文档库 最新最全的文档下载
当前位置:文档库 › 关于SULZER主机缸套裂纹分析及改进

关于SULZER主机缸套裂纹分析及改进

关于SULZER主机缸套裂纹分析及改进
关于SULZER主机缸套裂纹分析及改进

混凝土裂缝深度检测技术

混凝土裂缝深度检测技术

目录 1测试的意义 (2) 2测试方法和原理 (3) 2.1标准测试方法 (3) 2.2独创测试方法(表面波法) (6) 2.3裂缝延伸方向的测试 (8) 3模型、现场验证 (9) 3.1基础试验(1998-2006) (9) 3.2现场验证(1998-2006) (11) 4特点和适用范围 (14) 4.1特点 (14) 4.2适用范围 (14) 4.3影响因素 (14) 4.4与超声波方法相比的优越性 (15)

1测试的意义 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。 由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。 因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝深度的无损检测方法有多种,长期以来,研究人员开发了多种测试方法,大致可以分为: 1)基于超声波的检测方法; 2)基于冲击弹性波的检测方法 然而,由于混凝土结构及裂缝的特殊性,使得裂缝深度的无损检测变得非常困难。同时,目前常用的裂缝深度的无损检测技术大多是从金属材料的裂缝深度检测中发展而来,在应用于混凝土结构中会遇到各种问题,使得测试结果常常较实际深度偏浅很多,因此难以在实际工程中推广应用。当然,对裂缝深度方向的发展的监测迄今尚无有效的手段。

常见塑料制品开裂的原因浅析及检测方法简述

常见塑料制品开裂的原因浅析及检测方法简述 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

常见塑料制品开裂的原因浅析及检测方法简述 引言 工程塑料因为其优异的特性——高强度、耐热、耐冲击、抗老化等而被广泛应用于工业零件及各种外壳制造上。但在制造或使用过程中,塑料制品很有可能被钉螺丝或涂胶水,这样的处理常常会诱发塑料制品的应力开裂,致使次品率很高。而开裂是塑料制品经常出现的致命缺陷,包括制作表面丝状裂纹、微裂、顶白、开裂及因制件粘模、流道粘模而造成的创伤。引起开裂的原因涉及模具、成型工艺、塑料材料、环境应力等方面。 开裂原因浅析及改进建议 不同的开裂原因会导致不同的开裂类型,如果按照开裂的时间分类,塑料制品开裂现象通常有两种情况: (一)脱模开裂,塑料制品从模具脱出或在机器加工过程中出现开裂,这种开裂原因和后果比较容易预估; (二)应用开裂,塑料制品在放置一段时间后或使用过程中出现开裂,这种开裂往往难以预测,且产生的后果可能是毁灭性的。 以下主要从塑料材料的选择和环境应力的角度出发,结合以上两种开裂类型简单阐述开裂原因及改进建议。

1. 材料类型所致开裂的原因分析及改进建议 下面通过两个案例,从选材背景及加工后出现的问题来分析材料选择对产品开裂可能造成的影响。 圆孔性连接器(代表成型中空制品) 一直以来,客户在生产成型小型圆孔时,选择的都是聚苯硫醚PPS GF30/GF40这种材料,器件没有出现任何开裂现象。在开发大圆孔径系列连接器时,客户再次选用全球多家知名厂家的PPS GF30/GF40材料。加工的结果是制品开裂非常严重,有些属于脱模开裂,有些属于应用开裂,而且不同厂家同类型含量的PPS均存在制品开裂问题。客户和材料厂商起初怀疑是塑料冲击强度不够,但同时发现冲击强度比PPS GF30/GF40低的PA6和PC材料却反而不开裂。在选用一些知名厂家提供的高抗冲击性PPS GF40材料后,开裂问题依然存在(图1)。 根据客户提供的信息,我们分析,很可能是由于成型塑料圆孔的模具型芯采用的是硬质合金材料。金属材料导热和散热能力较强,而一般塑料材料散热能力较弱,金属材料和塑料挤出时不可避免会产生收缩相差较大的情况,塑料产品不同部位温度也有较大差别,对于延展性不好(断裂伸长率偏小)的塑料,无疑会发生断裂的现象。

盾构施工时管片产生裂缝的原因及对策

盾构施工时管片产生裂缝的原因及对策 摘要:管片作为盾构隧道的主体结构,其开裂必将造成隧道的质量问题,并最终影响地铁隧道的使用寿命。本文通过对隧道管片在盾构掘进施工时产生裂缝原因的分析,并提出相应的对策对指导施工具有重要意义关键词:盾构隧道管片开裂防治措施 随着社会经济的发展城市人口增多、规模变大现有的城市交通已经不能满足城市发展的需要.经济发达的城市开始修建地铁工程盾构施工技术普遍应用于地铁工程中。盾构法施工的隧道衬砌方式有两种:单层装配式衬砌和多层混合式衬砌。在盾构施工中.主要采用单层装配式衬砌.衬砌为钢筋混凝土管片构成盾构隧道的主体结构承受四周土体的荷载。 1盾构施工过程中出现的管片开裂 盾构掘进施工过程中隧道管片在盾构机千斤顶反作用力及同步注浆压力和周围土体的压力作用下部分管片出现裂缝裂缝的位置主要位于隧道中部以上其中隧道拱顶占多数。管片裂缝为纵向裂缝有两种类型: 1 .1前开裂 裂缝从管片前端开裂并向后延伸(见图I) ,主要集中在隧道拱顶位置。 1.2后开裂

裂缝从管片后端开裂并向前延伸(见图2),此类裂缝主要在隧道的两腰部位或偏上位置。 2管片开裂的原因分析 盾构隧道管片为钢筋混凝土结构其开裂主要为受力不均或受力过大所造成。在施工过程中,管片的受力状态与设计所考虑的不完全一致盾构机掘进过程中管片承受着千斤顶顶力盾尾密封刷的作用力和衬砌背后注浆的浆液压力等在这些荷载的相互作用下使盾构管片出现了不同的受力特征。通过对现场观察了解结合其它地铁工程中的经验造成管片出现上面开裂现象的主要原因可能有如下几种: 2 .1盾构机千斤顶总推力较大 作用于管片上的力是造成管片开裂的最基本因素其中盾构推进过程中总推力过大是致使管片开裂的最直接原因。目前,国内地铁盾构隧道施工中,淤泥质粘土层中总推力为8000 ~12000kN;细砂土地层中总推力为12000 ~15000kN,当总推力过大时,对于养护不好并且配筋小的管片则有可能开裂。 2 .2管片环面不平整 造成管片环面不平整主要有:管片制作精度误差管片纠偏时贴片不平整;盾构机推进时各区的千斤顶推力大小不等管片之间的环缝压缩量不一致等原因。因管片环面不平整盾构机千斤项作用于管片上将产生较大的劈裂力矩造成管片开裂(如图3所示)。 2 .3千斤顶撑靴损坏或重心偏位 盾构机通过千斤顶作用于管片上向前掘进.在千斤顶与管片接触处设置撑靴以减少管片压力,撑靴损坏后管片局部压力增大造成管片损坏或出现裂缝。 在盾构掘进过程中已拼装的管片中心线与盾构机本身的中心线重合为理想状态但在实际施工中两条轴线存在偏差千斤顶的中心没有作用在管片环的中心上,造成管片偏心受压(见图4)。 2.4盾构机姿态控制与线路曲线段不匹配 管片是在盾构机尾部内进行拼装,拼装完成后隧道管片在盾构机内部的长度约为2.3m管片外侧的空隙为5cm,盾构机在曲线段掘进时盾构机的姿态变化与管片的姿态变化不一致,盾尾密封刷挤压管片造成开裂(见图5)。

裂缝深度检测意义与特点

裂缝深度检测的意义与特点(宁波升拓检测技术有限公司浙江宁波 NCIT) 对应的仪器:上图:混凝土多功能检测仪(SCE-MATS) 下图:混凝土超声波检测仪(SCU-PWT)

概述: 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而在使用过程中,不可避免地出现各种老化、劣化现象(如裂缝、混凝土强度降低等)。同时,如果施工质量得不到很好的保证,会加速结构的劣化,从而造成社会经济的损失。为此,升拓检测历时10余年,与国内外相关机构合作开发了一整套针对混凝土的浇筑质量、结构的缺陷的综合解决方案和技术体系。该方案基于无损检测技术,具有测试效率高、可靠性好、对结构无损伤等特点,可以大大地提高混凝土材料及结构的质量。该技术体系的检测内容主要包括: 1) 裂缝深度; 2) 混凝土构件质量(强度及刚度); 3) 结构尺寸 4) 表面剥离、脱空及内部缺陷; 5) 岩体力学特性及分级测试 测试意义: 整个技术体系采用冲击弹性波作为测试媒介,并集成到测试设备中(混凝土多功能检测仪,SCE-MATS)。其测试精度和效率达到工程要求,已在国内外数百个各类工程中得到了实际应用。我们具有相关技术的全部知识产权,并申请和获得了多项国家发明专利,产品出口到日本等海外。 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝种类允许最大宽度(mm)深度要求 例如,在《公路桥 梁养护技术规范》 (2004)中,对裂 缝深度做了如下规

PC开裂原因分析

PC开裂原因分析与验证 一、不良描述: 不良产品:1200LED龙A日光灯管(T8 S3014冷白) 不良时间:2013.08.12 上午8:00 不良地点:六楼老化车间 不良现象:老化72H透光罩输入端15CM内(特点:端盖为6孔透气;此端安装有电源)有不同程度内部开裂 现象(非边缘开裂,非龟裂,非松纹裂,非单向 开裂,开裂处内外表面手摸无触感) 不良率:全检总数:500PCS,不良数:33PCS,不良率: 6.6%

二、不良原因分析: PC灯罩开裂的主要原因是PC分子链结构受到破坏,分子链断开,导致产品开裂或者说表面有裂纹。 影响分子链结构的因素有以下三种: 1、反复使用。(反复使用是最常见的问题。很多老板为了节约成本,使用回收料、水口料、废料,以次充好、坑蒙客户、扰乱市场)反复使用时,产品在不断的高温作用下,产品的分子就会发生裂变。分子链就会发生断裂、裂解。由高分子物质变成低分子物质,材料变脆。 该实验数据由深圳某塑胶科技有限公司提供,主要说明杂料对产品内应力开裂时间的影响。 2、应力过大,分为两种:应力过大是设计和使用问题。首先,产品本身形状以及模具本身设计的尺寸及脱模所产生的应力。(1.材料的结构决定材料的性能,材料的性能反映材料的结构。内应力开裂原理:在成型聚碳酸酯PC时,分子链被迫取向,但是由于聚碳酸酯分子链上具有苯环,所以取向比较困难,而在成型后,被取向的链有恢复自然状态的趋势,但是由于整个分子链已经被冻结和大分子链之间的相互作用,从而造成制品存在残留应力,而残余应力的存在,就造成产品可能出现应力开裂,注意,这里说的是可能,为什么是可能呢?这是因为聚碳酸酯内部还存在很多力,而其中比较重要的是:抗开裂力,这个力的大小取决分子链的长短,链间的缠结数目,分子之间的作用力。当抗开裂能力和内应力平衡时,产品不会出现开裂现象,而当抗开裂能力小于内应力时,就会出现。简单来说就是:分子链上苯环——成型取向——制品成型后出现内应力——当内应力和抗开裂能力平衡——好制品——当内应力大于抗开裂能力——产品开裂。可以通过改性,加入抗应力开裂剂,其作用是:在成型PC或PC/ABS合金时,快速恢复被迫取向分子链回复自然状态,消除残留应力,防止应力开裂现象的发生。 2.模具温度。内应力是因为成型时候分子链被冻结引起的,模具的温度对冻结和分子链的解取向有很大影响,很明显,模具温度越高,分子链肯定容易运动,所以,提高模具温度,不仅对充模有利,并且可以调整制品冷却速度,使其变得更均匀,从而有利于聚碳酸酯中取向分子的松弛,也就是解取向。模具温度假如能控制,在100—120度是成型聚碳酸酯的最佳温度了。2.成型条件。在成型时:成型温度、成型压力、成型速度、保压时间、保压压力五点很重要。聚碳酸酯的加

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

混凝土裂缝处理方法以及裂缝宽度分析报告

混凝土宽度分析以及裂缝处理方法 第一,启程前言 启程路桥和大家说说裂纹是固体材料中的一种不连续现象。在许多钢筋混凝土结构的施工和使用过程中,裂缝出现的程度不同,形式也不同。这是一个相当普遍的现象,也是长期困扰土木工程师的一个技术问题。在工程鉴定和加固中,经常会遇到各种形式的混凝土裂缝。混凝土裂缝的准确识别不仅是工程鉴定的主要内容,也是裂缝加固和修复的重要依据,因此显得尤为重要。 二、混凝土裂缝的主要类型 混凝土裂缝的基本原因可归纳为两类:一是由荷载变化引起的裂缝,包括施工阶段和使用阶段的静荷载和动荷载,另一方面是变形、温度、湿度、不均匀引起的裂缝。沉降、冻胀、钢筋锈蚀、化学反应膨胀等(1)。 根据裂缝产生的机理,建筑物裂缝的基本类型有塑性收缩裂缝、沉降收缩裂缝、温度裂缝、干缩裂缝、碳化收缩裂缝、化学反应裂缝、沉降裂缝、冻胀裂缝、蠕变裂缝。冷凝裂纹等。 三、混凝土裂缝识别的主要内容 建筑物的破坏,尤其是钢筋混凝土结构的破坏,从裂缝开始。但并非所有的裂缝都是建筑物的危险标志,只有影响接头的承载能力、稳定

性、刚度和连接可靠性的裂缝可能危及建筑物的安全。许多常见的裂缝,如温度和收缩裂缝,不会危及建筑结构的安全。因此,各种裂缝对建筑物的危害是不同的,因此对各种裂缝的处理应有所不同。因此,准确区分不同类型的裂纹是非常重要的。 从裂缝的现状、裂缝的发生时间和裂缝的发展三个方面对裂缝的识别进行了一般性的分析。(2)鉴定的主要内容如下: (1)裂缝现状调查 包括裂纹的产生、裂纹宽度、裂纹长度、是否穿透、裂纹中是否存在异物和裂纹宽度等。裂纹尖端位置是推断混凝土应力状态的重要参数。必须仔细观察它是看不见的。 1、裂缝宽度 裂缝宽度是确定裂缝对混凝土结构影响的一个重要参数。研究裂缝的成因,确定裂缝的修复和加固方法是一个重要的工程问题。 2、裂缝的位置和分布特征 一般认为,裂缝位于建筑物的一层,出现在构件(梁、板、柱、墙等)上,以及构件的位置处的裂缝,如梁端或中跨、顶面或底部。板。3、裂纹的方向和形状

气缸套掉台的原因及对策

气缸套掉台的原因及对策 内燃机在使用过程中,由于合金铸铁气缸套的支承肩退刀槽处断裂而造成重大事故,轻者可使机器停止运转,重新进行维修,重者可使机器的机体、曲轴、连杆、活塞、凸轮轴等报废,造成重大经济损失。造成这种事故的原因是多方面的,但主要有以下几方面的原因:一是气缸套材质强度方面的原因,二是气缸套机加工和机体加工方面的原因,三是安装配合间隙方面的原因,四是使用方面的原因。 一、气缸套材质强度方面的原因 制造气缸套的材料大多是在一般灰铸铁的基础上加部分合金元素而成,一般可达到HT200或HT25O的要求,但有时由于材料的熔炼温度偏底,合金元素配比不合理,孕育、浇铸速度、冷却速度、时间等严重偏离工艺要求时,可造成基体晶粒粗大,铸铁中的石墨粗大、超长,或产生过冷石墨、硬质相严重偏析聚集,严重枝晶等,均可造成材料的抗拉强度降低,而满足不了内燃机的使用要求,而造成断裂、形成重大事故。 二、气缸套和机体加工误差方面的原因 1、气缸套支承肩下端面退刀槽底处过渡圆弧R加工的过小或没有,可造成应力集中。由于湿式气缸套在内燃机中是间隙配合,内燃机工作时,活塞作用于气缸套一交变力,交变力可使气缸套下部产生振动,由于气缸套的支承肩已被气缸套压紧在机体中,气缸套的振动在退刀槽处产生交变应力,随着内燃机转速的提高,交变力频率的提高和工作时间的增长,退刀槽处便产生疲劳,当达到材料的疲劳强度极限后,便出现裂纹,并逐渐扩大,直至断裂。 2、气缸套支承肩下端面相对配合处外圆中心线的位置误差及湿式缸套上下腰带外圆中心线的同轴度误差而引起的断裂。气缸套在机加工成成品后,由于加工工艺,机床精度,工装精度,刀具、工件在前工序加工出下工序的定位尺寸和形状误差的大小等原因,都可出现位置度和形状误差。有这些较大误差的气缸套装入机体后,在气缸套压紧力作用下,气缸套的支承肩处都存在着压紧力与反作用力,反作用力与压紧力之间有力矩,由于力矩的存在,这就在气缸套的支承肩退刀槽处产生了极大的内应力,(有的缸套在装配后就因此产生了裂纹)在使用后,由于缸套振动产生的疲劳等原因,而逐渐产生裂纹,而断裂。 3、气缸套支承肩下端面外圆倒角过小及退刀槽处圆弧R过大与机体装配造成的干涉。气缸套支承肩下端面外圆处倒角加工的过小时,与机体相应配合处圆弧R加工的过大时装配,便出现装

裂缝检测报告范本

XXXX空心板外观检测报告

目录 一、项目概况 (1) 二、检测标准 (1) 三、检测方法 (2) 四、检测结果 (2) 4.1 裂缝测试结果 (2) 4.2 保护层厚度测试结果 (7) 4.3 混凝土强度测试结果 (10) 五、主要结论和建议 (10) 5.1 检测结论......................................................... 错误!未定义书签。 5.2 建议............................................................... 错误!未定义书签。附图I 桥梁检测照片.. (12)

XXXX空心板 外观检测报告 一、项目概况 桥中心桩号xxxx,上部结构为4跨16m预应力混凝土空心板桥,下部结构为桩柱式桥墩和桥台,钻孔灌注桩基础。该桥老桥修建于2007年,本次改建工程中在其两侧各增加两块空心板进行加宽,其中老空心板桥设计等级为公路II 级,加宽空心板设计等级为公路I级。 该桥施工完成后发现加宽空心板底板出现裂缝,受委托,我单位对该桥的裂缝情况进行现场检测。 二、检测标准 ●《公路桥梁技术状况评定标准》(JTG/T H21-2011) ●《公路桥梁承载能力检测评定规程》(JTG/T J21-2011) ●《公路桥涵养护规范》(JTG H11-2004) ●《混凝土中钢筋检测技术规程》(JGJ/T 152-2008) ●《建筑结构检测技术标准》(GB/T 50344-2004) ●《建筑结构检测技术标准》(GB/T 50344-2004) ●《混凝土结构工程施工质量验收规》(GB50204-2002) ●《回弹法检测混凝土抗压强度技术规程》(JGJ/T 23-2011)

裂缝原因分析和处理报告

xxxxxx工程 裂 缝 评 估 报 告 xxxx检验站二O一二年九月

xxx工程裂缝评估报告 报告编号:xxxx 报告编制: 审核: 主检: 批准: xxxxx检验站 二O一二年九月

第一章概述 1.2检测评定手段及目的 (1)外观检查:检测顶板裂缝宽度,评定顶板外观质量; (2)超声波法:检测裂缝深度。 1.3评估依据 本项目研究所依据的相关规范、规程以及相关文件主要有: (1)《超声法检测混凝土缺陷技术规程》(CECS 21:2000)。 (2)《混凝土结构设计规范》(GB 50010—2010)。 第二章外观检查、裂缝宽度和深度检测 2.1概述 在现场检测期时,对xxxxx箱涵左顶板外观进行了详细的检测,检测内容包括裂缝宽度、桥墩外观质量、裂缝深度检测等。 现场检测发现桥墩墩身出现纵向裂缝。裂缝宽度检测测采用KON-KF(B)裂缝宽度监测仪(见附图)。裂缝深度检测采用KON-FSY裂缝深度测试仪。 xxxxx箱涵共分三块施工,左块于2012年9月16日16点左右施工,右块于9月16日2点左右施工,中块于9月17日施工。只有在顶板左块于浇筑第二天出现了20多起纵向裂缝,少量横向裂缝。裂缝最长1.2m,80%的裂缝长度30-50mm;裂缝间间距80%为20-30mm;裂缝宽度为0.35-2.44mm;裂缝深度为9-51mm,其中85%的裂缝深度为25-30mm,其中2条裂缝深度为51mm。 图1 裂缝分布示意图

2.2原因分析 顶板裂缝:顶板裂缝形成原因多样复杂,一般以下几方面原因较突出。 (1)混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后(如爆晒、风吹),易形成干缩裂缝。 (2)模板浇筑混凝土之前洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。 (3)混凝土浇捣后在初凝前后没有进行抹平压光和养护不当也易引起裂缝。 (4)顶板浇注后,上人上料过早,上料集中,也易造成裂缝。 (5)混凝土过量使用外加剂,或水灰比、坍落度过大 结合工程调查和检测分析,裂缝产生的原因可能为①混凝土坍落度过大;②初凝前后没有进行抹平压光,造成表面水分蒸发后,表面砂浆层干缩大于下层混凝土,易形成干缩裂缝;③顶板左板混凝土浇筑后初凝在晚上8点左右,终凝在晚上2点左右,这时内外温差最大,且混凝土在刚失去塑性,强度很低,这也加大了表面收缩开裂。 第三章结论和建议 3.1结论 xxxxx顶板出现的裂缝进行超声波分析和外观检测,综合分析各类测试结果,结论如下: (1)xxxxx工程k0+628箱涵左顶板的纵向裂缝宽度在0.35-2.44mm之间, 大于《混凝土结构设计规范》(GB 50010—2010)规定的裂缝宽度容许值]=0.3mm。此类裂缝属混凝土表面收缩引起的干缩裂缝。 [W lim (2)通过非金属超声波分析仪对检测点检测,结果表明:裂缝深度在85%在25mm-30mm之间,裂缝开展深度值大部分在混凝土保护层内。 综合分析该裂缝对结构无显明影响,但影响结构的整体性和耐久性。 3.2建议 (1)加强对顶板的裂缝观测:观察其宽度和长度是否有加深加长的趋势。 (2)对于顶板裂缝进行有效的封闭处理。(详见第四章) 总之,xxxx顶板裂缝按上述建议进行有效处理后,结构的整体性和耐久

二级齿轮轴齿面裂纹原因分析报告

二级齿轮轴齿面开裂原因分析报告 一、 情况简述:二级齿轮轴经试机运行后开箱检查发现齿面上存在裂纹缺陷,如1图所示:裂纹出现在分度圆与齿根之间沿着轴向伸长,其外观已呈开放型并以相同的形式分布在多个轮齿的同一侧齿面上。 该零件采用20CrMnTiH材料制造、模数m n=12,滚齿后经渗碳淬火热处理要求为:⑴ 磨齿 前硬化层深度 2.5~2.8mm(界限值550HV1),齿面经磨削加工后成品有效硬化层深度2.0~2.2mm(界限值550HV1);⑵ 齿表面硬度58~62HRC,心部硬度33~48HRC;⑶ 金相按JB/T6141.3《重载 齿轮渗碳金相检 验》,表层组织:马 氏体、残留奥氏体 1~4级合格,碳化 物1~3级合格;心 部组织1~4级合 格。为分析齿面裂 纹形成原因,在图 1所示多个白色印 记处割取试样检 查,结果报告如下: 二、金相分析及显 微硬度检查:从多 处切割试样观察裂 纹断面均呈现如图 2所示弧线形态, 图示裂纹环绕经过 齿面表层 1.60mm 深度范围,裂隙内 部及附近无夹杂 物、无疏松等材料 缺陷,浸蚀检查:⑴ 表层组织:多段查看裂纹及附近最表面层显现出断面为月牙状白色区域,如图3所示为其中较小的一处可窥见其全貌,是典型的磨削产生二次淬火组织,图4显示一条裂纹穿过二次淬火层的情形,图5为二次淬火层较深的部位:白色区域深度达到0.27mm,紧邻的次表层为深色过度回火组织(测得该处最低显微硬度值仅451HV1),此处测得复合型总变质层

深度接近1.6mm;检查渗碳淬火表层金相组织,马氏体及残留奥氏体2级,如图6所示为齿顶部位同时存在断续点状和细条状碳化物,呈不均匀的网状分布综合评定为4级;经磨削后的齿面表面碳化物级别为3级。⑵ 心部组织:如图7所示心部铁素体评为5级。 三、宏观硬度及硬化层深度检查:⑴ 表面硬度:从齿顶测量59.5,60.5,60HRC;⑵ 硬度梯度及硬化层深度:在齿分度圆处测量数据见表1,绘制硬度梯度曲线如图7,由此测得该齿轮轴成品齿面分度圆处有效硬化层深度:1.93mm (界限值550HV 1);由图可见因磨削烧伤从0.7mm 深度起,向 外硬度呈下降状态最表层硬度值低于400HV 1;⑶心部硬度:26.5,28,27HRC。 四、分析与结论:(1)以上检查显示齿轮轴齿面开裂处无原材料缺陷,齿面裂纹的产生明显由磨削引起。因磨削工艺控制不当使磨齿加工表面温度急剧上升,形成较深的二次淬火层和过度回火组织,随着组织改变材料的硬度、强度下降并带来表面比容变化产生较大应力,以及瞬间激烈热胀冷缩应力和切削加工力结合,超过此处材料仅有的强度极限,形成了与热处理淬火开裂状态相似的表面裂纹。(2)从检查中发现该零件自身存在热处理质量缺陷:a、表面碳化物呈网状分布,会加大材料开裂倾向;b、心部硬度偏低与心部组织不符合要求,降低轮齿抗弯曲疲劳能力。 五、改进措施与建议:(1)磨削烧伤区分布在分度圆下近齿根1/3带上,客观上表明该处磨削加工余量最大,使之成为磨削缺陷易产生部位,应考虑适当减少此处热后磨削量;(2)查找磨削工序上的原因,从机器、磨具、操作、冷却效果等方面降低磨削发热现象、抑制磨削热的过多产生;(3)加强对热处理零件内在质量的监察,同时加强对产品外观缺陷的检查,防止不合格品甚至废品混入最后工序。 XXXX有限公司 生产中心 工艺组 钢 件 部 质量组 2009-10-10 表1 齿面裂纹处硬度梯度测量数据 至表面距离mm 0.05 0.1 0.2 0.3 0.40.50.60.8 1.0 1.2 1.6 1.9 2.0 2.2 心部硬化层深度硬度值 HV 1 347 458 507 546 583 602 652 699 699 675 647 559 531 505 287 1.93mm

气缸盖裂纹

柴油机气缸盖裂纹的原因及检修 气缸盖作为柴油机的固定机件,也是柴油机燃烧室的组成部分,现就柴油机气缸盖最经常出现的裂纹现象进行叙述,分析其裂纹产生原因及修理。 柴油机气缸盖产生裂纹的原因 气缸盖产生裂纹是气缸盖较为常见的故障。气缸盖产生裂纹的根本原因是热应力和机械应力周期性的作用。在交变的热应力和机械应力的作用下,将产生疲劳裂纹,从而导致气缸盖裂纹。具体分析气缸盖产生裂纹主要有以下几个方面原因。 (1)结构设计上的原因:气缸盖底面气阀孔周围之所以常产生裂纹,主要因为该处有较大的表面积,因此,受热膨胀和冷却时收缩速度都较大。例如,柴油机工作一段时间停车后,气缸盖温度分布变化剧烈,热量通过冷却水和进排气通道迅速散发,所以在气阀孔处容易产生裂缝。再者,由于结构或受力不合理、过度圆角太小等均会引起过大的机械应力,从而导致裂纹。 (2)材料和工艺上的原因:气缸盖材料选择不当,质量不符合要求,铸造时没有很好地消除铸造应力,从而导致零件内部有缺陷,从而使气缸盖在工作时容易产生裂纹。 (3)装配质量上的原因:气缸盖螺栓不按规定交叉拧紧,或在发生气缸盖平面漏气时拧紧该处的螺母来解决,都会造成气缸盖受力不均匀而产生裂纹。喷油器安装不正确,会引起气缸盖底面局部变形,增大喷油器孔处所受的拉应力,使之容易产生裂纹。柴油机气缸盖裂纹的应急修理如果气缸盖裂纹程度较为严重,比如当气缸盖的裂纹是裂穿性的,或者裂纹产生在关键部位,或者裂纹程度较为严重,这些情况无疑都必须更换气缸盖;但当裂纹不严重或为了应急或延长使用,可根据不同的场合选择采用合适的方法进行修理。 (1)无机粘结剂修补法:这是一种最方便的方法,由于无机粘结剂能够长期在500℃高温下工作,故可用于修补气缸盖底面裂纹。但是由于受温度限制,所以建议在温度处的裂纹采用有机粘结剂修补。 (2)镶套修理法:主要用于气缸盖进、排气阀孔或喷油器孔内的列修理。通常采用此修理后气缸套可以使用两年以上。衬套的材料一般采用不锈钢或青铜,衬套端部与阀孔底部加紫铜垫以密封。 (3)覆板修理法:此修理法仅适用于气缸盖外表面的修理,可以收到较好的效果。具体现在裂纹两端钻止裂孔,然后将钢板覆盖在裂纹部位上,再用螺钉固紧在气缸盖上。气缸盖裂纹修理后,应对冷却水腔进行0.7MPa的水压试验,以检验修理质量。裂纹微小时采用锉刀、油石或风沙轮等工具打磨裂纹处予以消除,经无损探伤或水压试验检验合格后继续使用。否则,继续打磨、检验。若裂纹深达壁厚的3%以上时,停止打磨改用其他方法修理或报废换新。 责任编辑:谢秋月

砼表面裂缝原因分析

砼表面裂缝原因分析 The manuscript was revised on the evening of 2021

砼表面裂缝原因分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 1、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。 2、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。 3、原材料质量引起的裂缝

管片破损分析

关于锦绣路站~沪南路站区间上行线第41~48环管片质量问题分析报告 针对锦绣路站~沪南路站区间隧道上行线41~48环存在渗漏水,41~45环管片不同程度的破碎、裂缝情况,我部对发生问题的部位进行认真调查,并召开有盾构司机、拼装手、质检员、技术员、技术负责人参加的质量分析会,会议分析结果汇报如下: 1、质量问题描述: 41环D块内弧面破裂,B2块下后角10cm*10cm缺角,L1、L2块上后角15cm*10cm缺角,B1、B2渗水,L2滴漏; 42环D块左后角15cm*10cm缺角,F块左前角5cm*10cm缺角,B1、B2块渗水,L1、L2块滴漏; 43环D块内弧面破裂,B2块下前角15cm*10cm缺角,B1、B2渗水,L2滴漏; 44环D块内弧面破裂,B1块下前角10cm*10cm缺角,B2渗水,L2滴漏; 45环D块内弧面破裂,B2块下后角10cm*10cm缺角,B1、B2渗水,L2滴漏; 46环B2、L2渗水; 47环B1下前角5cm*10cm缺角,F块滴漏,L2块渗水; 48环D块下前角10cm*10cm缺角,F块滴漏,B1、B2块渗水; 2、主要原因如下: ①盾构姿态与管片姿态出现偏差,管片的环面与盾构推进方向存在夹角,其合力作用方向部位的管片发生破碎; ②安装不仔细以及偏心力的作用导致错台,错台造成节头密封接不紧,产生渗漏水。连续多环纠偏稍大导致连续几环管片错台,伴随管片在螺栓孔位置或边角处发生局部破裂; ③施工初期,由于工人经验不足,管片安装速度很慢,有时发生管片错台大、在管片边角或在螺栓孔处破裂的问题; ④封顶块安装时,由于先行安装的5块管片圆度不够,两邻接块间的间隙太小,封顶块强行顶入,未按要求在其两侧涂刷润滑剂,导致封顶块及邻接块接缝处管片破碎,破碎部位发生在邻接块上部及封顶块两侧; ⑤螺栓初紧、复紧不及时或者螺栓拧的不够紧,管片受力后,环向螺栓由垂直方向变倾斜,造成管片产生错台,从而出现边角部位的

盾构隧道施工期管片开裂原因和相应对策

盾构隧道施工期管片开裂原因和相应对策 1 施工阶段管片受力分析 盾构隧道在施工过程中管片衬砌受到的主要荷载有千斤顶推力、注浆压力、上浮力、盾壳作用力、拼装荷载等。 (1)千斤顶推力 千斤顶推力是盾构隧道掘进的驱动力,它反过来作用在管片上,是施工过程中隧道衬砌在轴线方向最大的外力。在目前国内地铁盾构隧道施工中,淤泥质黏土层中总推力一般为8~12 MN,细沙土地层中总推力为12~15 MN,全断面砂土地层推力则为15~20 MN,复合地层推力有时候达到20 MN以上,大型跨江海盾构隧道千斤顶推力通常都在30MN以上。 (2)注浆压力 依据盾构工法的特性:拼装好的衬砌脱离盾尾后,由于盾壳原来占据的空间、为衬砌的拼装操作所留空隙、盾构推进时带走的部分粘附于盾壳上的土体所形成的空隙等,在衬砌环背面与实际开挖洞壁间存在环形空隙,使土体暂时处于无支护状态,该空隙即为盾尾间隙。盾尾间隙的大小是由盾构钢壳的厚度和盾尾操作空间决定的,一般为8~16 cm。盾构工法施工中,对盾尾间隙的处理,即壁后注浆是施工的关键。壁后注浆在填充盾尾间隙、加固土体的同时,对管片也产生了一定压力,该压力达到一定程度时,可能引起管片局部或整体上浮、错台、开裂、压碎或其他形式的破坏。 (3)上浮力 盾构隧道的壁后注入的水泥浆液一般需要5~7h的初凝时间,而通常情况下这期间盾构一直在向前掘进,如果周围地层满足一定条件,一定范围内的土体未能及时握裹住管片,那么在这几个小时内有一段管片是悬浮在注浆浆液中的(或者是水、泥浆等),这就产生了管片上浮力(浆液浮力扣除管片自重)。 (4)盾壳作用力 管片与盾壳之间存在着一定摩擦力,盾尾密封刷对管片环也存在一较为均匀的环向压力,一般情况下这些荷载不会对管片结构造成影响。但是,当盾构在曲线段掘进、纠偏,或者因其他原因造成盾构长时间停止掘进(造成盾构机“栽头”发生)时,盾壳对管片造成的荷载尤其是挤压荷载就变得不可忽视,如图1所示。 图1 盾壳作用力 (5)拼装荷载 拼装荷载主要是管片拼装过程中作用在管片上的装配器荷载。管片拼装器在拼装管片的过程中需要来回调整拼装位置以安装纵横向螺栓,若上一环管片断面不平整,管片位置不精确,会导致下环管片的受力不均匀,在带来螺栓安装困难问题的同时,亦在管片内部产生了不均匀次生应力。

柴油机缸套裂纹原因和避免措施

MAN K6Z70/120E型柴油机缸套裂纹原因和避免措 施 1 引言:MAN K6Z70/120E型机为老机型,目前轮机管理人员在远洋和近洋船舶仍能遇到这种型号的主柴油机。笔者认为管理上最大的问题是缸套裂纹。该型机早已淘汰,缸套备件难以订购,因此缸套裂纹问题应引起轮机管理人员足够重视。本文以笔者在“XX”轮工作期间主柴油机缸套裂纹为例进行原因分析,结合工作经验提出避免措施,希望能对轮机管理人员起到借鉴作用。 2 K6Z70/120E型机基本参数和构造:“XX”轮1976年由日本建造,主机机型为KAWASAKI&MANK6Z70/120E。缸径700mm,冲程1200mm,最大持续功率9300PS,额定转数145RPM,最高爆发压力Pz为76kg/cm2,平均指示压力11.97kg/cm2,压缩比10.86,发火次序l-5-3-4-2-6,压力和温度参数见表1。 表l K6Z70/120E型机压力和温度参数 缸套冷却水与活塞冷却水属于同一泵浦同一系统水,压力靠缸套冷却水进机阀调整,从而各自达到压力范围;淡水进机温度是一样的无法额外调整,因而活塞和缸套进机温度相同。 增压系统由两部定压增压的增压器和活塞底部泵气增压系统组成,无鼓风机,其中NO.2、NO.3、NO.5、NO.6缸活塞底部有泵气作用,NO.1和NO.4活塞底部空间通大气无泵气作用。低负荷时扫气压力0.4bar以下,压力继电器动作使液压转换阀打开,使活塞底部泵气后的空气去透平后的并联喷管系统喷射引流(INJECTION WORKING),增加增压空气压力防止低负荷喘振;高负荷时扫气压力0.4bar以上并联喷管系统不工作(INJECTIONNOT-WORKING),活塞底部泵气空气经过NO.3空

混凝土裂缝深度超声波检测方法(完整)

混凝土裂缝深度超声波检测方法 林维正 1 原来裂缝深度检测方法 对混凝土浅裂缝深度(50cm以下)超声法检测主要有以下几种方法,如图1所示的t c-t0法,图2所示的英国标准BS-4408法等,“测缺规程”推荐使用t c-t0法[2,3]。 上述方法中,声通路测距BS-4408法以二换能器的边到边计算,而t c-t0法则以二换能器的中到中计算,实际上声通路既不是二换能器的边到边距离,也不是中到中距离,“测缺规程”中介绍了以平测“时距”坐标图中L轴的截矩,即直线议程回归系数的常数项作为修正值,修正后的测距提高了t c-t0法测试精度,但增加了检测工作量,实际操作较麻烦,且复测时,往往由于二换能器的耦合状态程度及其间距的变化,使检测结果重复性不良。 应用BS-4408法时,当二换能器跨缝间距为60cm,发射换能器声能在裂缝处产生很大衰减,绕过裂缝传播到接收换能器的超声信号已很微弱,因此日本国提出了“修改BS-4408法”方案,此方案将换能器到裂缝的距离改为a1<10cm,这样就使二换能器跨缝最大间距缩短在40cm以内。 “测缺规程”的条文说明部分(表4.2.1)中,当边-边平测距离为20.25cm时,按t c-t0法计算的误差较大,表4.2.1中检测精度较高的数据处理判定值为舍弃了该两组数据后的平均值。条文说明第4.3.1条仅作了关于舍弃Lˊ<d c数据的提示,实际上当二换能器测距小于裂缝深度时,超声波接收波形产生了严重畸变,导致声时测读困难,这就是造成较大误差的直接原因。表4.2.1中未知数t c-t0法在现场检测中对错误测读数值的取舍是一个不易处理的问题。 “测缺规程”的条文说明第4.1.3条指出:当钢管穿过裂缝而又靠近换能器时,钢管将使声信号“短路”,读取的声时不反映裂缝深度,因此换能器的连线应避开主钢管一定距离a,a 应使绕裂缝而过的信号先于经钢管“短路”的信号到达接收换能器,按一般的钢管混凝土及探测距离L计算,a应大于等于1.5倍的裂缝深度。 根据a≥1.5d c这一要求,如国科3表示,表1给出了相邻钢管的间距S值。 表1 检测不受钢筋影响的相邻钢筋最小间距S值

混凝土裂纹原因分析及处理

混凝土裂纹原因分析及处理 导致因素: 1、水泥的安定性是引发各种裂缝的主要因素之一。由于使用安定性不合格的水泥,致使在水泥水化后凝结过程中,在氧化镁、氧化钙及石膏等有害物质反应的作用下,产生了剧烈的、不均匀的体积变化。这种变化会在混凝土内部产生破坏性应力,导致强度下降和开裂现象的出现。 2、水泥体积安定性大多是由以下三种物质决定的。 (1)游离氧化镁(MgO)。它的放映速度很慢,可达10-20年。其固相体积增大2.48倍。国家标准规定,按压蒸法进行检测,当压蒸膨胀率超过0.5%时,则该水泥的压蒸安定性为不合格。 (2)游离氧化钙(CaO)。因为水泥生料在烧熟过程中,氧化钙和氧化硅、氧化铝、氧化铁的化学反应是不可能完全进行彻底的,一般地都会剩余一些结构致密的氧化钙游离在水泥熟料中,这些游离的氧化钙遇水会继续缓慢反应,一般需要3-6个月才能完全水化。固相体积增大1.98倍。 (3)石膏。水泥中因加入过量的石膏而引起的反应,其反应从水泥水化开始,硬化后仍在进行反应。固相体积增大2.22倍。国家标准规定氧化硫SO3)含量不得超过3.5% 。 3、不同品种、不同标号的水泥,其性能不完全相同,水化后初凝和终凝的时间不同,收缩也不同。因此,混用水泥拌和的混凝土,所浇筑的构 件也容易产生收缩裂缝。 4、施工人员不完全了解水泥性质或不清楚工程的性质,因此,工地有什么水泥就是用什么水泥,由此产生构件裂缝和破坏事故。 5、当地采购不到合格的水泥,就用不合格的水泥代替,浇筑后又没有采取相应的技术措施,因而造成事故。 混凝土处理方法: 1、经检测,混凝土强度低于设计要求,且裂缝宽度大于0.3mm时,必须返工处理。 2、经检测,混凝土强度已经达到设计要求,且裂缝宽度小于0.3mm时,可采用化学灌浆技术进行修复。推荐选择的材料有:YJS-401灌浆树脂胶、YJS-400封缝胶、YJS-自动压力灌浆器及其配件。 3、经检测,混凝土强度已经达到设计要求,且裂缝宽度大于0.3mm时,可以采用灌浆修复和粘贴碳布修复。可以选择的材料有:YJS-401灌浆树脂胶、YJS-400封缝胶、YJS-自动压力灌浆器及其配件、YJS-601碳纤维浸渍胶、YJS-602碳纤维底胶、YJS-603找平胶等。 4、经检测,混凝土强度满足设计要求,仅有少量的表面收缩裂缝时,可以采取继续养护及表面刮浆封闭的方法处理。推荐选择的材料有:RMO补缝胶浆、J-302混凝土再浇剂等。 二、砂石引发的裂缝的处理技术: 导致因素:

相关文档