文档库 最新最全的文档下载
当前位置:文档库 › 振动消除应力系统

振动消除应力系统

振动消除应力系统
振动消除应力系统

HX-VAAI高智慧振动消除应力专家系统

主要技术参数

1. 控制箱:

1.1主板采用工业级控制计算机主板, 板载Intel? Celeron? M Processor或Intel? Pentium? M Processor ,支持400MHz前端系统总线Intel 82855GM/GME(GMCH)、FW82801DB-M/DB(ICH4-M/ICH4)芯片组, 主板采用ISA总线;主板内建一个标准的AC97音效芯片; 主板内建一个10/100Mb/s以太网控制器(Realtek RTL8139DL).

1.2 主板标配板载256MB DDR200/266/333 MHz DDR SDRAM,另提供一条200Pin DDR SO- DIMM系统内存扩充插槽,主板内存最大容量可扩充到1.25GB

1.3主板电子硬盘为1GB的CF卡,可贮存万个以上工件的处理

资料、曲线、图表,以便随时查阅。

1.4采用进口12英寸以上真彩色大液晶屏,可以清晰显示曲线图表。主板采用DVMT技术分配显存,支持CRT、LVDS双显示输出。

1.5主机2个USB

2.0 接口(最多可扩展4个USB),支持480Mb/s传输率

1.6采用A/D数据采集板。

2. 激振器

(二)、主要功能

1. 时效处理:该设备处理工件有三种模式:频谱模式、标准模式、亚共振模式。

1.1频谱模式

1.1.1对激振器位置拾振点、支撑点位置无特殊要求

1.1.2工件处理前,无需扫描,对工件进行频谱分析

1.1.3对任何工件都能通过计算机优化选择5个最佳谐振峰,自

动控制激振器对工件进行时效处理。

1.1.4对任何工件能实现5种不同振动处理

1.1.5处理工件的谐振频率全在6000rpm以下。

1.2标准模式

1.2.1通过扫描寻找工件的谐振频率,并自动选择处理频率,然

后自动控制激振器对工件进行时效处理。

1.2.2扫描找到谐振频率超过5个,计算机将优化选择5个谐振

频率,进行时效处理。

1.2.3处理完毕,自动进行第二次扫描,显示处理结果和曲线。

1.2.4处理工件的谐振频率全在6000rpm以下。

1.3亚共振时效:包括自动时效、设定时效、手动时效

1.3.1自动时效

1.3.1.1系统在设定的转速区间,自动扫描得到一个满足处理条

件的共振峰。

1.3.1.2根据材料特性,将自动在亚共振区选择一个合适的振动

点进行时效处理。

1.3.1.3自动进行频率跟踪。

1.3.1.4 按稳幅工艺自动判断处理时间。

1.3.1.5 处理完后,记录振前、振后数据的变化,然后自动停

机。

1.3.2设定时效

1.3.

2.1在频谱分析或扫描结果的基础上进行。

1.3.

2.2用户可选择任一个峰进行时效处理。

1.3.3手动时效

1.3.3.1用户可自由设置转速,并在任意转速进行任意时间长短

的振动时效。

1.3.3.2此处理方式在频谱分析或扫描结果上进行。

2. 文件处理

2.1对自动扫描数据、频谱时效数据、频谱分析数据、标准时效数

据、自动时效数据、设定时效数据都能在windows界面下,用专用管理程序进行数据管理。

2.2 可将保存过的各项数据文件进行打开、删除、打印和备份。

2.3 备份的文件可在用户的计算机上用专用文件管理系统进行管

理和打印。

3. 频谱分析:可以敲击式激振方式对工件进行频谱分析,做为一台单独的频谱分析仪使用。

4.系统帮助:该功能为用户提供在线查阅设备的功能和操作。

内应力的产生及消除方法

内应力的产生及消除 所谓应力,是指单位面积里物体所受的力,它强调的是物体内部的受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力的应力;物体在不受外力作用的情况下,内部固有的应力叫内应力,它是由于物体内部各部分发生不均匀的塑性变形而产生的.按照内应力作用的范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成的宏观范围内的内应力;(二)第二类内应力(微观内应力),即物体的各晶粒或亚晶粒(自然界中,绝大多数固体物质都是晶体)之间不均匀的变形而产生的晶粒或亚晶粒间的内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成的内应力,它是变形物体(被破坏物体)中最主要的内应力. 塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力.内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放.当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象. 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显.内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能,光学性能,电学性能及外观质量.为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能. 塑料内应力产生的原因 产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生.依引起内应力的原因不同,可将内应力分成如下几类. (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列

振动时效及几种消除应力方法简介之令狐文艳创作

振动时效介绍 令狐文艳 一、振动时效简介 振动时效处理是工程材料常用的一种消除其内部残余内应力的方法,是通过振动,使工件内部残余的内应力和附加的振动应力的矢量和达到超过材料屈服强度的时候,使材料发生微量的塑性变形,从而使材料内部的内应力得以松弛和减轻。 振动时效的实质是通过振动的形式给工件施加一个动应力,当动应力与工件本身的残余应力叠加后,达到或超过材料的微观屈服极限时,工件就会发生微观或宏观的局部、整体的弹性塑性变形,同时降低并均化工件内部的残余应力,最终达到防止工件变形与开裂,稳定工件尺寸与几何精度的目的。它是将一个具有偏心重块的电机系统(称做激振器)安放在构件上,并将构件用橡皮垫等弹性物体支承,通过控制器起动电机并调节其转速,使构件处于共振状态。约经20~30分钟的振动处理即可达到调整残余应力的目的,一般累计振动时间不应超过40分钟。 由于部分用户对振动时效的机理不甚了解,盲目使用一些简易的(所谓“全自动振动时效”)振动时效设备对产品进行时效。这种完全不针对工件个性、仅按照振动时效设备生产者预置的参数,对各种工件均采用一种或几种工艺参数进行时效的方法,会导致被时效工件出现下列几种情况:

1、假时效:工件未发生共振或振幅很小或者虽然振幅较大,但工件整体做刚体振动或摆动,“全自动振动时效设备”也能按照预置的程序打印或输出各种时效参数、曲线,误导操作者和工艺员判断,这样工件根本没有达到时效的效果; 2、误时效:工件虽然产生共振,但是发生的振型与工件所需要的振型不一致,动应力没有加到工件需去应力的部位,这样不能使工件达到预期的时效目的,影响时效的效果; 3、过时效:由于不针对工件个性采用合理的时效参数,完全照盲目预置的参数,对工件进行时效,可能会因为共振过于强烈或振幅过大,导致工件内部的缺陷(裂纹、夹渣、气孔、缩松等)继续扩大、撕裂,甚至报废的严重后果。 二、几种去应力方法简单对比: 1、热时效,通过加热炉进行处理,不仅消耗大量的能源、占用场地和较大的设备资金投入,而且消除残余应力的效果也因炉况的不同有很大的差异,其对残余应力的消除率一般在40~80%之间; 2、振动时效虽然使用方便,但其应力消除率一般在30~50%。使用时将工件放置到胶皮垫上或以木块垫起工件,使工件悬空,然后将激振电机安放并固定到工件上,调整电机激振频率与工件自身频率一致,产生共振,一般1小时以内可完成去应力处理; 3、豪克能消除应力是最彻底消除焊接应力的方法,它不仅使残余应力的消除率达到80~100%,而且还能产生理想的

随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,

残余应力产生及消除方法.

残余应力产生及消除方法 船舶零件加工后,其表面层都存在残余应力。残余压应力可提高零件表面的耐磨性和受拉应力时的疲劳强度,残余拉应力的作用正好相反。若拉应力值超过零件材料的疲劳强度极限时,则使零件表面产生裂纹,加速零件的损坏。引起残余应力的原因有以下三个方面: ( 一冷塑性变形引起的残余应力 在切削力作用下,已加工表面受到强烈的冷塑性变形,其中以刀具后刀面对已加工表面的挤压和摩擦产生的塑性变形最为突出,此时基体金属受到影响而处于弹性变形状态。切削力除去后,基体金属趋向恢复,但受到已产生塑性变形的表面层的限制,恢复不到原状,因而在表面层产生残余压应力。 ( 二热塑性变形引起的残余应力 零件加工表面在切削热作用下产生热膨胀,此时基体金属温度较低,因此表层金属产生热压应力。当切削过程结束时,表面温度下降较快,故收缩变形大于里层,由于表层变形受到基体金属的限制,故而产生残余拉应力。切削温度越高,热塑性变形越大,残余拉应力也越大,有时甚至产生裂纹。磨削时产生的热塑性变形比较明显。 ( 三金相组织变化引起的残余应力 切削时产生的高温会引表面层的金相组织变化。不同的金相组织有不同的密度,表面层金相组织变化的结果造成了体积的变化。表面层体积膨胀时,因为受到基体的限制,产生了压应力;反之,则产生拉应力。 总之,残余应力即消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力。机械加工和强化工艺都能引起残余应力。如冷拉、弯曲、切削加工、滚压、喷丸、铸造、锻压、焊接和金属热处理等,不均匀塑性变形或相变都可能引起残余应力。残余应力一般是有害的,如零件在不适当的热处理、焊接或切削加工后,残余应力会引起零件发生翘曲或扭曲变形,甚至开裂,经淬火或磨削后表面会出现裂纹。残余应力的存在有时不会立即表现为缺陷。当零件在工作中因工作应力与残余应力的叠加,而使总应力超过强度极限时,便出现裂纹和断裂。零件的残余应力大

注塑应力形成的原理及消除方案

如何检验塑胶件的应力? 如何去除应力? A 、内应力产生的机理 塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而产生的一种内在应力。内应力的本质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立刻恢复到与环境条件相适应的平衡构象,这种不均衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能情势储存在塑料制品中,在合适的条件下,这种被迫的不稳定的构象将向自在的稳固的构象转化,位能改变为动能而开释。当大分子链间的作用力和相互缠结力蒙受不住这种动能时,内应力平衡即受到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 B、塑料内应力产生的起因 (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。取向应力产生的详细过程为:近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔核心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。取向的大分子链解冻在塑料制品内也就象征着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力求过渡到无取向构象的内力。用热处理的方式,可降低或排除塑料制品内的取向应力。 塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。 (2)冷却内应力 冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种内应力。尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能仍是热熔体,这徉芯层就会限度表层的收缩,导致芯层处于压应力状况,而表层处于拉应力状态。 塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变更.。 另外,带金属嵌件的塑料制品,因为金属与塑料的热胀系数相差较大,容易形成收缩不一平匀的内应力。 除上述两种重要内应力外,https://www.wendangku.net/doc/f011642691.html,,还有以下多少种内应力:对结晶塑料制品而言,其制品内部各部位的结晶构造跟结晶度不同也会发生内

2021年振动时效及几种消除应力方法简介

振动时效介绍 欧阳光明(2021.03.07) 一、振动时效简介 振动时效处理是工程材料常用的一种消除其内部残余内应力的方法,是通过振动,使工件内部残余的内应力和附加的振动应力的矢量和达到超过材料屈服强度的时候,使材料发生微量的塑性变形,从而使材料内部的内应力得以松弛和减轻。 振动时效的实质是通过振动的形式给工件施加一个动应力,当动应力与工件本身的残余应力叠加后,达到或超过材料的微观屈服极限时,工件就会发生微观或宏观的局部、整体的弹性塑性变形,同时降低并均化工件内部的残余应力,最终达到防止工件变形与开裂,稳定工件尺寸与几何精度的目的。它是将一个具有偏心重块的电机系统(称做激振器)安放在构件上,并将构件用橡皮垫等弹性物体支承,通过控制器起动电机并调节其转速,使构件处于共振状态。约经20~30分钟的振动处理即可达到调整残余应力的目的,一般累计振动时间不应超过40分钟。 由于部分用户对振动时效的机理不甚了解,盲目使用一些简易的(所谓“全自动振动时效”)振动时效设备对产品进行时效。这种完全不针对工件个性、仅按照振动时效设备生产者预置的参数,对各种工件均采用一种或几种工艺参数进行时效的方法,会导致被时效工件出现下列几种情况:

1、假时效:工件未发生共振或振幅很小或者虽然振幅较大,但工件整体做刚体振动或摆动,“全自动振动时效设备”也能按照预置的程序打印或输出各种时效参数、曲线,误导操作者和工艺员判断,这样工件根本没有达到时效的效果; 2、误时效:工件虽然产生共振,但是发生的振型与工件所需要的振型不一致,动应力没有加到工件需去应力的部位,这样不能使工件达到预期的时效目的,影响时效的效果; 3、过时效:由于不针对工件个性采用合理的时效参数,完全照盲目预置的参数,对工件进行时效,可能会因为共振过于强烈或振幅过大,导致工件内部的缺陷(裂纹、夹渣、气孔、缩松等)继续扩大、撕裂,甚至报废的严重后果。 二、几种去应力方法简单对比: 1、热时效,通过加热炉进行处理,不仅消耗大量的能源、占用场地和较大的设备资金投入,而且消除残余应力的效果也因炉况的不同有很大的差异,其对残余应力的消除率一般在40~80%之间; 2、振动时效虽然使用方便,但其应力消除率一般在30~50%。使用时将工件放置到胶皮垫上或以木块垫起工件,使工件悬空,然后将激振电机安放并固定到工件上,调整电机激振频率与工件自身频率一致,产生共振,一般1小时以内可完成去应力处理; 3、豪克能消除应力是最彻底消除焊接应力的方法,它不仅使残余应力的消除率达到80~100%,而且还能产生理想的压应力,这对焊接构件的抗疲劳性能和抗应力腐蚀性能也大有益处。但毫克

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

消除应力 (2)

消除应力的方法: 纵观全球相关领域,消除应力的方法大约有四种。 其一就是自然时效,通过自然放置消除应力,这种方法耗时过长,难以适应现代科技及生产需要; 其二是最传统、也是目前最普及的方法——热时效法,把工件放进热时效炉中进行热处理,慢慢消除应力。这种方法的缺点也非常显著,比如卫星制造厂对温度控制要求非常严格的铝合金工件以及长达十米或者更大的巨型工件都无法用这种方法处理。而且这种方法还带来了大量的污染和能源消耗,随着中国及世界范围内对环保的进一步要求,热时效炉的处理方式马上面临全面退出的境地。 第三种方法——利用亚共振来消除应力,这种方法虽然解决了热时效的环保问题,但是使用起来相当烦琐,要针对不同形状的工件编制不同的时效工艺,如果有几百上千种工件就要编几百上千种工艺,而且在生产时操作相当复杂,需要操作者确定处理参数,复杂工件必须是熟练的专业技术人员才能操作。更令人遗憾的是这种方法只能消除23%的工件应力,无法达到处理所有工件的目的。 目前可知的第四种方法就是振动时效消除应力,通过机械组装使之形成了一整套消除应力设备,它可以使工件在短时间内达到消除应力的作用,覆盖所有需要消除应力的工件。用频谱分析优选五个频率以多振型的处理方法达到消除工件应力的目的,所有形状大小的工件都可以使用这种设备完成,将激振器夹在工件上进行振动就可以达到消除应力的效果。相比其他方法,。举例来说,15吨左右的热时效炉,燃料多数使用电或天然气,每天开炉一次,时效成本在3000元以上,以每年使用300天计算,仅电或天然气费用每年为90万元。因为城市环保问题日益严重,热时效炉均远离城区,还要计算运输成本和时间成本。 消除焊接应力的设备: 1.远红外履带式电加热器: 单位的各种合金钢焊接结构件的局部热处理,特别适用于大型工件和高压容器的焊前预热,中间消氢,焊后局部退火处理,它改变了传统工艺中质量不稳,设备能耗高,劳动条件差等弊病。 经过大量使用证明陶瓷加热器有如下特点: (1)有较高的功率密度,可以进行快速加热,其加热速度大大超过感应加热。

塑胶制品如何去除内应力

塑胶制品如何去除内应力? 塑胶制品如何去除内应力? 1 引言 注塑制品一个普遍存在的缺点是有内应力。内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。此外,掌握注塑制品内应力的消除方法和测试方法也很有必要 2 内应力的种类 高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。另外,外力使制件产生强迫高弹形变也会在其中形成内应力。根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。对注塑制件力学性能影响最大的是取向应力和体积温度应力。 2.1取向应力 高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。 2.2体积温度应力 体积温度应力是制件冷却时不均匀收缩引起的。因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。这可以通过提高模具温度、降低加工温度来达到。 加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。

振动时效与残余应力

振动时效与残余应力 振动时效是我国上世纪八十年代从国外引进的一种残余应力消除技术,名词译自英语Vibrating StressRelief,即振动应力消除。从力学机理上分析,振动时效消除残余应力的原理是,使工件发生共振或接近共振,其残余应力叠加振动应力大于材料的屈服极限,这样振动时由于材料进入塑性区引起工件上应力重新分布,从而达到消除残余应力的目的。 郑州机械研究所应力测试技术中心,作为国内机械行业最权威的应力测试单位,做了大量的振动时效应力消除试验,得出以下几点结论。 1、对于低水平残余应力工件振动时效效果不理想 对于低水平残余应力工件,比如没有大应力集中的铸件,由于振动时效时材料大部分没有进入塑性区,而在弹性范围内,无论应力如何变化,最终都恢复原始状态,不会消除残余应力,与理论分析相符。 2、残余应力消除效果没有标准规定的指标大 振动时效标准JB/T5926-2005《振动时效效果评定方法》规定,焊接构件残余应力消除应达30%以上。实际测量表明,这是一种误区,比如,我们对一个16Mn焊接构件进行振动时效应力消除效果测试。振动时效前,测得焊缝附近最大残余应力500MPa,振

动时效后测得300 MPa。厂家非常高兴,认为效果非常好,消除达40%,远远大于振动时效标准规定的指标。然而,16Mn的屈服极限是300 MPa左右,如果认为材料是理想塑性的,16Mn焊接构件上的残余应力都不会大于300 MPa,与振动时效后的测量值一样。其实,振动时效前测得的500MPa是按残余应力弹性理论计算公式计算出来的,而材料进入塑性区时,其实际残余应力肯定小于500 MPa。如果按理想塑性计算,残余应力没有下降,当然这是极端情况,意在说明振动时效的残余应力消除效果不能以弹性理论计算的结果为依据。根据大量试验结果,我们认为,对于焊接构件,振动时效的残余应力消除效果应在15%左右。 3、振动时效对消除构件的塑性应变效果非常好 上述例子也说明,虽然振动时效消除残余应力的效果达不到40%,但塑性释放应变确实下降了40%,所以振动时效对消除构件的塑性应变效果非常好。大量试验证明,对于焊接构件,振动时效的塑性应变消除效果达40%左右,甚至达50%以上。塑性应变涉及到构件尺寸的稳定性,所以经过振动时效的构件,尺寸稳定性特别好,即以后放置或再加工时构件不再变形。 综上所述,振动时效最适合于对残余应力要求不严但对尺寸稳定性要求较高的焊接构件的残余应力消除。毕竟与热时效相比,振动时效非常节约能源,不需要建大的退火炉,大大节省了经费。所以对残

焊后消除应力处理

焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。 另外还有爆炸消除应力。 2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100~200mm。 3、机械拉伸、水压试验、温差拉伸、振动法等这几种方法只能消除20~50%的残余应力,前两种方法在生产上广泛应用。 焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%左右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。 采用大型燃油退火炉,进行焊后退火处理。采用多点加热、多点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了焊接件的氢脆。 在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。 传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。后两种方法应用较少,这里不作介绍 自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,在温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。 热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。 振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。 振动时效艺具有耗能少、时间短、效果显著等特点。与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。因此,目前对长达几米至几十米和桥梁、船舶、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。生产周期短。自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。使用方便。振动设备体积小、重量轻、便于携带。由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。节约能源,降低成本。在工件共振频率下进行时效处理,耗能极少,能源消耗仅为热时效的3~5%,成本仅为热时效的8~10%。其他。振动时效操作简便,易于机械化自动化。可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷。是目前唯一能进行二次时效的方法

残余应力的产生与消除

残余应力的产生、释放与测量 一、残余应力的产生 产生残余应力的原因归结为三类:一是不均匀的塑性变形;二是不均匀的温度变化;三是不均匀的相变。 根据产生残余应力机理的不同,可将其分为热应力和组织应力,车轴热处理后的残余应力是热应力与组织应力的综合作用结果。由于构件内、外部温度不均,引起材料的收缩与膨胀而产生的应力称为“热应力”。热应力是由于快速冷却时工件截面温差造成的,淬火冷却速度与工件截面尺寸共同决定了热应力的大小。在相同冷却介质的情况下,淬火加热温度越高、截面尺寸越大、钢材热导率和线膨胀系数越大,均能导致淬火件内外温差增大,热应力越大。而加工过程中,由工件内外组织转变的时刻不同多引起的内应力成为“组织应力”。淬火时,表层材料先于内部开始马氏体的相变,并引起体积膨胀,由于表层的体积膨胀受到未转变的心部的牵制,于是在试样表层产生压应力,心部产生拉应力。随着冷却的进行,心部体积膨胀有收到表层的阻碍。随着心部马氏体相变的体积效应逐渐增大,在某个瞬间组织应力状态暂时为零后,式样的组织应力发生反向,最终形成表层为拉应力而心部为压应力的应力状态。组织应力大小与钢的含碳量、淬火件尺寸、在马氏体转变温度范围内的冷却速度、钢的导热性及淬透性、加热温度、保温时间等因素有关。 二、残余应力的释放 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对

其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效 把工件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效 热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。在热作用下通过原子扩散及塑性变形使内应力消除。从理论上讲采用热时效,只要退火温度和时间适宜,应力可以完全消除。但在实际生产中通常可以消除残余应力的70~80%,但是它有工件材料表面氧化、硬度及机械性能下降等缺陷。 ③振动时效 振动时效是使工件在激振器所施加的周期性外力作用下产生共振,松弛残余应力,获得尺寸精度稳定性。也就是在机械的作用下,使构件产生局部的塑性变形,从而使残余应力得到释放,以达到降低和调整残余应力的目的。其特点是处理时间短、适用范围广、能源消耗少、设备投资小,操作简便,因此振动时效在70年代从发达国家引进后

振动时效工艺参数选择及技术要求

振动时效工艺参数选择及技术要求 JB/T5926-91行业标准 1. 主题内容与适用范围 本标准规定了振动时效工艺参数的选择及技术要求和振动时效效果评定办法。本标准适用于材质为碳素结构钢,低合金钢,不锈钢,铸铁,有色金属(铜,铝,锌及其合金)等铸件,锻件,焊接件的振动时效处理。 2. 术语 2.1 扫频曲线-将激振器的频率缓慢的由小调大的过程称扫频,随着频率的变化,工件振动响应发生变化,反映振动响应与频率之间关系的曲线,称扫频曲线,如a-f 称振幅频率曲线; a-f 称加速度频率曲线。注:a表示振幅, a表示加速度, f表示频率 2.2 激振点-振动时效时,激振器在工件上的卡持点称激振点。 3. 工艺参数选择及技术要求 3.1 首先应分析判断出工件在激振频率范围内的振型。 3.2 振动时效装置(设备)的选择。 3.2.1 设备的最大激振频率应大于工件的最低固有频率。 3.2.2 设备的最大激振频率小于工件的最低固有频率时,应采取倍频(或称分频),降频等措施。 3.2.3 设备的激振力应能使工件内产生的最大动应力为工作应力的1/3~2/3。3.2.4 设备应具备自动扫频,自动记录扫频曲线,指示振动加速度值和电机电流值的功能,稳速精度应达到±1r/min。 3.3 工件支撑,激振器的装卡和加速度计安装 3.3.1 为了使工件处于自由状态,应采取三点或四点弹性支撑工件,支撑位置应在主振频率的节线处或附近。为使工件成为两端简支或悬臂,则应采取刚性装卡。 3.3.2 激振器应刚性地固定在工件的刚度较强或振幅较大处,但不准固定在工件的强度和刚度很低部位(如大的薄板平面等)。 3.3.3 悬臂装卡的工件,一般应掉头进行第二次振动时效处理,特大工件,在其振动响应薄弱的部位应进行补振。 3.3.4 加速度计应安装在远离激振器并且振幅较大处。 3.4 工件的试振 3.4.1 选择试振的工件不允许存在缩孔,夹渣,裂纹,虚焊等严重缺陷。 3.4.2 选择激振器偏心档位,应满足使工件产生较大振幅和设备不过载的要求,

ANSYS随机振动理论

§4.5随机振动(PSD)分析步骤 PSD分析包括如下六个步骤: 1.建造模型; 2.求得模态解; 3.扩展模态; 4.获得谱解; 5.合并模态; 6.观察结果。 以上六步中,前两步跟单点响应谱分析一样,后四步将在下面作详细讲解。ANSYS/Professional产品中不能进行随机振动分析。 如果选用GUI交互方法进行分析,模态分析选择对话框(MODOPT命令)中包含有是否进行模态扩展选项(MXPAND命令),将其设置为YES就可以进行下面的:扩展模态。这样,第二步(求得模态解)和第三步(扩展模态)就合并到一个步骤中进行计算。 §4.4.9建造模型 该步与其它分析类型建立模型的过程相似,即定义工作名、分析的标题、单元类型、单元实常数、材料性质、模型几何形状等。注意以下两点: ·只有线性行为在谱分析中才是有效的。任何非线性单元均作为线性处理。如果含有接触单元,那么它们的刚度始终是初始刚度,不再改变; ·必须定义材料弹性模量(EX)(或其他形式的刚度)和密度(DENS)。材料的任何非线性将被忽略,但允许材料特性是线性的、各向同性或各向异性以及随温度变化或不随温度变化。 §4.5.0获得模态解 结构的模态解(固有频率和振型)是计算谱解所必须的。模态分析的具体过程在《模态分析》中已经阐述过,这里还需注意以下几点: ·使用Block Lanczos法(缺省)、子空间法或缩减法提取模态。非对称法、阻尼法、QR阻尼法以及PowerDynamics法对下一步谱分析是无效的;

·所提取的模态数目应足以表征在感兴趣的频率范围内结构所具有的响应; ·如果使用GUI交互式方法进行分析,模态分析设置[MODOPT]对话框的扩展模态选项置为NO状态,那么模态计算时将不进行模态扩展,但是可以选择地扩展模态(参看MXPAND命令的SIGNIF输入项的用法)。否则,将扩展模态选项置为YES状态。 ·材料相关阻尼必须在模态分析中进行指定; ·必须在施加激励谱的位置添加自由度约束; ·求解结束后退出SOLUTION处理器。 §4.5.1扩展模态 无论选用子空间法、Block Lanczos法还是缩减法,都必须进行模态扩展。关于模态扩展,《动力学分析指南—模态分析》部分“扩展模态”一节有详细讲述。另外还需注意以下几点: ·只有扩展后的模态才能在以后的模态合并过程中进行模态合并操作; ·如果对谱所产生的应力感兴趣,这时必须进行应力计算。在缺省情况下,模态扩展过程是不包含应力计算的,这同时意味着谱分析将不包含应力结果数据。 ·模态扩展可以作为一个独立的求解过程,也可以放在模态分析阶段; ·在模态扩展结束之后,应执行FINISH命令退出求解器(SOLUTION)。 正如《动力学分析指南—模态分析》部分中讲述的那样,在进行模态分析时执行MXPAND命令就可以将模态求解和模态扩展合并成一步(GUI交互方法和批处理方法)。 §4.5.2获得谱解 功率谱密度谱求解时,系统数据库必须包含模态分析结果数据,以及模态求解获得的下列文件:Jobname.MODE、Jobname.ESAV、Jobname.EMAT、Jobname.FULL (仅子空间法和Block Lanczos法有)和Jobname.RST。 1.进入求解器(/SOLU命令) Command: /SOLU GUI: Main Menu > Solution

注塑应力形成的原理及消除方案

如检验塑胶件的应力? 如去除应力? A 、应力产生的机理 塑料应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而产生的一种在应力。应力的本质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立刻恢复到与环境条件相适应的平衡构象,这种不均衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能情势储存在塑料制品中,在合适的条件下,这种被迫的不稳定的构象将向自在的稳固的构象转化,位能改变为动能而开释。当大分子链间的作用力和相互缠结力蒙受不住这种动能时,应力平衡即受到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 B、塑料应力产生的起因 (1)取向应力 取向应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动向排列定向构象被冻结而产生的一种应力。取向应力产生的详细过程为:近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔核心层流速远高于表层流速,导致熔体部层与层之间受到剪切应力作用,产生沿流动向的取向。取向的大

分子链解冻在塑料制品也就象征着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力求过渡到无取向构象的力。用热处理的式,可降低或排除塑料制品的取向应力。 塑料制品的取向应力分布为从制品的表层到层越来越小,并呈抛物线变化。 (2)冷却应力 冷却应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种应力。尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其层可能仍是热熔体,这徉芯层就会限度表层的收缩,导致芯层处于压应力状况,而表层处于拉应力状态。 塑料制品冷却应力的分布为从制品的表层到层越来越大,并也呈抛物线变更.。 另外,带金属嵌件的塑料制品,因为金属与塑料的热胀系数相差较大,容易形成收缩不一平匀的应力。 除上述两种重要应力外,.huanhuanxing.,还有以下多少种应力:对结晶塑料制品而言,其制品部各部位的结晶构造跟结晶度不同也会发生应力。另外还有构型应.力及脱模应力等,只是其应力听占比重都很小。

振动时效及几种消除应力方法简介

振动时效介绍 一、振动时效简介 振动时效处理是工程材料常用的一种消除其内部残余内应力的方法,是通过振动,使工件内部残余的内应力和附加的振动应力的矢量和达到超过材料屈服强度的时候,使材料发生微量的塑性变形,从而使材料内部的内应力得以松弛和减轻。 振动时效的实质是通过振动的形式给工件施加一个动应力,当动应力与工件本身的残余应力叠加后,达到或超过材料的微观屈服极限时,工件就会发生微观或宏观的局部、整体的弹性塑性变形,同时降低并均化工件内部的残余应力,最终达到防止工件变形与开裂,稳定工件尺寸与几何精度的目的。它是将一个具有偏心重块的电机系统(称做激振器)安放在构件上,并将构件用橡皮垫等弹性物体支承,通过控制器起动电机并调节其转速,使构件处于共振状态。约经20~30分钟的振动处理即可达到调整残余应力的目的,一般累计振动时间不应超过40分钟。 由于部分用户对振动时效的机理不甚了解,盲目使用一些简易的(所谓“全自动振动时效”)振动时效设备对产品进行时效。这种完全不针对工件个性、仅按照振动时效设备生产者预臵的参数,对各种工件均采用一种或几种工艺参数进行时效的方法,会导致被时效工件出现下列几种情况: 1、假时效:工件未发生共振或振幅很小或者虽然振幅较大,但工件整体做刚体振动或摆动,“全自动振动时效设备”也能按照预臵

的程序打印或输出各种时效参数、曲线,误导操作者和工艺员判断,这样工件根本没有达到时效的效果; 2、误时效:工件虽然产生共振,但是发生的振型与工件所需要的振型不一致,动应力没有加到工件需去应力的部位,这样不能使工件达到预期的时效目的,影响时效的效果; 3、过时效:由于不针对工件个性采用合理的时效参数,完全照盲目预臵的参数,对工件进行时效,可能会因为共振过于强烈或振幅过大,导致工件内部的缺陷(裂纹、夹渣、气孔、缩松等)继续扩大、撕裂,甚至报废的严重后果。 二、几种去应力方法简单对比: 1、热时效,通过加热炉进行处理,不仅消耗大量的能源、占用场地和较大的设备资金投入,而且消除残余应力的效果也因炉况的不同有很大的差异,其对残余应力的消除率一般在40~80%之间; 2、振动时效虽然使用方便,但其应力消除率一般在30~50%。使用时将工件放臵到胶皮垫上或以木块垫起工件,使工件悬空,然后将激振电机安放并固定到工件上,调整电机激振频率与工件自身频率一致,产生共振,一般1小时以内可完成去应力处理; 3、豪克能消除应力是最彻底消除焊接应力的方法,它不仅使残余应力的消除率达到80~100%,而且还能产生理想的压应力,这对焊接构件的抗疲劳性能和抗应力腐蚀性能也大有益处。但毫克能处理是使用冲击枪对准焊缝,沿焊缝扫一遍,对于车架等焊缝较多的构件来说处理起来较麻烦,时间较长,劳动强度较大。

利用ANSYS随机振动分析功能实现随机疲劳分析.

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响 应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构 的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、 阻尼、恒定阻尼比和频率相关阻 尼比;

3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二 次谱值、空间关系和波传播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ 位移解,1σ速度解和1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原 理 在工程界,疲劳计算广泛采用名义应力法,即以S-N 曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这里仅介绍一种比较简单的方法,即Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时 间 -1σ ~+1σ68.3%的时间 -2σ ~+2σ27.1%的时间

内应力的产生及消除方法

内应力得产生及消除?所谓应力,就是指单位面积里物体所受得力,它强调得就是物体内部得受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力得应力;物体在不受外力作用得情况下,内部固有得应力叫内应力,它就是由于物体内部各部分发生不均匀得塑性变形而产生得、按照内应力作用得范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成得宏观范围内得内应力;(二)第二类内应力(微观内应力),即物体得各晶粒或亚晶粒(自然界中,绝大多数固体物质都就是晶体)之间不均匀得变形而产生得晶粒或亚晶粒间得内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成得内应力,它就是变形物体(被破坏物体)中最主要得内应力、 塑料内应力就是指在塑料熔融加工过程中由于受到大分子链得取向与冷却收缩等因素而响而产生得一种内在应力、内应力得实质为大分子链在熔融加工过程中形成得不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应得平衡构象,这种不平衡构象得实质为一种可逆得高弹形变,而冻结得高弹形变平时以位能形式贮存在塑料制品中,在适宜得条件下,这种被迫得不稳定得构象将向自由得稳定得构象转化,位能转变为动能而释放、当大分子链间得作用力与相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象、?几乎所有塑料制品都会不同程度地存在内应力,尤其就是塑料注射制品得内应力更为明显、内应力得存在不仅使塑料制品在贮存与使用过程中出现翘曲变形与开裂,也影响塑料制品得力学性能,光学性能,电学性能及外观质量、为此,必须找出内应力产生得原因及消除内应力得办法,最大程度地降低塑料制品内部得应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品得力学1热学等性能、 塑料内应力产生得原因?产生内应力得原因有很多,如塑料熔体在加工过程中受到较强得剪切作用,加工中存在得取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力得产生、依引起内应力得原因不同,可将内应力分成如下几类、?(1)取向内应力?取向内应力就是塑料熔体在流动充模与保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生得一种内应力、取向应力产生得具体过程为:*近流道壁得熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向得取向、

相关文档
相关文档 最新文档