后需进行满水试验,满水试验应在罐体安装结束,密封胶凝固,罐底防水施工结束,防水保护层达到设计强度后进行; b满水试验时需将各工艺接口进行密封处理,向罐内注入清水,待灌满后观察罐壁及基础渗漏情况,不渗不漏为合格,同时应做好满水试验记录; c试水结束后需进行气密性试验,搪瓷顶拼装罐需用空压机向罐内增压,当压力表显示3000Pa时停止打气,半小时内压力表不降为合格;一体化反应器需在投料试车后,用沼气检测仪测量内外膜间鼓出空气,以测漏仪不报警为合格。 2.脱硫罐、脱水罐、水封罐安装 1)根据设计图纸要求及设备工艺管口位置将设备摆放合适,用垫铁调整设备的水平度及垂直度,并联安装的设备需将管口位置对齐,地脚螺栓与螺母与配套,松紧适度,无乱扣、缺丝、裂纹等现象。 2)设备就位后应符合下列要求: a中心线位置偏差不应大于±10mm; b方位允许偏差,沿底座环圆周测量,不得超过15mm; c罐体的垂直度偏差为1/1000; d塔顶外倾的偏差不得超过10mm。 3)脱硫罐内装填脱硫剂应从上口法兰装填,脱硫剂量为不超过罐容积2/3为宜,装填完毕后应封好法兰; 4)设备各接口需连接严密,不得漏气,安装结束后用发泡剂检查各连接处,不漏气为合格。 3.管道、阀门安装

沼气发酵

沼气发酵 食品院轻化071 肖小根 目录 ?课程感言 ?沼气发酵简介 ?沼气发酵机理 ?沼气发酵工艺 ?沼气发酵工艺条件 ?沼气池的类型 ?沼气的利用与前景 ?中国发展沼气产业的现实意义 课程感言 “发酵工程原理与技术”这门课程内容分为五篇,前三篇从原料到产物阐述了发酵的整个过程后两篇是对发酵工程的延伸。第五篇讲述的“发酵工厂废物处理和清洁生产技术”是目前我们国家及至全世界都在致力于发展的技术,以应对日趋严重的能源、资源和环境危机。 整本书的主要内容侧重于对发酵工程原理的介绍,大部分内容与“工业微生物学”和“生物化工”相类似,可以说是以往学习的相关知识的综合,在学习过程中也是一种巩固。我认为学习这门课程的目的最重要还是要知道如何去运用它。在本教中关于发酵工程的应用内容不多主要集中在第五篇:关于发酵工厂废物处理和清洁生产技术的介绍。这部分内容我也大略地看过,由于全球环境污染日趋严重,节能减排、防污治污技术必然成为全球的聚集点。对于这方面的内容我也比较感兴趣,我希望能找到一种技术,通过查找一些资料来系统地它认识和了解,同时也希望以此作为一根主线用具体的例子来串连起教材的所有内容,最终我选择了沼气发酵。选择它的理由有三点:1、更贴近于实际生活;2、它能够在节能减排、资源循环利用的条件下有效地改善农村居民的生活;3、该技术已经成熟,相关资料比较多,但亟待大力推广,学习它在将来更有可能用得上。 在介绍沼气发酵这一技术中,我主要引用了:《微生物学教程》(第二版高教出版社周德庆主编)和《发酵工程》(科学出版社韦革宏杨祥主编)和百度关于沼气发酵的内容。 我希望能够通过对“沼气发酵”的全面了解,以后自己可以来建造沼气池。

农作物秸秆沼气技术操作规程

农作物秸秆(稻草)沼气试验操作规程 一、主题内容与适用范围 本操作规程制定了以农作物秸秆(稻草)为主要发酵原料生产沼气的农村户用水压式沼气池发酵操作规程。 本规程适用于农村户用池容为8-10 m3等水压式沼气池。所用沼气池必须符合GB4750《农村家用水压式沼气池图集》的质量要求,投料前必须按标准进行试水试压检验,只有试水试压合格才能进行投料。 1、沼气发酵原料 生产沼气主要以农作物秸秆(稻草)为发酵原料。 2、农作物秸秆(稻草)沼气发酵操作流程 稻草-粉碎-水浸泡-堆沤(稻草加入产甲烷菌剂及部分人、畜粪便)-进池发酵-产气使用 二、试验方法 1、在试点村选90户作为试验户、10户为常规对照户,统一池型和池容,每户一座8—10立方米常规水压式沼气池,分为A、B、C三组,每组30户,采用不同的发酵原料及处理方法进行对比试验。 2、试验步骤 (1)A组30户:用粉碎的稻草400公斤,按每100公斤稻

草加100公斤水的比例混合均匀润湿15-24小时。翻动稻草,使稻草于水混合均匀,最终使稻草含水率达到65-70%。堆沤;堆好后用塑料薄膜覆盖,将秸秆堆成垛(1.2-1.5米宽.1.0-1,5米高),并在堆垛的周围及顶部每隔30-50公分打一个孔,以利通气。用薄膜或秸秆将堆垛的四周及顶部盖上,底部留缝隙通气。待堆垛内温度达到50摄氏度以上后,维持三天,当堆垛能看到一层白色菌丝时,便可投入池中。 以后用粉碎的稻草8—10天定期加入一次。 (2)B组30户:用粉碎的稻草400公斤0、5-1千克秸秆发酵菌剂、5千克左右碳铵、400公斤左右水,10%-30%的接种物。堆沤方法:把秸秆发酵菌剂和稻草混合均匀,可添加适量的碳酸氢铵等氮肥,以补充氮素。混合原料太干,要加足水,然后用薄膜覆盖(方法同A组),堆沤7天左右,便可投入池中。以后用粉碎的稻草8—10天定期加入一次。 (3)C组30户:用粉碎的稻草300公斤混合100公斤左右的人畜粪便。采用人畜粪便做沼气发酵原料。把粪便堆沤到空地上,粪便干燥的,泼上水至似流非流的状态,盖上塑料布,春天堆沤6-8天,要注意含碳素原料和含氮素原料的合理搭配,鲜粪和作物秸秆的重量比为2:1左右,以使碳氮比为20-30:1为宜。要选取中午进行投料,减少热量的损失。以后用粉碎的稻草8—10天定期加入一次。 (4)另在试点村选10户以启用的常规发酵对比试验。

农作物秸秆沼气技术操作规程

农作物秸秆沼气技术操作规程 农作物秸秆沼气技术操作规程一、主题内容与适用范围 本操作规程制定了以农作物秸秆为主要发酵原料生产沼气的农村户用水压式沼气池发酵操作规程。 本规程适用于农村户用池容为6m3、8m3、10m3的水压式沼气池。所用沼气池必须符合GB4750《农村家用水压式沼气池图集》的质量要求,投料前必须按标准进行试水试压检验,只有试水试压合格才能进行投料。按照本规程对沼气池进行科学管理,当池温在20℃以上时,产气率可达0.2m3/m3d以上;当池温不低于15℃时,产气率不低于 0.l5m3/m3d。 二、沼气发酵原料 生产沼气主要以农作物秸秆等生物质为发酵原料。各种发酵原料的产气量有所不同。在35℃条件下常用原料每千克干物质的产气量为0.3-0.5m3,在20℃条件下每千克干物质的产气量为35℃条件下的60%。

35℃条件下常用原料每千克干物质产气量表 原料种类麦秸稻草玉米秸青草 产气量0.45 0.40 0.50 0.44 三、农作物秸秆沼气发酵操作过程 农作物秸秆或杂草——粉碎——水浸泡——堆沤(秸秆加入产甲烷菌剂及部分人、畜粪便)——进池发酵——产气使用 四、发酵原料的预处理 1、原料配比。掌握沼气发酵原料的C:N比值在30:1左右。当以秸秆原料为主进行沼气发酵启动时。加入一定量人、畜粪便来调节碳氮比。按牛粪或猪粪最低0.5立方与玉米秸300kg或麦秸、稻草200kg的比例配比沼气发酵原料。 2、原料用量。6m3的户用水压式沼气池按照牛粪或猪粪0.7立方与玉米秸、麦秸、稻草300kg的量投料。8m3沼气油按照牛粪或猪粪0.8m3与玉米秸、麦秸、稻草350kg 的量投料。10m3沼气池按照牛粪或猪粪1m3与玉米秸、麦秸、稻草400kg的量投料。

污水处理沼气生产工艺流程

污水处理沼气生产工艺操作流程 沼气生产工艺流程图 沼气发酵基本原理 沼气发酵又称为厌氧消化,是指有机物质(如人畜家禽粪便、秸秆、杂草等)在一定的水分、温度和厌氧条件下,通过种类繁多、数量巨大、且功能不同的各类微生物的分解代谢,最终形成甲烷和二氧化碳等混合性气体(沼气)的复杂的生物化学过程。 沼气发酵过程一般要经历三个阶段,即液化阶段、产酸阶段和产甲烷阶段。 沼气发酵过程的液化阶段 用作沼气发酵原料的有机物种类繁多,如禽畜粪便、作物秸秆、食品加工废物和废水,以及酒精废料等,其主要化学成分为多糖、蛋白质和脂类。其中多糖类物质是发酵原料的主要成分,它包括淀粉、纤维素、半纤维素、果胶质等。这些复杂有机物大多数在水

中不能溶解,必须首先被发酵细菌所分泌的胞外酶水解为可溶性糖、肽、氨基酸和脂肪酸后,才能被微生物所吸收利用。发酵性细菌将上述可溶性物质吸收进入细胞后,经过发酵作用将它们转化为乙酸、丙酸、丁酸等脂肪酸和醇类及一定量的氢、二氧化碳。在沼气发酵测定过程中,发酵液中的乙酸、丙酸、丁酸总量称为中挥发酸(TVA)。蛋白质类物质被发酵性细菌分解为氨基酸,又可被细菌合成细胞物质而加以利用,多余时也可以进一步被分解生成脂肪酸、氨和硫化氢等。蛋白质含量的多少,直接影响沼气中氨及硫化氢的含量,而氨基酸分解时所生成的有机酸类,则可继续转化而生成甲烷、二氧化碳和水。脂类物质在细菌脂肪酶的作用下,首先水解生成甘油和脂肪酸,甘油可进一步按糖代谢途径被分解,脂肪酸则进一步被微生物分解为多个乙酸。 沼气发酵过程的产酸阶段 (1)产氢产乙酸菌 发酵性细菌将复杂有机物分解发酵所产生的有机酸和醇类,除甲酸、乙酸和甲醇外,均不能被产甲烷菌所利用,必须由产氢产乙酸菌将其分解转化为乙酸、氢和二氧化碳。 (2)耗氢产乙酸菌 耗氢产乙酸菌也称同型乙酸菌,这是一类既能自养生活能异养生活的混合营养型细菌。它们既能利用H2+CO2生成乙酸,也能代谢产生乙酸。通过上述微生物的活动,各种复杂有机物可生成有机酸和H2/CO2等。 沼气发酵过程中的产甲烷阶段 (1)产甲烷菌的类群 产甲烷菌包括食氢产甲烷菌和食乙酸产甲烷菌两大类群。在沼气发酵过程中,甲烷的形成是由一群生理上高度专业化的古细菌--产甲烷菌所引起的,产甲烷菌包括食氢产甲烷菌和食乙酸产甲烷菌,它们是厌氧消化过程食物链中的最后一组成员,尽管它们具有各种各样的形态,但它们在食物链中的地位使它们具有共同的生理特性。它们在厌氧条件下将前三群细菌代谢终产物,在没有外源受氢体的情况下把乙酸和H2/CO2转化为气体产生CH4/CO2,使有机物在厌氧条件下的分解作用以顺利完成。 目前已知的甲烷产生过程由以上两组不同的产甲烷菌完成。 ①由CO2和H2产生甲烷反应为: CO2+4H2—CH4+ 2H2O ②由乙酸或乙酸化合物产生甲烷反应为: CH3COOH—CH4+CO2 CH3COONH4+ H2O—CH4+ NH4 HCO3 (2)产甲烷菌的生理特性

沼气脱硫技术概述

天津农学院 课程论文(2016—2017学年第一学期) 题目:沼气脱硫技术 课程名称沼气综合利用工程 学生姓名 学号 学院工 专业班级 2013级新能源科学与工程1班成绩评定

摘要 本文简单的介绍了沼气的概念、相关性质以及气体成分,并对其中的硫化S)的过滤原因做了一些说明。简单的综述了近年研究人员开发沼气脱硫氢(H S 方法在干式法、湿法和生物脱硫技术方面所做的研究,从原理及所涉及的反应方程式、一般工艺流程图、优点等方面介绍氧化铁、碱性液体等等比较典型的以及新型的脱硫方法。 关键字:沼气;硫化氢;脱硫

1.引言 沼气是一种可再生的清洁能源,既可替代秸秆、薪柴等传统生物质能源,也可替代煤炭等商品能源,而且能源效率明显高于秸秆、薪柴、煤炭等,因此沼气的利用备受关注。我国作为一个农业大国,每年都会产生大量的农作物秸秆和农产品加工废弃物,这些大量的农业废弃物中蕴含着巨大的沼气资源。同时畜牧业产生的禽畜粪便、工业产生的有机废弃物、城市生活垃圾和城市生活污水均有沼气潜能。对农业、畜牧业、工业、生活中的有机废弃物进行厌氧发酵产沼气时, 因为含硫化合物会被转化为H 2S,所以产生的沼气中都含有H 2 S气体。由于它是 一种腐蚀性很强的化合物,所以对沼气中的H 2 S进行去除是沼气利用的关键环 节。一般而言,沼气中H 2 S的质量浓度在1~12g·m -3之间,由于其受发酵原料和发酵工艺的影响很大,当原料的蛋白质或硫酸盐含量较高时,发酵后沼气中 的H 2 S质量浓度就较大。我国环保标准严格规定,利用沼气发电时,沼气气体中 H 2 S含量不得超过200~300mg·m -3;若将沼气并入燃气管道或作为车载燃料,则 H 2S要小于或等于15 mg·m -3[1]。可看出,沼气中H 2 S的质量浓度远远超过规定 值,所以无论在工业或民用气体中,都必须尽可能的除去。 2.概念介绍 2.1沼气 是有机物质在厌氧条件下,经过微生物的发酵作用而生产的一种混合性可燃气体。 2.2主要成分 其中甲烷(CH 4)占50~70%,其次是二氧化碳(CO 2 )占30~40%,还有少量的 氮、氢、氧、氨、一氧化碳(CO)和硫化氢(H 2 S)等气体。 2.3物理特性 改气体具有无色、无味、无毒,比空气轻,难溶于水的特性。 2.4 硫化氢(H 2 S) 是无色气体,有类似腐烂臭鸡蛋的恶臭味,剧毒、易溶于水。

沼气及其产生过程

沼气及其产生过程 沼气是有机物质在厌氧环境中,在一定的温度、湿度、酸碱度的条件下,通过微生物发酵作用,产生的一种可燃气体。由于这种气体最初是在沼泽、湖泊、池塘中发现的,所以人们叫它沼气。沼气含有多种气体,主要成分是甲烷(CH4)。沼气细菌分解有机物,产生沼气的过程,叫沼气发酵。根据沼气发酵过程中各类细菌的作用,沼气细菌可以分为两大类。第一类细菌叫做分解菌,它的作用是将复杂的有机物分解成简单的有机物和二氧化碳(CO2)等。它们当中有专门分解纤维素的,叫纤维分解菌;有专门分解蛋白质的,叫蛋白分解菌;有专门分解脂肪的,叫脂肪分解菌;第二类细菌叫含甲烷细菌,通常叫甲烷菌,它的作用是把简单的有机物及二氧化碳氧化或还原成甲烷。因此,有机物变成沼气的过程,就好比工厂里生产一种产品的两道工序:首先是分解细菌将粪便、秸秆、杂草等复杂的有机物加工成半成品——结构简单的化合物;再就是在甲烷细菌的作用下,将简单的化合物加工成产品——即生成甲烷。 沼气系统由哪几部分组成

我国户用沼气系统多属于地下水压式沼气发酵系统,可分为两大类,即静态沼气发酵系统和动态沼气发酵系统。静态沼气发酵系统的代表性池型是标准水压沼气池,动态沼气发酵系统以北方地区的旋流布料自动循环太阳能沼气池为代表。标准水压式沼气池主要有进料间、发酵间、出料间、水压间、导气管、天窗盖等构成。旋流布料自动循环太阳能沼气池,在旧池构成的基础上增值了旋流布料墙、水压酸化间、抽渣管、单向阀太阳能增温装置等构件。 怎样安全使用沼气 沼气是一种取之不尽、用之不竭且清洁、卫生、投资少,能给人类造福的生物能源。但是它和水、电、天然气一样,当人们没有掌握它的安全使用知识和技术的时候,也会给人类带来灾害。使用沼气容易发生的事故,主要是窒息中毒、烧伤和火灾等。 一、“安全第一、预防为主”。这是生产和利用沼气中仍须遵循的基本方针。过去一些地方因对沼气特性和安全使用的科学知识宣传不够,曾经发生多起因沼气用户缺乏安全使用沼气知识而引起的中毒、窒息、火灾、淹溺等严重安全事故,造成生命和财产的重大损失。因此,宣传和普及安全使用沼气的科学知识是发展沼气建设必须高度重视和认真抓好的工作。 二、安全使用沼气知识教育。主要针对沼气生产工,包括一般生产技术知识教育、一般安全使用沼气科学知识教育和专业安全技术知

秸秆沼气发酵工艺流程汇总

沼气发酵工艺流程 从全社会能源消费与供给的发展趋势,随着工业化发展进程使得矿物质能源日趋枯竭,尽管这是未来将会发生的事,当然也是历史发展的必然结果,将会引起全社会的关注。世界各国都在寻求可再生的替代能源,虽然探矿开采不会立即结束,但是可再生能源的试生产也要立即开始,甚至早已经开始了。沼气工程作为即可处理废弃的有机物又可从中回收能源,这是采用现代化技术开发生物质能源利用的重要组成部分,也是沼气工程产业将会乘胜发展的必然。 我国的沼气产业已从单纯的能源利用发展成为废弃物处理和生物质多层次综合利用,并与养殖、种植业广泛结合,在农村生产和生活中发挥了重要作用 沼气发酵技术确切的应该称为厌氧发酵技术,是指从发酵原料到产出沼气的整个过程,所采用的技术和方法。沼气发酵技术主要包括原料的预处理,接种物的选取和富集,发酵器(在厌氧发酵过程中的发酵器也称反应器,是沼气发酵罐、沼气池、厌氧发酵装置的统称)结构的设计,工程起动和日常运行管理等一系列技术措施。其流程图如下所示: 进料池 青贮 秸秆 粉碎预处理 沼液沼渣(再利用) 1.秸秆预处理: 1.1.预处理: 农作物秸秆通常是由木质素、纤维素、半纤维素、果胶和蜡质等化合物组成,其产气特点是分解速度较慢,产气周期较长。使用这种原料在入池前需进行预处理,以提高产气效果。 常用的预处理方法有物理、化学与生物方法等。物理方法主要有切碎、粉碎、汽爆等。生物法的研究主要集中在菌种的筛选和发酵条件优化方面。目前研究最多的微生物是白腐真菌。生物方法具有环境友好、处理效率高等优点,但需要无菌操作条件和专门的培养设施,目前有关研究较多,实际应用很少。化学法主要利用酸和碱等化学物质对秸秆进行预处理,通过化学作用破坏秸秆的内部结构,从而提高秸秆的厌氧消化性能。化学法具有处理方法简单、时间短、效果好等优点,但化学处理剂有可能产生二次污染。 1.2.青贮:青贮池设计以为矩形,若有多个青贮池可并联或串联使用。 粉碎的秸秆贮入青贮池后应轧实,减少内部氧气存有量,避免原料浪费。 秸秆含水量控制在65%左右,密度以大于500㎏/m3为宜。

相关文档