文档库 最新最全的文档下载
当前位置:文档库 › 微乳液法制备纳米材料研究进展

微乳液法制备纳米材料研究进展

微乳液法制备纳米材料研究进展
微乳液法制备纳米材料研究进展

收稿日期:2007-08-13

基金项目:重庆市科委重点自然科学基金项目(2005B A4019).

作者简介:梁依经(1983—),男,甘肃通渭人,硕士研究生,主要从事纳米功能材料的研究.

【机械与材料】

微乳液法制备纳米材料研究进展

梁依经,黄伟九,田中青

(重庆工学院材料科学与工程学院,重庆 400050)

摘要:阐述了微乳液法制备纳米材料的特点,纳米材料的形成机理及影响因素,并综述了应用微乳液技术制备新型纳米材料的最新进展.关 键 词:微乳液;纳米材料;制备中图分类号:TB383 文献标识码:A

文章编号:1671-0924(2007)09-0087-05

Research Progress of Microemulsion Method for Preparing Nanomaterials

LIANG Yi -jing ,HUANG Wei -jiu ,TIAN Zhong -qing

(School of Material Science and Engineerin g ,Chongqing Institute of Technology ,Chongqing 400050,China )

A bstract :In this paper ,the characteristics ,the mechanism and the influence factors of nanomaterials pr eparation by microemulsion method are discussed ,and the latest progress of the microemulsion technology

applied in preparing new nanomaterials is also presented .Key words :microemulsion ;nanomaterials ;preparation 微乳液是指2种互不相溶液体在表面活性剂作用下形成的热力学稳定的、各向同性、外观透明或半透明、粒径1~100nm 的分散体系;它有水包油型(O /W )、油包水型(W /O )和油水双连续型3种结构[1].

W /O 型微乳液又称反相微乳液,其水核在一定条件下具有稳定、小尺寸的特性,即使破裂后还能重新组合,这类似于生物细胞的一些功能,被称为智能微型反应器[2];这个“微型反应器”拥有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质[3-5].当在水核内进行化学反应制备超细粒子时,由于反应物被限制在水核内,最终得到的颗粒粒径将受水核大小的控制,

因此可通过控制水核的尺寸和形状制备纳米级的材料.近年来,国内外利用微乳化技术制备纳米材料的报道日见增多,并已成为纳米材料制备的主要技术之一.

1 微乳液法制备纳米材料的特点

与其他纳米材料的制备方法相比,微乳液法制备纳米材料具有以下特点:①粒径分布较窄且

第21卷 第9期Vol .21 No .9重庆工学院学报(自然科学版)

Journal of Chongqing Institute of Technology (Natural Science Edition )2007年9月

Sep .2007

较易控制.由于成核生长是在水核中进行的,水核的大小决定了微粒的大小.通过控制溶剂剂量、表面活性剂用量及适当的反应条件,可以较易获得粒径均匀的纳米微粒.②通过选择不同的表面活性剂分子对粒子表面进行修饰,可获得所需要的具有特殊物理、化学性质的纳米材料.③由于粒子表面包覆一层(或几层)表面活性剂分子,不易聚结,得到的有机溶胶稳定性好,可较长时间放置.④纳米粒子表面的表面活性剂层类似于一个“活性膜”,该层可以被相应的有机基团取代,从而制得特定需求的纳米功能材料.⑤在常压下进行反应,反应温度较温和;装置简单,易于实现.

2 微乳液法制备纳米材料的形成机理及影响因素

2.1 纳米材料的形成机理

当利用微乳液法制备纳米材料时,纳米材料的形成机理一般有以下3种情况

[3]

:

1)将2个分别增溶有反应物A ,B 的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应.由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸可得到控制(如图1所示).

2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水合肼和硼氢化钠水溶液)与前者混合.水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的.例如,铁、镍、锌纳米粒子的制备就是采用此种体系(如图2所示).

3)一种反应物在增溶的水核内,另一种为气体(如O 2、NH 3,CO 2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒(如图3所示)

.

图1 2个微乳体系混合反应

图2 向微乳中加还原剂

图3 气体鼓入微乳液

2.2 影响微乳法制备纳米粒子的因素

影响微乳液法制备纳米材料的因素主要有:1)水核半径.纳米材料的粒径受微乳液水核半径的控制,而水核半径(R )与体系中水与表面活性剂的浓度(w =[H 2O ]/[表面活性剂])及表面活性剂的种类有关.在一定范围内,水核半径随ω的增大而增大,并近似的呈线性关系[6].

2)反应物浓度.适当调节反应物浓度,可使制取粒子的大小受到控制.Pileni 等

[7]

在AOT /异辛

烷/水微乳体系中制备CdS 胶体粒子时,发现超细粒子的粒径受x =[Cd 2+]/[S 2+]的影响,当反应物之一过量时,生成较小的CdS 粒子.这是由于当反应物之一过剩时,结晶过程比等量反应要快,生成的超细粒子粒径也就偏小.

3)盐效应.一般来说,微乳液水核中的反应物主要为无机盐类,因此可加入一些电解质作为反应的催化剂,比如在水解反应中加入适量的碱.这些物质中的反离子会对形成液滴的表面活性剂产生影响.反离子进入液滴膜层,使表面活性剂间的斥力减弱,侧向吸引力加强,液膜更稳固,从而使生成的粒子更规则,更均一.但这种影响对离子型表面活性剂较为明显,而对非离子型表面活性剂影响不大.它的另一个影响则是在水结合方面同表面活性剂竞争,盐的加入一般都会减小水与表面活性剂之间的相溶性,导致微乳液相图上单相区的缩小,增溶水量减少,液滴中水核半径也相应减小[8].

4)微乳液界面膜强度.如果微乳液界面膜强度较低,水核碰撞时界面膜易被打开,导致不同水

核的固体核或纳米粒子之间发生凝并,使纳米粒

88重庆工学院学报

子的粒径难以控制,因此选择的微乳液体系的界面膜强度要恰当.影响界面膜强度的主要因素有[9]:①含水量(即ω的大小);②界面醇含量;③醇的碳氢链长;④油的碳氢链长.一般来说,w增大,界面醇含量增加,会导致界面膜强度变小,醇的碳氢链长越短,油的碳氢链长越长,界面膜强度越小;反之,膜强度越大.

除上述因素外,其它如反应物料种类(影响微乳液相行为)、表面活性剂种类[10]、反应持续时间[11]、环境温度、化学反应速率、成核速率、微乳液碰撞速率、交换速率、微乳液的pH值[12]等也会对纳米粒子的制备产生影响.

3 微乳法制备纳米材料新动态

3.1 新型实心球纳米粒子的制备

在应用微乳法制备纳米材料的初期,微乳液技术主要被用于制备一些单一组分和单一结构的纳米材料;随着微乳液技术的发展,目前已逐步探索了应用微乳液法制备复合结构(如核-壳结构)及复合组分(如有机-无机复合)纳米材料的技术.如Loukanov[13]等在AOT/庚烷/水溶液的微乳液体系中制备了核壳结构CdS/ZnS半导体纳米微粒.该结构的纳米粒子在紫外光的照射下可发出可见光,其波长取决于纳米粒子的大小及ZnS壳层的厚度.制备CdS/ZnS核壳结构纳米微粒的关键是:①控制水核中壳层前驱物的浓度;②在给定的前驱物浓度下通过调整CdCl2,ZnCl2及Na2S 水溶液的用量严格控制胶束中水核的大小.姚渊[14]等采用微乳液法制备出核壳结构ZnS:Mn/ CdS纳米晶,为获得水溶性纳米晶,继续向此微乳液添加硅酸乙酯(TEOS),并使用氨水作为催化剂,通过TEOS水解缩聚反应,获得了粒径为10nm,均匀性好,ZnS:Mn/CdS内核表面被二氧化硅壳层完全包覆的纳米粒子.

将有机的微乳聚合反应和无机的微乳反应器结合起来,可得到新型无机-有机复合纳米微粒.通常是在无机纳米粒子外面包裹聚合物,使形成的新型复合纳米粒子同时兼有无机材料和有机材料的性质.奚强[15]等用甲基丙烯酸甲醋(MMA)作油相,反相微乳液作为模板制备了纳米氯化银(AgCl)粒子,再进行原位聚合制备了纳米AgCl/ P MMA复合材料.吴其晔[16]等设计并采用2步连续反相微乳液法原位合成铁钴镍/R苯胺核-壳型纳米复合微粒.

3.2 纳米棒、纳米线、纳米管的制备

纳米棒、纳米线和纳米管作为新型一维纳米材料,具有独特的光、电、磁特性,有望在微电子器件和光学器件中发挥重要作用[17-20];如半导体硅纳米线具有发射稳定、高亮度蓝光的特性,而蓝光发射材料是制备彩色显示器的良好材料.

利用微乳液胶束的软模板效应,研究者们运用微乳液法制备了一系列不同种类的一维纳米材料;如Chen等[21]在以Triton X-100为乳化剂,室温下合成了直径60~100nm,长约450~1200nm 的具有单晶四方结构的钙钛矿Ba0.7Sr0.3TiO3纳米棒,并通过改变w值、陈化时间、反应物浓度等因素调控纳米棒的长度.Lin等[22]在水热辅助的微乳液中制备了直径为20~30nm、长为十几微米的单分散硅酸钙纳米线,并发现其在800°C下煅烧2h 后仍保持线状形貌.Liu等[23]在微乳体系中,在γ射线照射下,以HEC为模板成功的制备出了CdS 纳米棒,同时通过改变表面活性剂的浓度和HEC 的用量对纳米棒的形貌进行调控.董喜燕[24]等人通过微乳液中反转胶束表面间的相互作用促使纳米粒子耦合生长和自组装,并且通过控制反应时间、表面活性剂的浓度、反应物间的摩尔比及其在微乳液中的物质相对浓度,获得了棒状的纳米MnOOH.陈德良等[25]在CTAB/正戊醇/正己烷/水微乳体系中,在130℃水热条件下恒温15h合成了直径50~150nm、长几个微米的NiS纳米管,同时研究了硫化物反应机理和低维纳米晶的生长过程,发现在W/O的作用下首先形成了纳米片,然后纳米片聚合成一维的纳米线或纳米管.此外,研究者们还通过微乳液法制备出NiS,CuS和PbS纳米线以及BaW O4和NiFe2O4纳米棒等一维纳米材料[26-29].

3.3 空心球纳米粒子

空心球纳米粒子由于具有较低的密度、大的比表面积、优良的过滤性、特殊的极性和光学性

89

梁依经,等:微乳液法制备纳米材料研究进展

质,因而在电磁学、光学、化学、药物学、生物学等

领域具有广阔的应用前景,如以空心球的空腔微环境作为载体,用于化学微反应器、生物传媒、药物导弹和药物受控释放等[30-31].

近年来运用微乳液法制备空心球纳米粒子取得了一系列进展,司玲[32]等用聚己二醇/环己烷/水形成水包油乳浊液体系,使由AgNO3和Na2S2O3形成的硫代硫酸银在该体系中超声水解,成功地制得了Ag2S空心球.王大鸷[33]等人利用微乳液法实现了多晶硒化锌纳米空心球、单晶硒化锌纳米棒以及ZnSe量子点的低温合成,并通过调整Triton X-100/环己烷/水体系中Triton X-100的浓度分别制备出直径为120nm,壁厚6nm的ZnSe多晶纳米空心球体.Fujiwara[34]等在Span80+Tween80/正辛烷/水溶液所形成的W/O/W型复合乳液中,分别以NH4HC O3,NH4C1为沉淀剂,与硅酸钠发生反应制备了SiO2空心球.此外通过在O/W型微乳液中发生聚合也可制备聚合物的空心球,如Jang J[35]等在O/W微乳液中首先制备了核壳结构PMMA/ PS纳米微球,然后通过二氯甲烷刻蚀除去PMMA 内核即可得到PS空心球.该法所制备的PS空心球直径在15~30nm,壳层厚度为2~5nm,且空心球的大小取决于表面活性剂的浓度及表面活性剂与聚合物单体的质量比.

4 结束语

微乳液作为一种具有特定性能的微环境,可以实现多种化学反应,合成具有特定功能的有机、无机纳米材料及复合材料,无疑为新材料的开发开辟了一条新途径.但该领域的研究目前还仅限于少数微乳体系,纳米材料的形貌、尺寸及结构的精确控制,纳米材料形貌的形成机理与生长动力学,功能分子的设计、制备和组装,纳米功能材料的复合以及所涉及的表面、界面及功能协同等方面还需进一步深入的研究,且目前报道的微乳液法制备的新材料多数尚处于实验室开发阶段,实现工业化尚存在一定距离;因此,微乳法制备纳米材料的研究是一个既有重要的理论研究价值又有广阔应用前景的新领域.参考文献:

[1] 陈宗淇,郭荣.微乳液的微观结构[J].化学通报,1994

(2):22-25.

[2] Schulman J H,Stoeckenius W,Prince L M.M echanism of

formation and structure of microemulsion by electron mi-

croscopy[J].Journal of Physical Chemistry,1959,63:

1677-1680.

[3] 王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超

细颗粒的研究进展[J].化学通报,1995,9:1-5. [4] Angel L R,Evans D F,Ninham B W.Three component

ionic microemulsions[J].Journal of Physical Chemistry,

1983,87:538-540.

[5] 施利毅,华彬,张剑平.微乳液的结构及其在制备超

细颗粒中的应用[J].功能材料,1998,29(2):136-

139.

[6] 崔正刚,殷福珊.微乳化技术及应用[M].北京:中国

轻工业出版社,1999:73-74.

[7] Pileni M P.Reverse micelles as microreactors[J].Journal

of Physical Chemistry,1995,9:1-5.

[8] Arriagada F J,Osseeo-Asare K.Synthesis of nanos ize Sili-

ca in a nonionic water in oil microemulsion effects of the

water/surfactant molar ratio and ammonia concentration

[J].Journal of Colloid and Interface Science,1999,211:

210-220.

[9] 滕弘霓,周秀婷.非离子型表面活性剂微乳液性质的

研究[J].青岛科技大学学报,2003,24(3):196-199.

[10]聂福德,曾贵玉.硫化锌纳米粒子的微乳液合成[J].

材料科学与工艺,2002,10(2):160-163.

[11]梁英.TiGeW12O40/TiO2催化剂微乳液法合成葡萄糖

酯[J].精细石油化工,2005(2):31-33.

[12]肖凤娟,杨惠芳,徐华.Triton X-100/正己醇/环己烷

反相微乳液体系合成纳米羟基磷灰石[J].材料科学

与工程学报,2006,24(2):274-277.

[13]Loukanov A R,Dushkin C D,Papazova K I,et al.Photo-

luminescence depending on the ZnS shell thickness of CdS/

Zn S core-shell semiconductor nanoparticles[J].Colloids

Surf A,2004,245(1):9.

[14]姚渊,李冬梅,桑文斌,等.微乳液法制备二氧化硅包

覆ZnS:Mn/CdS纳米晶[J].人工晶体学报,2006,35

(2):400-403.

[15]奚强,李亮.反相微乳液模板原位聚合制备和表征纳

米AgCl/PMMA复合材料[J].高分子材料科学与工

90重庆工学院学报

程,2003,19(2):213-216.

[16]吴其晔,方鲤.两步连续反相微乳液法原位合成铁钴

镍/聚苯胺核-壳型纳米复合微粒[J].青岛科技大

学学报,2003,24(1):37-41.

[17]Wei Liu,Wei Zhong,Xiaoling Wu,et al.Hydrothermal

microemulsion s ynthesis of cobalt nanorods and self-assem-

bly into square-shaped nanostructures[J].Journal of Crys-

tal G rowth,2005,284(3/4):446-452.

[18]Shen X P,Liu H J,Pan L,et al.An efficient template

path way to synthesis of ordered metal oxide nanotube array s

using metal acetylacetonates as single-source molecular pre-

cursors[J].Chemistry Letters,2004,33(9):1128. [19]Shen X P,Yuan A H,Wang F,et al.Fabrication of well-

aligned CdS nanotubes by CVD-template method[J].Solid

State Communications,2005,133:19.

[20]Mei Yu,Jianhua Liu,Songmei Li.Preparation and charac-

terization of highly ordered NiO nanowire arrays by sol-gel

template method[J].Journal of Un iversity of Science and

Technology Beijin g,2006,13(2):169-173.

[21]Wanping Chen,Qi'an Zhu.Synthesis of barium strontium

titanate nanorods in reverse microemulsion[J].Materials

Letters,2007,61(16):3378-3380.

[22]Kaili Lin,Jiang Chang,Jianxi Lu.Synthesis of wollastonite

nanowires via hydrothermal microemulsion methods[J].

M aterials Letters,2006,60(24):3007-3010.

[23]Weijun Liu,Weidong He,Zhicheng Zhang,et al.Fabri-

cation of CdS nanorods in inverse microemulsion using HEC

as a template by a convenientγ-irradiation technique[J].

Journal of Crystal Growth,2006,290(2):592-596. [24]董喜燕,张兴堂,程纲,等.M n OOH纳米棒的反胶束法

制备及表征[J].化学学报,2004,62(24):2441-2443.

[25]Delian g Chen,Lian Gao.Novel morphologies of nickel sul-

fides:nanotubes and nanoneedles derived from rolled

nanosheets in a W/O microemulsion[J].Journal of Crystal

Growth,2004,262(1/4):554-560.

[26]Junhua Xiang,Shuhong Yu,Bianhua Liu,et al.Shape

controlled synthesis of PbS nanocrystals by a solvothermal

microemulsion approach[J].Inorganic Chemistry Commu-

nications,2004,7(4):572-575.

[27]Lei Gao,Enbo Wang,Suoyuan Lian,et al.Microemul-

sion-directed s ynthesis of different CuS nanocrystals[J].

Solid State Commun ications,2004,130(5):309-312.

[28]Xu Zhang,Yi Xie,Fen Xu,et al.Growth of BaWO4fish-

bone-like nanostructures in w/o microemulsion[J].Journal

of Colloid and Interface Science,2004,274(1):118-

121.

[29]Zhan g D E,Zhang X J,Ni X M,et al.Synthesis and

characterization of NiFe2O4magnetic nanorods via a PEG-

assisted route[J].Journal of Magnetism and M agnetic Ma-

terials,2005,292:79-82.

[30]Chen J,Ding H,Wang J,et al.Preparaion and character-

ization of porous hollow silica nanoparticles for drug delivery

application[J].Biomaterials,2004,25:723.

[31]Bourlinos A,Boukos N,Petridis D.Exchange resins in

shape fabrication of hollow inorganic and carbonaceous in-

organic composite spheres[J].Advanced Materials,2002,

14(1):21.

[32]司玲,王利侠,张杰,等.亚微米级Ag2S空心球的乳

液聚合[J].无机化学学报,2003,19(11):1253-1256.

[33]王大鸷,崔励,曹传宝,等.微乳液法制备不同形貌低

维硒化锌纳米晶[J].人工晶体学报,2006,35(3):470

-473.

[34]Fuji wara M,Shiokawa K,Tanaka Y,et al.Preparation

and formation mechanis m of silica microcapsules(hollow

sphere)by water/oil/water interfacial reaction[J].Chem-

istry of M aterials,2004,16(25):5420.

[35]Jang J,Ha H.Fabrication of hollow polystyrene

nanospheres in microemulsion polymerization using triblock

copolymers[J].Langmuir,2002,18(14):5613.

(责任编辑 陈 松)

91

梁依经,等:微乳液法制备纳米材料研究进展

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

微乳液法制备纳米材料

微乳液法制备纳米材料 仇乐乐 摘要:本文介绍了使用微乳液法制备纳米材料的一些基本理论和应用。从微乳液的定义、形成和稳定性理论方面简单的介绍了微乳液。又从微乳液制备纳米材料的原理和制备出的纳米粒子的特点方面介绍了微乳液法的一些基本知识。接着又着重讲述了从微乳液法制备纳米材料的影响因素和应用。最后对微乳液法制备纳米材料做了总结和展望。 关键词:微乳液,纳米材料,影响因素,应用 一、引言 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等方面得到了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。实验装置简单,操作容易,已引起人们的重视。 二、微乳液内超细颗粒的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合,由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 三、微乳液的形成和稳定性理论 描述微乳液形成的一个简单形式是把分散相部分考虑成很小的液滴构型熵发生变化,ΔS conf 可近似的表示为: 其中n 为分散相的液滴数,k B 为Boltzmann 常数,φ是分散相的体积分数。缔合自由能的改 变可表示为增加的新界面面积所需的自由能ΔA γ12,和构型熵之和: 其中,ΔA 是界面面积A 的改变量 (半径为r 的液滴面积为4πr 2 ),γ12 是在温度T (Kelvin)的1 相和2相(如油相和水相)之间界面张力。 分散时小液滴数增加且ΔS conf 是正值,如果表面活性

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

微乳液法制备纳米材料的研究进展

微乳液法制备纳米材料的研究进展 201200110038 李吉相 摘要:综述了微乳液法制备纳米材料的基本原理和影响因索,回顾了微乳液在金属、金属卤化物、金属硫化物、金属碳酸盐、金属和非金属氧化物等纳米微粒制备中的应用,展望了这一领域的发展方向。 关键词:微乳液;纳米微粒;制备 纳米材料是指由极细晶粒组成,特征纬度尺寸在纳米数量级(~100nm)的固体材料【1】。其制备方法多种多样【2】,一般来说,制备较大量的纳米晶固体的方法有三种,这些方法简单而又经济,且都保证了粒子的小尺寸和窄的分布。它们是:1) 用脉冲电子沉积法制备金属或合金的纳米晶: 2) 在微乳液中运用沉淀法制备氟化物的纳米晶,如在反相(w /O)微乳液中合成NH.M nF。; 3) 在微乳液中运用溶胶一凝胶水解法制得金属氧化物的纳米晶,其中后两种方法都使用了微乳液制备法。这也说明微乳液法在纳米材料制备科学中占有极为重要的地位。在合成时使用微乳液法,在纳米微粒的表面有一层表面活性剂膜,故在制作电镜样品的抽真空、蒸发溶剂的过程中,纳米微粒保持分散状态而不发生凝聚。微乳液通常是由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)组成的透明的、各相同性的热力学稳定体系【3】。微乳液中,微小的“水池”被表面活性剂和助表面活性剂所组成的单分子层界面所包围而形成微乳颗粒,其大小可控制在几十至几百个之间。微小的“水池,尺度小且彼此分离,因而构不成水相【4】,通常称之为“准相”。微乳液是热力学稳定体系,其水核是一个“微型反应器”,这个“微型反应器”拥有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。微乳液的水核尺寸是由增溶水的量决定的,随增溶水量的增加而增大。因此,在水核内进行化学反应制备超细颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受到水核大小的控制。 微乳液用来作为合成纳米微粒的介质,是因为它能提供一个特定的水核,水溶性反应物在水核中发生化学反应可以得到所要制备的纳米微粒。影响纳米微粒制备的因素主要有以下三方面: (1)微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,水核半径是由W一[HzO]/E表面活性剂]决定的。微乳液组成的变化将导致水核的增大或减小,水核的大小直接决定超细颗粒的尺寸。一般说来,超细颗粒的直径要比水核直径稍大,这可能是由于胶团间快速的物质交换而导致不同水核内沉淀物的聚集所致。 (2)反应物浓度的影响 适当调节反应物的浓度,可使制取粒子的大小受到控制。Pileni等在AOT/异辛烷/H O 反胶团体系中制备CdS粒子时,发现超细颗粒的直径受X 一[cd ]/[s 一]的影响,当反应物之一过量时,生成较小的CdS粒子。这是由于当反应物之一过剩时,结晶过程比等量反应要快,生成的超细颗粒粒径也就偏小。 (3)微乳液界面膜的影响 选择合适的表面活性剂是进行超细颗粒合成的第一步。为了保证形成的微乳液颗粒在反应过程中不发生进一步聚集,选择的表面活性剂成膜性能要合适,否则在微乳液颗粒碰撞时表面活性剂所形成的界面膜易被打开,导致不同水核内的固体核或超细颗粒之间的物质交换,这样就难

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

微乳液法制备纳米微粒

纳米材料 ——微乳液法制备纳米微粒 微乳液法的概述: 微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,从乳液中析出固相从而制备出一定粒径的纳米粉体。但相对于细乳液和普通乳液而言的,微乳液颗粒直径约为l0~lOOnm,细乳液颗粒直径约为lO0~400nm,普通乳液颗粒直径一般在几百纳米到上千纳米。一般情况下,将两种互补相溶的液体在表面活性剂作用下所形成的热力学稳定、各项同性、外观透明或半透明、粒径l~lOOnm 的分散体系称为微乳液。相应的把制备微乳液的技术称为微乳化技术(MET)。1982年Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合肼或者氢气还原在w/0型微乳液水合中的贵金属盐,得到了分散的Pt、Pd、Ru、Ir 金属颗粒(3~40nm)。从此以后,微乳液理论的研究获得了飞速发展,尤其是2O世纪9O年代以来,微乳液应用研究更快,在许多领域如3次采油、污水治理、萃取分离、催化、食品、生物医药、化妆品、材料制备、化学反应介质,涂料等领域均具有潜在的应用前景。微乳液法是一种简单易行而又具有智能化特点的新方法,是目前研究的热点。运用微乳液法制备纳米粉体是一个非常重要的领域。运用微乳液法制备的纳米颗粒主要有以下几类。:(1)金属,如Pt、Pd、Rh、Ir、Au、Ag、Cu等;(2)硫化物CdS、PbS、CuS等;(3)Ni、Co、Fe等与B的化合物;(4)氯化物AgC1、AuC1 等;(5)碱土金属碳酸盐,如CaCO3、BaCO3、Sr—CO3;(6)氧化物Eu2O 、Fe2O。、Bi2O 及氢氧化物如Al(0H)3 等。 1 微乳反应器原理 在微乳体系中,用来制备纳米粒子的一般都是W/O型体系,该体系一般由有机溶剂、水溶液、活性剂,助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般为A0T(2一乙基己基磺基琥珀酸钠)、SDS(十二烷基硫酸钠)阴离子表面活性剂、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。微乳液中,微小的“水池”为由表面活性剂和助表面活性剂所构成的单分子层包围成的微乳颗粒,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”,它拥有很大的界面,有利于化学反应。与其它化学法相比,微乳液法制备的离子不易聚结,大小可控,分散性好。 W/O型微乳液中的水核可以看作微型反应器(Microreactir)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接的关系,若令W=[H2O/表面活性剂],则由微乳液制备的纳米粒子的尺寸将会受到w 的影响。 一般地,将两种反应物分别溶于组成完全相同的两份微乳液中,然后在一定条件下混合。两种反应物通过物质交换而发生反应,当微乳液界面强度较大时,反应物的生长受到限制。如微乳液颗粒大小控制在几个纳米,则反应物以纳米颗粒的形式分散在不同的微乳液中。研究表明:纳米颗粒可在微乳液中稳定存在,通过超速离心或将水和丙酮的混合物加入反应后生成的微乳液中使纳米颗粒与微乳液分离,用有机溶剂清洗以去除附着在微粒表面的油和表面活性剂,最后在一定温度下进行干燥,即可得到纳米颗粒。 2 微乳液的形成和结构 与普通乳液相比,尽管在分散类型方面微乳液和普通乳液有相似之处,即有o/w 和w/o型,其中w/O可以作为纳米粒子制备的反应器,但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴颗粒可控,实验装

实验方案微乳液法制备 MYb3+,Er3+

微乳液法制备 M:Yb3+,Er3+ (M= BaF2,LaF3,YF3) (BaF2为立方相,其折射率为 1.47) 实验试剂 十六烷基三甲基溴化铵(A.R)中国医药上海化学试剂公司;氟化铵(A.R)中国医药上海化学试剂公司;硝酸钡(A.R)北京红星化工厂生产; 正丁醇(A.R)天津市科密欧化学试剂开发中心;正辛烷(A.R)天津市科密欧化学试剂开发中心;二氯甲烷(A.R)天津市科密欧化学试剂开发中心;甲醇(A.R)长春市试剂厂; La(NO3)3自制,浓度为 0.5mol/L; Yb(NO3)3自制,浓度为 0.5mol/L; Er(NO3)3自制,浓度为 0.5mol/L;

实验方法 1、按质量比为ω(CTAB)=19.04%, ω(正丁醇)=15.24%, ω(正辛烷)=51.40%的比例各取等量有机物两份,将三种有机化合物混合,得到Ⅰ、Ⅱ两体系 2、室温下,进行磁力搅拌 3、按化学计量比配置 C(NH4F)=0.5mol/L、 C(Ba(NO3)2)=0.5mol/L 阴阳离子溶液各 7.8m L(其ω(盐)=14.29%) 4、向阳离子溶液中滴加物质的量之比为1:1 的Yb(NO3)3和Er(NO3)3溶液。 5、待Ⅰ、Ⅱ两体系混合均匀,在搅拌过程中向其中一份逐滴加入阴离子(NH4F),另一份中加入阳离子(Yb(NO3)3和 Er(NO3)3组成的混合液)。 6、Ⅰ、Ⅱ两体系继续搅拌 50min。 7、将ⅠⅡ两体系迅速混合,室温下快速搅拌,反应 70min,反应所得产物以 15000rpm 离心 15min 8、产物再以甲醇和二氯甲烷混合液(体积比 1:1)清洗、离心 5 次,以去除纳米粒子表面残余的有机相和表面活性剂 9、在红外灯下干燥,然后用玛瑙研钵研磨, 10、于 450℃下氮气保护灼烧 30min 以去除残余的水分和其他有机杂质,最后得到白色粉末状样品 11、以同样的方法,Yb3+和 Er3+比例为 3:1,制备 YF3: Yb3+,Er3+纳米粒子。

微乳液法制备纳米粒子_徐冬梅

文章编号:1004-1656(2002)05-0501-06 微乳液法制备纳米粒子 徐冬梅,张可达,王 平,朱秀林 (苏州大学化学化工系,江苏苏州 215006) 摘要:介绍了W /O 型微乳液内超细颗粒的形成机理、制备的技术关键,综述了近年来国内外微乳法制备纳米粒子的最新进展。引用文献37篇。 关键词:W /O 型微乳液;纳米粒子;形成机理;制备中图分类号:O648.23 文献标识码:A 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等 [1~5] 方面得到 了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级(20~50nm )的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。微乳液制备超细颗粒的特点在于:粒子表面包有一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可对粒子表面进行修饰,并控制微粒的大小。实验装置简单,操作容易,已引起人们的重视。本文对W /O 微乳液内超细颗粒的形成机理、制备的技术关键以及近年来国内外利用微乳法制备纳米粒子的最新进展进行了综述。 1 W /O (油包水)微乳液内超细颗粒 的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合, 由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 2 实验制备的技术关键 2.1 选择一个适当的微乳体系 首先要选定用来制备超细颗粒的化学反应,然后选择一个能够增溶有关试剂的微乳体系,该体系对有关试剂的增溶能力越大越好,这样可期望获得较高收率。另外构成微乳体系的组分(油相、表面活性剂和助表面活性剂)应该不和试剂发生反应,也不应抑制所选定的化学反应。2.2 分析影响生成超细微粒的各种因素以获得 分散性好,粒度均匀的超细微粒 选定微乳体系后,就要研究影响生成超细微 第14卷第5期2002年10月 化学研究与应用Chemical Research and Application Vol .14,No .5Oct .,2002 收稿日期:2001-08-03;修回日期:2001-10-24 基金项目:江苏省苏州大学薄膜材料重点实验室开放课题(T2108057)

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

微乳的制备

微乳的制备 低毒药用微乳的研制 摘要:由花生油、水、吐温-80组成三相(油相、水相、乳化剂),再分别加辅助剂和不加辅助剂制备O/W型微乳;通过采用改良三角相图法,比较各处方中乳化剂和辅助剂的使用量(B)。结果表明单独以乳化剂吐温-80制备微乳,消耗的乳化剂量较大;而加入辅助剂制备微乳,能明显降低B值,其中以加入平平加O为辅助剂的B值最小。该结果对寻找低毒性的药用微乳有积极的指导意义。关键词:低毒微乳改良三角相图 微乳是呈透明或半透明的油水混合溶液,是热力学及动力学稳定体系。其制法简便,粒径小且均匀,作为药物载体有缓释和靶向作用[1,2]。微乳作为一种新型药物载体,已越来越受到人们的关注[3]。微乳通常是由乳化剂、辅助乳化剂、油相及水相组成,其制备需足够的乳化剂,一般占体系的10-30%,但大量乳化剂和助乳化剂的使用增加了微乳的毒性,从而限制了微乳的应用。本实验通过建立改良三角相图[4],采用不加辅助剂和加辅助剂(分别为PEG-400、OP、平平加O)制备微乳,比较各处方的B值,寻求用最小量的乳化剂和辅助剂制备微乳,其结果对低毒药用微乳的研制有一定的指导意义。 1仪器与材料 1.1仪器TN型托盘式扭力天平(上海第二天平仪器厂);78-1型磁力加热搅拌器(上海面汇电讯器材厂);LXJ-Ⅱ型离心沉淀机(上海医用分析仪器厂)。 1.2材料吐温Tween-80(清明化工厂);聚乙二醇-400(PEG-400,上海浦东南化工厂);聚乙二醇辛基苯基醚(乳化剂OP,无锡市科技实验二厂);平平加O(进口分装);其他均为分析纯。 2方法与结果 2.1微乳的制备 2.1.1花生油、吐温-80和辅助剂制备O/W型微乳称取花生油-辅助剂(PEG-400,平平加O,乳化剂OP)按比值O/A=1:9混匀,总量为1g,再按1:1.6,1:1.5,1:1.2,1:1.1,1:1,1:0.9,1:0.8,1:0.7,1:0.6,1:0.5比例与吐温-80混合,在约45℃下,边搅拌边滴加蒸馏水,直至微乳形成,记录消耗水的体积。取固定的O/A作微乳的改良三角相图,所得结果见下图1-3。由三相图可知处方中各组分所占百分比例如表1-3所示。表1油+PEG400:吐温-80 花生油(%) PEG400(%) 吐温-80(%) 水(%) 1:1.6 1.18 10.59 18.81 69.41 1:1.5 1.54 13.85 23.08 61.54 1:1.2 1.28 11.54 15.38 71.79 1:1.1 1.69 15.20 18.58 64.53 1:1.0 1.03 9.28 10.31 79.38 1:0.9 2.27 20.41 20.41 56.92 表2油+平平加O:吐温-80 花生油(% ) 平平加O(% ) 吐温-80(% ) 水(%) 1:1.61:1.51:1.21:1.11:1.01:0.91:0.8 1.141.131.111.161.151.121.14 10.2210.1710.0010.4010.3410.0510.22 18.1816.9513.3312. 7211.4910.059.09 70.4571.7575.5675.5277.0178.7779.55 表3油+OP:吐温-80 花生油(%) OP(%) 吐温-80(%) 水(%) 1:1.61:1.51:1.21:1.11:1.01:0.9 1.201.251.391.351.301.52 10.8211.2512.5012.1611.6913.64 19.2318.7516.6714.8612.9913.64 68.7568.7569.4471.6274.0371.21 2.1.2花生油、吐温-80、制备O/W型微乳按2.1.1方法制备微乳可得到花生油/吐温-80/水的经典三角相图,结果见表4,图1-4。表4油:吐温-80 花生油(%) 吐温-80(% ) 水(%) 0.1:1.60.1:1.50.1:1.20.1:1.10.1:1.00.1:0.9 1.692.002.923.083.132.86 27.1230.0034.9833.8431.2525.71 71.1968.0062.1063.086 5.6271.43 2.2微乳及其类型的鉴别方法[3]微乳的鉴别方法采用染色法和离心法。离心法采用1500-2000r/min离心10min,观察其是否分层及是否维持澄明,如仍维持澄明可判为微乳。染色法是利用油溶性染料苏丹红和水溶性染料亚甲兰在微乳中红色或蓝色的扩散快慢来判断微乳的类型,若红色扩散快速于蓝色则为W/O型微乳;反之为O/W型。 3结论 3.1本实验中所制微乳经离心后,溶液均无分层,维持澄明,可判为微乳;经染色法观察均是蓝色扩散快于红色,固判之为O/W型。 3.2通过上述图表可知,单独使用乳化剂吐温-80制备微乳,需消耗大量的乳化剂25.71 ~34.98%,而加入辅助剂制备微乳相对消耗的量B较小,加辅助剂PEG-400、平平加O、OP,消耗乳化剂和助乳的量B分别为19.59% ~40.82%,19.31% ~28.40%,24.68% ~30.05%。4讨论 4.1 实验中,微乳的制备采用了改良三角相图法即固定水相和辅助剂的比值(W/A)或油相和辅助剂的比值(O/A),其与经典三角相图法即固定乳化剂与辅助剂的比值(Km)相比,所消耗乳化剂和辅助剂的量较少[4]。 4.2通过预实

微乳液法制备纳米材料的研究进展

微乳液法制备纳米材料的研究进展 摘要微乳液法制备纳米材料可以控制纳米粒子的大小和形状。本文综述了影响纳米粒子的主要因素和微乳液法制备纳米材料的最新研究进展。 关键词微乳液;纳米材料;表面活性剂中图分类号: TQ174. 75 文献标识码:A 1前言 微乳液是指两种相对不互溶的液体在表面活性剂作用下形成的热力学稳定、各向同性、透明或半透明的粒径大小在10~100nm 的分散体系。根据分散相与连续相的不同,微乳液可分为“油包水(W/ O) ”和“水包油(O/ W) ”两种类型,和普通乳状液不同,微乳液的形成是自发的,不需要能量。由于反胶束微乳液(W/ O) 的液滴直径小,液滴分散性好,液滴内部的水相是很好的化学反应环境,而且液滴大小和形状可以人为控制,从而控制产品粒子的粒径、粒径分布和形状。与传统的制备方法相比,反胶束微乳液法制备纳米微粒还具有实验装置简单,操作容易等优点,所以这种方法被广泛地应用于制备多种无机功能纳米材料。表面活性剂的选择是制备微乳液的核心,常用的表面活性剂如下: 阴离子型表面活性剂如AO T (双(2 - 乙基己基) 琥珀酸磺酸钠) 、SDBS (十二烷基苯磺酸钠) 、SDS(十二烷基硫酸钠) ;阳离子型表面活性剂如CTAC(十六烷基三甲基氯化铵) 、DTAB (十二烷基三甲基溴化铵) 、CTAB (十六烷基三甲基溴化铵) ;非离子型表面活性剂如Triton X - 100 (壬基酚聚氧乙烯醚) 、Np n (壬基苯聚氧乙烯醚类表面活性剂) 、Tween - 40 (60 、80) 、Span - 40 (60 、80) 等。除了使用各种表面活性剂之外,还要选用助表面活性剂。常用的助表面活性剂有正丁醇、正戊醇、正己醇、正庚醇、正辛醇、异戊醇等中等链长的醇。 2微乳液体系的选择及影响粒子尺寸的因素 只有选择合适的表面活性剂、助表面活性剂、油和水溶液的比例,才能制备出所需的纳米材料。一般情况下,首先固定油的含量,选择不同的表面活性剂和助表面活性剂的比例,然后向体系中加水,得到最合适的表面活性剂和助表面活性剂的质量比。然后,固定表面活性剂和助表面活性剂的比例(设其混合质量为m S ) ,分别按m S :m O (油的质量) 为1 :9 、2 :8 、3 :7 、4 :6 、5 :5 、6 :4 、7 :3 、8 :2 、9 :1 的比例混合成乳状液,然后向乳状液中加水, 作出拟三元相图。从而确定制备纳米材料所用的合适的微乳液体系。 2. 1 [ H2O]/ [表面活性剂] (摩尔比w) :反胶束微乳液法制备的纳米粒子尺寸受体系中水滴大小的影响,在一定范围内,w 增大,水滴半径增大,纳米粒子的尺寸增加[1 ] 。 2. 2 助表面活性剂的影响:不同的体系,助表面活性剂对粒子尺寸的影响不同,当醇完全溶于水中时,随醇含量的增加,水滴半径增大,纳米粒子的粒径增加;当醇位于油/ 水界面时,随着助表面活性剂含量的增加,水滴半径反而减小[ 2 ] 。 2. 3 油相中碳链的长度:油相中碳原子数越多, 纳米粒子的尺寸越大。 不同微乳液体系制备纳米粒子的种类 纳米粒子的种类实例所用的微乳液体系金属单质Pt [5 ]Bi [6 ]Au[7 ]Cu[8 ] Ni [9 ]Ag[10 ] Triton X - 100/ 正戊醇/ 环己烷/ 水溶液[5 ] Np (5) + Np (9) / 石油醚/ 水溶液[6 ] CTAB/ 正戊醇/ 正己烷/ 水溶液[7 ] SDS/ 异戊醇/ 环己烷/ 水溶液[8 ] SDS/ / 正戊醇/ 二甲苯/ / 水溶液[9 ] SDS/ 异戊醇/ 环己烷/ 水溶液[10 ] 金属氧化物TiO2[11 ] ZnO[12 ] SiO2[13 ] Triton X - 100 / 正己醇/ 环己烷/ 水溶液[11 ] CTAB / 煤油/ 正辛醇/ 氨水[12 ] NP - 5/ 环己烷/ 氨水[13 ] 金属硫化物CdS[14 - 16 ] ZnS[17 ] CuS[18 ] CTAB/ 正戊醇/ 正己烷/ 水溶液[14 - 15 ] 月桂醇聚氧乙烯醚/ 水/ 环己烷/ 正丁醇[16 ] SDS/ 正丁醇/ 正庚烷/ 水溶液[17 ] CTAB/ 环己烷/ 乙醇/ 水溶液[18 ] 无机纳米复合材料ZnS - CdS[19 ] CdS - ZnS[20 ] ZnS :Mn / CdS/ SiO2[21 ] CdS $ Ag2S[22 ] CdS - SiO2[23 ] SDS/ / 正戊醇/ 甲苯/ / 水溶液[19 ] CTAB/ 正戊醇/ 正己烷/ 水溶液[20 ] SDS/ / 正戊醇/ 甲苯/ / 水溶液[21 ] AOT/ 正庚烷/ 水溶液[22 ] NP - 7/ 正丁醇/ 环己烷/ 水溶液[23 ]

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

空白微乳液的制备

空白微乳液的制备 前言:微乳(microemulsion.ME)是由乳化剂,助乳化剂,油相,水相组成的一种外观澄明的热力学及动力学均稳定的系统,其在一定温度下长时间放置或离心后都很稳定,微乳粒径一般在10nm~100nm,粘度小,可过滤灭菌。ME可分为油包水型(W/O),和水包油型(O/W) 辛葵酸甘油酯(labrasol)为中等长度脂肪酸,HLB值为14,作为表面活性剂 聚甘油酸酯(Plurol oleique CC497)为非离子型乳化剂,HLB值为6,作为助表面活性剂 油酸聚乙二酸甘油酯(labrafil M1944)为长链脂肪酸,HLB值为4,为油相 1. 实验仪器与药品: 辛葵酸甘油酯,聚甘油酸酯,油酸聚乙二酸甘油酯,水 2. 试验方法:a将labrasol与Plurol oleique CC497按5:1的比列混合得混合表面活性剂 (MSA) b.将MSA与labrafil M1944按配方(药品说明书参考处方)混合后,搅拌均匀 c.在向混合溶液中加水至全量,得澄清透明的液体 3. 空白微乳的性质评价:a.微乳的类型采用电导率法鉴定:在25C状态下,用多功能PH、电导率、例子综合测定微乳的电导率(us/cm),如果电导率在1~10us/cm数量级,则可以判断为W/O型微乳液。 b.初步稳定性:将微乳样品于15000r/min离心10min,体系保持澄清透明,为分层,说明样品初步稳定性较好。 c.在25C温度下,用表面张力分析仪测定测定其表面张力,用流变仪测定微乳的粘度,用激光纳米粒度仪测量微乳的粒径和zeta电位。 d.染色法:取相容体积的溶液两份,同时分别加入苏丹红染料和亚甲基蓝染料溶液各两滴,静置观察,如蓝色的扩散速度大于红色,则为W/O型微乳,反之则形成O/W型微乳,如二者速度相同则为双连续型微乳

相关文档