文档库 最新最全的文档下载
当前位置:文档库 › 氧化钒薄膜电阻伏安特性分析

氧化钒薄膜电阻伏安特性分析

氧化钒薄膜电阻伏安特性分析
氧化钒薄膜电阻伏安特性分析

收稿日期:2007-10-11.

材料、结构及工艺

氧化钒薄膜电阻伏安特性分析

陈 超,蒋亚东,吴志明

(电子科技大学电子薄膜与集成器件国家重点实验室,四川成都610054)

摘 要: 对氧化钒薄膜电阻的伏安特性进行了仿真分析,结合实测氧化钒薄膜I V 曲线,指出在器件的应用当中,首先应避免氧化钒薄膜电阻发生相变;在此基础上,对氧化钒薄膜电阻加恒流偏置时,存在端电压过低的问题;指出应该采用脉冲电流为氧化钒薄膜电阻提供偏置,这样既可以提高其端电压,以驱动下一级读出电路,又可以避免氧化钒薄膜电阻发生相变。

关键词: 氧化钒;薄膜;伏安特性;脉冲电流偏置

中图分类号:O484.4 文献标识码:A 文章编号:1001-5868(2008)05-0716-03

Analysis of the I V Characteristic of Vanadium Oxide Thin Film

CH EN Chao,JIANG Ya dong,WU Zhi m ing

(State Key Laboratory of Electronic Thin Film and Integrated Device,University of Electronic Science and Technology of China,Chengdu 610054,C HN)

Abstract: T he I V char acteristic o f vanadium o xide thin film is simulated and analyzed.Co mbined w ith the tested I V curve,the first important thing is to avo id phase transform ation of the film in device applications.For such devices,there is one problem:the port vo ltag e is v ery low w hen the v anadium o xide thin film is under constant current bias.It is pointed out that the pulse current bias should be adopted to prov ide bias,then bo th the port vo ltag e can be increased to drive the nex t readout circuit and the phase transformation can be avoided.

Key words: vanadium ox ide;thin film;volt am pere characteristic;pulse current bias

1 引言

氧化钒具有较高的温度 电阻系数、相对成熟的沉积技术、沉积条件与硅集成工艺兼容、适中的电阻率,是理想的电阻敏感材料。氧化钒薄膜作为敏感材料的热探测器的研究已经取得突破性进展[1]。

由于其高温相变的特点,氧化钒电阻应用于器件上时,在偏置电流作用下,其端电压的变化以及伏安特性的变化都会极大地影响氧化钒电阻本身的性质和信号的读出[2],因此对氧化钒电阻在电流偏置条件下的工作状态和伏安特性进行研究就显得尤为重要,通过分析可以找到为氧化钒薄膜电阻施加电流偏置的合理方式和范围,保证其工作在正常状态,并为后端读出电路的设计提供依据。

2 恒流偏置下的氧化钒薄膜电阻伏安特性

室温下氧化钒电阻呈半导体相,当工作在电流偏置条件下,不考虑辐射能量,可以得到其伏安特性

[3]

:

V =IR (T s )exp

E

k (T s +I V /G)

(1)

其中,T s 是衬底温度,G 是探测器的导纳,I 是施加的偏置电流,R(T s )是室温下的氧化钒薄膜电阻值, E =1/2E g 是激活能,而E g 是材料禁带宽度,这里E g 取1.6eV

[3]

当偏置电流产生的焦耳热使得氧化钒电阻温度超过其相变温度时,氧化钒电阻将会发生半导体 金属相变过程[4],进入高温金属相,其工作特性将随之

716 SEMIC ONDUC TOR OPTOELECTRONIC S Vol.29No.5Oct.2008

改变。相变过程呈现一级相变特征,伴随相变潜热,电阻率在相变温区的变化存在热滞,故无法直接将高电阻率的变化用于热探测[5]。氧化钒应用于热探测器时应避免工作在相变温区。在相变温区,其伏安特性也将不再遵从式(1)的关系。此时,其伏安特性可表示为[3]

V =IR (T s )1+ I V/G

(2)

式中, 为氧化钒的温度 电阻系数。

结合式(1)和(2),采用计算机仿真手段分析实

际中的氧化钒电阻的伏安特性。让偏置电流从0开始增大,判断出由于焦耳热的聚集使得氧化钒电阻何时发生相变。由于VO 2在温度为68 时会呈现出明显的半导体 金属相变特点

[4]

,而实际制作的氧

化钒电阻是以低价态的钒氧化物为主,因此仿真时近似取相变温度为68 。取实际的一组典型数字实例,室温下: =-0.02K -1,R (T s )=60k ,G =2!10-

7W/K,得到氧化钒电阻的伏安特性曲线如图1所示。

图1 直流偏置下的氧化钒电阻伏安特性仿真曲线

对图1进行分析:当偏置电流从0增大时,氧化钒薄膜电阻的伏安特性曲线呈指数关系上升,当偏置电流I =30!A 时,端电压V =0.33V,此时电阻R(T )降至约11k ;此后由于温度聚集超过了相变温度,氧化钒电阻将处于相变区。考虑到实际使用氧化钒电阻时并不会让它工作在相变区,因此对这一区域中的伏安特性暂不讨论。在图1中用虚线表示相变区;当氧化钒薄膜电阻从低温半导体相进入高温金属相后,电阻值随偏置电流增大而下降。

从图1中的伏安特性曲线可以看到,在进入相变区前存在一个临界值:I =30!A 。这就为实际应用器件的设计提供了一定依据。在R(T s )=60k 时,理论上无论是在器件测试还是在后端读出电路的设计中,施加的恒流偏置电流都不能超过这一临

界值,否则将使氧化钒薄膜电阻进入相变区,导致器件失效。

图2和3所示为实际测试得到的氧化钒伏安特性曲线。从图2和图3看出,在偏置电流小于30!A 时,氧化钒电阻两端的电压一直呈单调上升趋势,而氧化钒电阻的阻值则一直随偏置电流的上升而单调下降。这组测试数据充分验证了对氧化钒薄膜电阻伏安特性的理论分析和仿真结果

,正是由于在测试中严格遵守了偏置点不能超过临界点这一原则,保证了器件始终能有效工作。

3 脉冲电流偏置下的氧化钒电阻伏安特性

在前面的伏安特性仿真和测试中,发现在进入临界点以前薄膜电阻的端电压均未超过0.5V,而通常硅材料pn 结的阈值电压在0.7V 左右,恒流偏置下氧化钒电阻的实际端电压值往往还不足以驱动后端电路[6]。因此,在设计中需要引入脉冲电流偏置,使氧化钒薄膜电阻上的电压能够提高到足以驱动下一级读出电路,同时,也可以避免薄膜电阻在短时间内聚集过多热量而进入相变区。

717 ?半导体光电#2008年10月第29卷第5期陈 超等: 氧化钒薄膜电阻伏安特性分析

当采用脉冲电流提供偏置时,热探测器的热平衡方程为

[3]

C

d T d t

+G T =I 2

R(T)(3)R(T)=R (T s )ex p E

kT

(4)

在此次仿真分析中,暂取氧化钒薄膜电阻的阻值为初始电阻的阻值,因为在后面的仿真结果也能看出,其温升不大,氧化钒电阻近似不变。取脉冲偏置电流I 的周期为15m s,其中脉冲作用时间t pulse =20!s,初始温度T s =300K,G =2!10-7W/K ,C =3!10-9J/K,R (T )=R (T s )=60k ,并连续改变偏置电流的取值,采用计算机仿真手段可求得方程(3)的数值解,如图4所示。从图4可以看到,在脉冲电流作用时间t pulse 内,单元温度单调上升,当脉冲电流未作用时

,单元温度略有回落;在经过足够多个脉冲周期后,单元温度会趋于稳定。

图4 脉冲电流偏置下的单元温升 T

同时,从图4中也可以看到温升随脉冲电流变化的关系。当偏置电流从0增加到45!A 时,氧化钒薄膜电阻的温升不到0.8K 。由于温升较小,采

用脉冲偏置能避免敏感材料上聚集过多的焦耳热,从而防止氧化钒发生相变而导致器件失效。在脉冲电流作用的过程中,薄膜电阻随温度变化为R (T ),根据V =I R (T )便可得到此时薄膜电阻端电压值,绘出其伏安特性曲线,如图5所示。可以明显地看到,随着偏置电流从0增加到45!A,由于温升值很小,氧化钒薄膜电阻的阻值下降不大,其端电压随着偏置电流以较好的线性度上升到约2.5V,且不会进入相变区。这一分析结果为后端读出电路的设计提供了依据。

例如,当R(T s )=60k 时,采用20!A 的脉冲电流为薄膜电阻提供偏置时,其在室温下的端电压为

1.2V,不会超过理论上的临界值,同时足以驱动下一级电路。

图5 脉冲电流偏置下的氧化钒薄膜电阻伏安特性曲线

4 结论

通过计算机仿真和实测数据分析了氧化钒的伏安特性。结果表明,在未产生相变时,氧化钒表现出了良好的热敏性能。但若采用恒流偏置,端电压过低,如果一味提高偏置电流,氧化钒薄膜电阻又很容易由于过多的焦耳热聚集发生相变而进入金属相,导致器件失效。为了避免相变的发生,在非致冷红外探测器的应用当中,应采用脉冲电流对氧化钒敏感材料进行偏置,这样既能防止产生过多的焦耳热使氧化钒发生相变进入金属相,同时又能有效地提高其端电压值。本文着重分析了恒流偏置下以及脉冲电流偏置下的氧化钒薄膜电阻伏安特性,并指出:对现有氧化钒薄膜,若采用20!A 的脉冲电流为其提供偏置,室温下的端电压为1.2V,足以驱动后端电路。这给后端读出电路的设计提供了理论依据。参考文献:

[1] 黎文模,陈向东.氧化钒热敏薄膜非致冷红外探测器

的等效模型[J].传感器与微系统,2006,25(9):49 54.[2] 陈继述,胡燮荣,徐平茂.红外探测器[M ].北京:国防

工业出版社,1986.143 156.

[3] Kr use P W ,Skatr ud D D.U ncoo led I nfr ared I maging

Ar ray s and Systems [M ].N ew Y or k:

Academic

Press,1997.45 119.

[4] 张 弛,刘梅冬,曾亦可,等.V O 2薄膜的研究和应用

进展[J].材料导报,2003,17(8):214 217.

[5] 刘卫国,金 娜.集成非制冷成像探测阵列[M ].北

京:国防工业出版社,2004.78 81.

[6] Razav i B.Desig n of A nalog CM O S I nteg rated Circuits

[M ].N ew Y or k:M cGr aw H ill,2001.5 112.

作者简介:

陈 超(1980-),男,硕士研究生,从事光电材料和器件的研究。

E mail:chenchao0907@y ahoo.co https://www.wendangku.net/doc/f31800197.html,

718 SEMIC ONDUC TOR OPTOELECTRONIC S Vol.29No.5Oct.2008

二氧化钒薄膜的结构_制备与应用

二氧化钒薄膜的结构、制备与应用 Ξ 许 ,邱家稳,何延春,李强勇,赵印中,王洁冰 (兰州物理研究所,甘肃兰州 730000)摘 要:综述了VO 2薄膜的结构特点、相变、制备工艺特性,以及薄膜研究、应用和开发现状,认为VO 2薄膜 具有较好的开发前景。 关键词:薄膜;结构;特性;制备 中图分类号:O484.1 文献标识码:A 文章编号:1006-7086(2001)03-0136-03 STRUCTURE AN D PREPARATION AN D APPL ICATION FOR VANADIUM DIOXIDE THIN FI LMS XU Min ,QIU Jia-w en ,HE Yan-chun ,L I Q iang -yong ,ZHAO Yin-zhong ,WANG Jie-bing (Lanzhou I nstitute of Physics ,Lanzhou 730000,China) Abstract :The micro-structure ,the phase transition ,preparation and processing properties of VO 2thin films are described .The pressent situation ,development and application of VO 2thin film are given.There will be a good developing prospect in VO 2thin film. K ey w ords :thin film ;structure ;properties ;preparation ;application. 1 引 言 近年来,由于光谱干涉、激光及空间光学等技术的飞跃发展,促使光学薄膜向集光、电、热等多功能于一身的方向发展,形成一膜多用的态势。其中氧化钒薄膜就是这一类具有光、电特性的薄膜器件。在一定的温度条件下,其原有的半导体性质快速变为金属性质。由传输能量变为阻挡光能量通过。这使它的热触发开关电路应用前景十分诱人。比照其它类型的开关器件,在光学系统中,它将以体积小、重量轻、构造简单、作用特殊、造价相对低廉等优越性而具有极高的潜在应用价值。 2 V O 2薄膜相变,原理及性质 1958年,科学家Morin [1]在贝尔实验室发现了钒和钛的氧化物具有半导体-金属相变特性。其中氧化钒材料的相变性能较好。实验表明:氧化钒的相变通常与结构相变相联系。发生相变时,氧化钒的结构畸变到较低的对称形式。促使氧化钒薄膜发生相变的条件是温度。VO 2薄膜相变温度T =68℃。在常温下VO 2薄膜呈现半导体状态具有单斜结构,对光波有较高的透射能力。当薄膜在外界条件下,温度升高到T 时,薄膜原始状态迅速发生变化,此时VO 2薄膜显示金属性质,变为四方晶格晶体结构,它对光波具有较高的反射。 图1给出了二氧化钒薄膜的高低温透射光谱曲线。从二氧化钒晶体结构上看出,VO 2薄膜在68℃发生相变,伴随着这个相变,它从四角金红石(P42/mnm )变化到单斜对称的畸变的金红石结构(P21/C )。图2给出二氧化钒的高温相和低温相结构。在四角结构中,V 4+离子占据bcc 体心位置,沿着c 轴V -V 原631 真空与低温 第7卷第3期 Vacuum &Cryogenics 2001年9月Ξ收稿日期:2001-04-05 作者简介:许 (1971-),男,甘肃省金昌市人,工程师,从事卫星激光防护技术及空间应用薄膜的研制和开发工作。

氧化锌避雷器的选型方法修订稿

氧化锌避雷器的选型方 法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

氧化锌避雷器的选型方法 从我国电力系统实际情况出发,结合避雷器选型的历史回顾和新版本的避雷器国家标准,提出了使电力系统安全、可靠运行的并联电容器装置用氧化锌避雷器的选型方法,对变电站中并联电容器装置的设计具有一定的参考价值。 关键词:氧化锌避雷器;额定电压;持续运行电压;并联电容器装置 1 以往只考虑操作过电压和雷电过电压水平的避雷器选型及弊端 国家标准规定,系统供电端电压应略高于系统的标称电压(或额定电压)Un的K倍,即K=Um/Un(Um是系统最高电压)。电气设备的绝缘应能在Un 下长期运行。220kV及以下系统的K为1.15,330kV及以下系统的K=1.1。避雷器设计的初期也遵守上述原则。 氧化锌避雷器之前是SiC避雷器。10kV及以下SiC避雷器的灭弧电压设计是定在系统最高运行电压的1.1倍;35kVSiC避雷器的灭弧电压等于系统最高电压;110kV及以上SiC避雷器的灭弧电压为系统最高电压的80%。对应以上的倍数分别有110%避雷器、100%避雷器和80%避雷器。 我国使用氧化锌避雷器初期,其额定电压是以SiC避雷器的灭弧电压为参考作设计的。早期的6kV、10kV和35kV避雷器均遵守上述原则,如:Y5WR -7.6/26、Y5WR-12.7/45、Y5WR-41/130。而最大长期工频工作电压为系统最高相电压,如Y5WR-12.7/45为: 2 保证在单相接地过电压下运行且电力系统安全情况下的避雷器选型及必要性 从安全运行角度,避雷器的额定电压的选择还应遵守如下原则: ①氧化锌避雷器的额定电压,应该使它高于其在安装处可能出现的工频暂态电压。在110kV及以上的中性点接地系统中是可以按上述方法选择的。 ②在110kV及以下的中性点非直接接地系统中,电力部门规程规定在单相接地情况下允许运行2h,有时甚至在断续地产生弧光接地过电压情况下运行2h 以上才能发现故障,这类系统的运行特点对氧化锌避雷器在额定电压下安全运行10s构成严重威胁。且氧化锌避雷器与SiC避雷器结构、设计不同(后者是有间隙灭弧,前者没有间隙或者只有隔流间隙),使得实践中氧化锌避雷器出现热崩溃甚至严重的爆炸事故。面对这种情况,许多供电局、电力设计院根据各地的电网条件提出了许多类型的额定电压值(如14.4kV,14.7kV等)。而在多次国标讨论稿中动作负载试验中耐受10s的额定电压规定提高至1.2~1.3倍,使氧化锌避雷器对中性点非直接接地系统工况的适应能力有所提高。

非线性电阻的伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。

关于p-n结的形成和导电性能可作如下解释。 图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表 示)。结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用九孔插件方板。

氧化钒 相变原理

1 氧化钒相变原理 1958年,科学家F.J.Morin在贝尔实验室发现钒和钦的氧化物具有半导体一金属相变特性。实验表明:促使氧化钒薄膜发生相变的条件是温度,实验得到的二氧化钒薄膜的相变温度点为68℃(T=68℃)。常温下,VO2薄膜呈现半导体状态,具有四方晶格结构,对光波有较高的透射能力。当薄膜温度在外界条件促使(例如吸收光能量)下升高到一定温度点t时,薄膜原始状态迅速发生变化,此时VO2薄膜显示金属性质,是单斜晶结构,对光波有较高的反射。薄膜光谱特性由高透陡变为高反, 如图1所示。 二氧化钒材料在转变逆过程中显示了晶体转变的一般倾向,转变温度取向由高到低,但原子的重新分类并不广泛,原来的原子群仅有轻微的失真。在过渡温度T c处,原子群的变化迅速且可逆。二氧化钒(VO2)薄膜晶格结构的变化象所有从单斜晶结构向四方晶格结构转变的材料一样,在电和光特性中伴随有较大的变化。薄膜相变前后的电导率、光吸收、磁化率及比热等物理性能均有较大的改变。氧化钒薄膜由半导体到金属态可以进行高速双向可逆转换,并具有高的空间分解能力。薄膜的转换特性除取决于样品结构和样品成分,同时还取决于样品的制备。高价氧化物脱氧还原后的膜不均匀且多孔,因而降低了转换特性。总而言之,氧化钒薄膜相变特性的优劣取决于薄膜的质量。

2 VO2的相变特征 2.1 相变晶体学 图2表示了四方相VO2(R)和单斜相VO2(M)的晶体结构。a为高温四方金红石结构,单位晶胞中的8个顶角和中心位置被V4+占据,而这些V4+的位置正好处于由O2-构成的八面体中心。当VO2发生相变时,V4+偏离晶胞顶点位置,晶轴长度发生改变,β角由90°变为123°,变成单斜结构。相变后,形成的V-V键不再平行于原来的c r轴,形成折线型的V-V链,钒原子间距离按265pm和3l2pm的长度交替变化,同时a m轴的长度变为原来c r轴的两倍,体积增加约1%。热力学也证明,VO2相变为一级相变,相变前后具有体积的改变。氧八面体的结构也从正八面体变为偏八面体,两个V-O键间的夹角由90°变为78~99°,如图3所示。 图2 VO2 两种晶胞结构示意图(黑点为V4+,白点为O2- 图3 VO2 相变时的氧八面体变化

二氧化钒薄膜的制备及性能表征

2011年3月15日第34卷第6期 现代电子技术 M odern Electro nics T echnique M ar.2011V ol.34N o.6 二氧化钒薄膜的制备及性能表征 赵 萍1,李立珺1,张 洋2 (1.西安邮电学院电子工程学院,陕西西安 710121; 2.香港科技大学工学院,香港九龙) 摘 要:通过激光脉冲沉积法,分别在C sapphir e 和R sapphir e 衬底上制备了单相二氧化钒(VO 2)薄膜。用X 射线衍射法表征了不同实验条件下制备的二氧化钒薄膜的结构性质,分析表明在600 ,10-2to rr 的氧气分压下,生长15min 可得到单相的二氧化钒(V O 2)薄膜;重点研究了激光能量对薄膜电学性质的影响,实验结果表明激光能量在500~600M J 时制备的二氧化钒薄膜具有最好的电学性质。 关键词:脉冲激光沉积;二氧化钒;薄膜;X 射线衍射;电学性质 中图分类号:T N919 34;O 782+;O722+.4;O792 文献标识码:A 文章编号:1004 373X(2011)06 0148 03 Synthesis and Characterization of VO 2Thin Films ZH A O P ing 1,L I L i jun 1,ZH A N G Y ang 2 (1.Schoo l o f Elec t roni c Engineering,Xi an University of Post s and T eleco mmuni cat i o ns,Xi an 710121,China; 2.Scho ol o f Eng ineering ,H o ng kong U niv ersity o f Scie nce and T echnolo gy ) Abstract :Single phase VO 2thin films w ere sy nthesized v ia pulsed laser deposition met ho d o n C sapphir e and R sapphire substrates.T he st ruct ur e pro per ties o f V O 2thin films under differ ent experimental conditio ns wer e characterized by X r ay dif fr action.T he results sho w that single phase V O 2thin film can be pr epar ed in 15minut es,at 600 ,10-2t orr pr essure of o x y gen.T he laser energ y impacts on electr ical propert ies of VO 2thin films are discussed.Experimental r esult s sho w that the VO 2thin films pr epar ed at the laser energ y of 500~600M J has the best elect rical pr operties. Keywords :pulsed laser deposition;V O 2;thin f ilms;XRD;electrical pro pert ies 收稿日期:2010 12 09 基金项目:国家自然科学基金资助项目(60976020);陕西省教 育厅资助项目(112Z051) 20世纪50年代末,F.J.M orin 发现二氧化钒(VO 2) 在341K(68 )存在半导体到金属的相变转换,称为SMT(Semiconductor Metal Transition )。从那时起,人们对VO 2的金属 半导体相变以及与这些相变伴随的光学和电学性质上的突然变化很感兴趣。在所有不同类型的钒氧化物中,VO 2因其相变温度接近室温而被研究得最多[1 3]。随着温度的升高,在68 时,二氧化钒由低温半导体相转变成高温金属相,材料的结构性能同时可在瞬间突变,晶体结构由低温单斜结构向高温金红石结构转变,电阻率发生几个数量级的变化,同时伴随着磁化率,折射率和透射率的可逆的变化。二氧化钒的相变性质使其具有广泛的应用前景,如太阳能控制材料、红外辐射测热计、热敏电阻、致热开关、可变反射镜、VO 2红外脉冲激光保护膜、晶体管电路和石英振荡器等稳定化的恒温槽、透明的导电材料、光盘材料、全息存储材料、电致变色显示材料、非线性和线性电阻材料等等。自20世纪90年代初期,美国Honeywell 公司研制成功一种利用二氧化钒薄膜作为热敏材料的新型红外器件后,对而氧化钒特性的研究己经日益引起人们广泛的兴趣。因此,对VO 2 的研究具有十分重要的意义。 随着工艺技术的发展,多种镀膜技术被用以制备VO 2薄膜,脉冲激光沉积(Pulsed Laser Deposition,PLD)法与其他方法,如M OCVD,Sol gel 法 [4 7] ,反应 磁控溅射法[8 9]等相比,具有实验周期短,样品表面均匀,光电性能好的特点。本文采用PLD 法,在不同的氧气偏压、生长温度、衬底取向以及激光能量条件下,制备 了二氧化钒薄膜样品,并对其结构和电学性能做了表征,分析了二氧化钒薄膜的生长条件对其结构和电学性能的影响,对薄膜制备的最佳工艺做了深入研究。1 试 验 1.1 二氧化钒薄膜的制备 在此采用PLD 方法制备二氧化钒薄膜。其具体过程如下:首先将10g 二氧化钒粉末(分析纯)均匀混合,加入10m L 甲醇,制成悬浮液,在80 恒温下放置30min 后取出,研磨成粉末,然后置于加压机内加压,得到二氧化钒靶材,将所制得的靶材放入高温炉内,在1000 的氩气气氛中退火4h,制得实验用靶材。 将制得的靶材固定在PLD 仪器中,采用C sap phire(氧化铝)和R sapphire(氧化铝)作为基底,以不同的激光能量,在10-2 tor r 氧气分压,600 温度下,轰击

热敏电阻温度特性的研究

热敏电阻温度特性的研究 一、实验目的:了解和测量热敏电阻阻值与温度的关系 二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适 用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示 )/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R , 即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为 0T 时的电阻值0R ,就可以利用式(3)计算在

氧化锌避雷器重要参数选择 、民熔

氧化锌避雷器重要参数选择 氧化锌避雷器最重要的参数有三个。一个是氧化锌避雷器额定电压、一个是氧化锌避雷器标称残压、-个是氧化锌 避雷器能量吸收能力。. 氧化锌避雷器重要参数选择氧化锌避雷器最重要的参数有三个。 一个是氧化锌避雷器额定电压、一个是氧化锌避雷器标称残压、-个是氧化锌 避雷器能量吸收能力。. 下面以HY5WS-17/50为例来说明。 1.氧化锌避雷器的额定电压上述型号中的17表示额定电压。额定电压的定义比较复杂,作为非专业制造人员,可以简单将其理解为过 电压有效值达到17kV 左右,氧化锌避雷器就会开始工作。这个参数不能过低,否则容易导致氧化锌避雷器负担过重烧毁。老国标虽然定义 额定电压为12.7,但真实的工作值依然在17左右,因此老国标定义 存在很大争议,现在已经不推广了。 所以额定电压是17还是16.5、 17.5,其实是一样的性能等级, 都是符合国标定义的17类产品,购买时不要去死抠字眼。至于为什么会有17.5、16.5 这一类的东西,是因为每 个厂家具体参数有微小差别,以及独特上图型号的销售策略;需要。 2.氧化锌避雷器的标称残压 3.上述型号中的50表示雷电标称残压,可以简单将其理解为

出现最严重雷击的时候,避雷器至少可以把过电压峰值限制在50kV 以下。这个参数事实上是避雷器最重要的参数,因为整个系统绝缘配合的基础就在这里。我们不断的说降低. 4.残压好,就是因为降低了避雷器残压,也就等于提高了系统所有高压电器的安全裕度。 5.但是降低残压受到氧化锌电阻片本身性能限制,是有底限的。有间隙产品虽然可以进一步降低残压,但是同样不是无限降低,同样存在一个底限。如果有小厂宣称自己的产品残压比正规大厂都低,那基本上可以判断为是在乱搞,不买. 6.也罢。 7. 3.氧化锌避雷器的能量吸收能力避雷器工作时,由于kA级大电流的通过,会大幅发热升温,若抵受不了,就会导致破坏甚至爆炸。因此避雷器的能量吸收能力是很重要的参数。出口型产品,按多少kJ/kV的形式来表示这个能力;国内型产品,按方波通流容量多少A来表示。这个值越高,表示避雷器在不破坏的情况下能承受的电流越大,性能也就越好。 8.直白的说,这个能力与电阻片的直径有直接关系。就好比采购铜线时,越粗的可以流过的电流越大一样,配方相近时,越大的电阻片,自然方波通流能力越强。

二氧化钒的相变

生长在c轴蓝宝石衬底上VO2薄膜的相变特性在许多显示绝缘体(半导体)—金属相变的金属氧化物中,VO2备受关注。作为典型的过渡型金属氧化物,VO2薄膜展现出良好的从绝缘体到金属的相变。当温度高于340K时,VO2具有四角金红石相(P42/mnm)的金属,当温度低于340K时,VO2具有单斜晶体结构(P21/C)的绝缘体。在绝缘到金属的相变过程中,VO2的光学和电学性质发生巨大的变化,其中电阻值有几个数量级的变化,并且在红外区域的透射率发生巨大改变。这些性质,使得VO2有望应用于各类传感器,转换开关,光存储器件和红外探测器中。VO2的低温单斜晶相源于高温四角金红石相的钒原子沿着c轴配对并有微小的扭曲。这种相变过程中的钒原子重新排布,导致单斜晶相中的3d不成键(t2g)轨道伸展并交叠,最终导致在四角金红石相中窄的导带。 研究背景 材料的结构相变以及相变后所产生的一系列性质的改变一直是物理学家和材料学家所关注的热点问题;VO2结构相变研究最早始于上世纪六七十年代,1959年美国科学家F.J.Morin[1]首次发现VO2在温度达到340K时发生相变。 两种关于VO2相变的争论 1.Peierls等人提出Peierls模型机制[2 3]:Peierls模型认为晶体结构发生变化导致原子周期势发生变化,而势场的变化又导致能带的结构发生变化,因而发生金属-绝缘相变。所以当VO2的温度超过相变临界温度点时,晶体晶格将发生崎变,最终导致晶体的金属-绝缘相变。 2.MottN.F.等人提出Mott-Hubbard模型[4 5]:Mott-Hubbard机制则视相变材料为一个强电子关联体系,认为晶体的相变是由于材料内部电子浓度变化导致的,也可以认为是电子之间强相互作用造成的。当晶体中电子浓度低于某一临界值时,晶体处于半导体态或绝缘态,导电性较差;当晶体中电子浓度高于临界值时,晶体则转变为金属相,从而具有金属的特性。 研究现状 目前VO2薄膜制备方法有溅射法、激光脉冲沉积法、化学气相沉积法等。常用的衬底有硅衬底,蓝宝石衬底,TiO2衬底等。现在关于VO的研究主要有两个方向:一方面,通过一些比较先进的技术手段来进一步探究VO2机理的研

电阻伏安特性

实验19 电阻伏安特性及电源外特性的测量 一、实验目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线; 2. 学习测量电源外特性的方法; 3. 掌握运用伏安法判定电阻元件类型的方法; 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法。 二、实验仪器 直流恒压源恒流源,数字万用表,各种电阻11只,白炽灯泡1只(12V/3W)及灯座,稳压二极管(2CW56),电位器(470/2W),短接桥和连接导线及九孔插件方板 三、实验原理 1. 电阻元件 (1)伏安特性 (a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。根据

测量所得数据,画出该电阻元件的伏安特性曲线。 (2)线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。可表示为:U=IR ,其中R 为常量,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图19-1(a )所示。 (3)非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,其伏安特性是一条过坐标原点的曲线,如图19-1(b )所示。 (4)测量方法 在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。 2. 直流电压源 (1)直流电压源 理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。因此它的外特性曲线是平行于电流轴的直线,如图19-2(a )中实线所示。实际电压源的外特性曲线如图19-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图19-2(b )所示。图19-2(a )中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= (19-1) (2)测量方法 将电压源与一可调负载电阻串联,改变负载电阻R 2的阻值,测量出相应的电压源电

一种制备氧化钒薄膜的新工艺

收稿日期:2002-12-17. 基金项目:国家自然科学基金资助项目(60106003);华中科技大学研究生科技创新基金资助项目(Y CJ-02-003).材料、结构及工艺 一种制备氧化钒薄膜的新工艺 王宏臣1,易新建1,2,黄 光3,肖 静1,陈四海1 (华中科技大学1.光电子工程系;2.激光国家重点实验室;3.图像识别与人工智能教育部重点实验室,湖北武汉430074) 摘 要: 采用两步法工艺,即先在衬底上溅射一层金属钒膜,再对其进行氧化的方法,在硅和氮化硅衬底上制备了高电阻温度系数的混合相VO x 多晶薄膜。电学测试结果表明:厚度为50nm 的氧化钒薄膜的方块电阻和电阻温度系数(T CR)在室温时分别达到50k 和0.021K -1。 关键词: 红外探测器;氧化钒薄膜;离子束溅射淀积;热敏薄膜 中图分类号: TN213 文献标识码: A 文章编号: 1001-5868(2003)04-0280-03 A New Method for Preparation of Vanadiu m Oxide Thin Film WANG Hong chen 1,YI Xin jian 1,2,H UANG Guang 3,XIAO Jing 1,CHEN Si hai 1 (1.Dept.of Optoelectronic Engineering;2.State Key Laboratory for Laser Technology;3.State Key Laboratory for Imaging Processing and Intelligent Control,Huazhong University of Science and Technology,Wuhan 430074,CHN) Abstract: M ix ed phase vanadium oxide thin films w ith high temperature coefficient of resistance (TCR)are made on Si and Si 3N 4substrates using a new method.The tests indicate that the square resistance and TCR of the vanadium oxide thin film (50nm )are 50k and 0.021K -1at room temperature,respectively.Key words: IR detectors;vanadium ox ide thin film;ion sputtering deposition;thermo sensitive thin film 1 引言 非致冷热红外探测器可以在室温下正常工作,与必须在低温致冷系统协助下才能正常工作的光子探测器相比,在低成本、低功耗、长寿命、宽谱段探测、微型化和可靠性等诸多方面都具有明显的优势[1,2]。在非致冷红外成像领域,以热敏电阻微测辐射热计为核心的非致冷红外焦平面已经取得重要突破并达到实用化,在军事和部分民用领域获得了广泛的应用,成为热成像技术中最令人注目的突破之一 [3] 。 非致冷红外微测辐射热计是利用探测器敏感元的热敏特性来探测红外辐射的,因此材料的热敏特 性是决定微测辐射热计探测性能的重要因素。各国研究者都在积极探索开发新的高性能热敏材料。衡量薄膜材料热敏特性优良与否的指标有多个,如薄膜的电阻温度系数、方块电阻、1/f 噪声和光谱吸收率。薄膜的电阻温度系数被定义为薄膜的电阻率随温度的相对变化率。热敏薄膜材料的电阻温度系数与材料的电荷载流子浓度和迁移率等因素有关。 以VO 2为基的混合相氧化钒(VO x )薄膜在室温附近电阻温度系数可以达到- 2.00 10-2K -1,大约是金属薄膜的5~10倍,而且具有较小的1/f 噪声和合适的方块电阻以及较高的红外光谱吸收率,其制备工艺又与CMOS 工艺兼容,所以该薄膜材料是目前用于微测辐射热计热敏材料的理想选择。 2 氧化钒薄膜的制备 制备氧化钒薄膜的方法很多,如反应离子溅射、 280 SEMIC ONDUC TOR OPTOELECTRONIC S Vol.24No.4Aug.2003

热敏电阻温度特性的研究带实验数据处理

本科实验报告 实验名称:热敏电阻温度特性的研究 (略写) 实验15热敏电阻温度特性的研究 【实验目的和要求】 1. 研究热敏电阻的温度特性。 2. 用作图法和回归法处理数据。 【实验原理】 1. 金属导体电阻 金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示: )1(320 ++++=ct bt t R R t α (1) 式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。 在很多情况下,可只取前三项: )1(20bt t R R t ++=α (2) 因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似

写成: )1(0t R R t α+= (3) 式中α称为该金属电阻的温度系数。 2. 半导体热敏电阻 热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为 T B T e A /0=ρ (4) 式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。其电阻率的温度特性为: T B T e A ?'=ρρ (5) 式中A '、 ρ B 为常数,由材料物理性质决定。 对(5)式两边取对数,得 A T B R T ln 1 ln += (6) 可见T R ln 与T 1 成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。 3. 实验原理图

氧化锌避雷器重要参数选择 民熔

氧化锌避雷器重要参数选择 MOA有三个最重要的参数。一个是氧化锌避雷器的额定电压,一个是氧化锌避雷器的标称残余电压,另一个是氧化锌 避雷器的能量吸收能力。 MOA最重要的参数有三个。一个是氧化锌避雷器的额定电压,一个是氧化锌避雷器的标称残余电压,另一个是氧化锌 避雷器的能量吸收能力。 以hy5ws-17/50为例。 1氧化锌避雷器的额定电压,以上17种型号为额定电压。额定电压的定义很复杂。作为非专业厂家,可以简单理解为当过电压有效值达到17kv左右时,MOA就开始工作。此参数不宜过低,否则容易导致氧化锌避雷器过载烧毁。虽然旧国标将额定电压定为12.7,但实际工作值仍在17左右。因此,旧的国标定义存在很大争议,现在没有推广。 因此,额定电压是17或16.5、17.5,其实是相同的性能水平,都是符合国家标准定义的17种产品,不买的话。至于为什么会有17.5和16.5的东西,那是因为 各厂商的具体参数以及上图所示独特车型的销售策略略有不同。 2氧化锌避雷器标称剩余电压 三。在上述模型中,50代表雷电的标称剩余电压,可以简单地理解为当发生最严重的雷击时,避雷器至少能将过电压峰值限制在50kV以下。事实上,这个参数是避雷器最重要的参数,因为整个系统的绝缘协调基础在这里。我们一直说低一点

4良好的剩余电压是因为避雷器的残余电压降低了,相当于提高了系统内所有高压电器的安全裕度。 5但是,氧化锌电阻本身的性能限制了剩余电压的降低,这是有限的。虽然间隙积能进一步降低残余压力,但它不是无限的,而且还有一个下限。如果一个小厂声称其产品的残余压力低于正规的大工厂,基本上可以判断他们是在搞无序经营,不采购 6 7.3条。氧化锌避雷器的吸能能力。避雷器工作时,由于通过Ka级大电流,会使避雷器发热。如果不能承受,会导致损坏甚至爆炸。因此,避雷器的吸能能力是一个非常重要的参数。对于出口产品,容量用kJ/kV表示;对于国内产品,用方波电流容量表示。该值越高,避雷器在不损坏的情况下所能承受的电流越大,性能越好。 8坦率地说,这种能力与电阻的直径直接相关。例如,当购买铜线时,可以通过的电流越粗。当公式相似时,电阻越大,自然方波电流容量越强。

测量热敏电阻的温度系数

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

避雷器参数及选型原则

金属氧化物避雷器的选择 避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。 1、无间隙金属氧化物避雷器的选择 选择的一般要求如下: (1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。 (2)、按照被保护的对象确定避雷器的类型。 (3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。 (4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。 (5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。 (6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。 (7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。 (8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。 (9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。

(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机 械强度。 (11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电 压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。2、主要特性参数选择 (1)、持续运行电压Uc 页16 共页1 第 中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。 在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中 允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障2h及以上切除故障3~10kV 1.0~1.1U,35~66kV Uc≥U LL至于10s~2h之间,可按2h以上选取,也可 参照避雷器的工频电压耐受特性曲线选取。 (2)、额定电压Ur Ur是指避雷器两端间的最大允许工频电压的有效值,是在60℃温度下注入规定能量后,能耐受额定电压Ur10s,随后在Uc下,耐受30min,能保持热稳定。 (3)、暂时过电压U T暂时过电压UT是确定避雷器额定电压之依据,在选择U时,主要考虑单T相接地,甩负荷和长线电容效应所引起的工频电压升高,幅值可按下列条件选取。 ①中性点非直接接地系统:

氧化钒薄膜的电阻特性研究

氧化钒薄膜的电阻特性研究 1. 学习二氧化钒(VO 2)薄膜晶体结构及相转变等相关知识; 2. 掌握利用恒流源测量薄膜电阻的方法,计算不同温度范围内的电阻变化率; 3. 利用作图法处理数据,作出升温曲线和降温曲线并归纳总结热滞现象。 真空腔(四探针调节架、载物台、加热棒及热偶),电学组合箱(2个 XMT612智能温控仪、1 个恒流源、1个数字电压表)。 二氧化钒(VO 2)薄膜是一种具有热滞相变特性的材料,随着温度的升高,在 68 C 附近会发生单斜结构和金红石结构的晶型转变,与此同时由半导体转变为金属态,此转变在纳秒级时间范围内发生,随之伴随着电阻率、磁化率、光的透过率和反射率的可逆突变。这些卓越的特性有着诱人的发展前景,可以用来制作光电开关材料、热敏电阻材料、光电信息存储器、激光致盲武器防护装置、节能涂层、偏光镜以及可变反射镜等器件等。 一、二氧化钒(VO 2)薄膜的晶体结构 图X.2-1单斜晶结构VO 2(M ) 图X.2-2金红石结构VO 2(R )

二氧化钒型态结构是以钒原子为基本结构的体心四方晶格,氧原子在其八面体的位置,有四种不同形态的结构:(1)金红石结构VO2(R);(2)轻微扭曲金红石结构的单斜晶VO2(M);(3)非常接近V6O13结构的单斜晶结构VO2(B);(4)四方晶结构VO2(A)。二氧化钒在68℃时发生相变,在68℃以下时VO2(M)存在,反之,在68℃以上时则为金红石结构VO2(R),VO2(R)和VO2(M)型态的相转变是可逆的。同时VO2(B)→VO2(R)也可以发生相转化,VO2的另一个金属相VO2(A)是其相转变过程的中间相。VO2(B)型是一种亚稳态氧化物,经过对VO2(B)型薄膜进行退火处理,能够使其转变成VO2(R)型的稳定结构,但是VO2(A)和VO2(B)型态的相转变是不可逆的。 对VO2而言,最稳定的结构是VO2(R),其稳定的范围是68℃到1540℃之间。如图X.2-1所示,高温形态的四方金红石结构具有高对称性,V4+离子占据中心位置,而 O2-则包围 V4+离子组成一个八面体,此八面体的四重轴是沿着(110)或(011)排列。C R轴的钒原子组成等距(d v-v=0.286 nm)的长链,为八面体的共用边。VO2(R)的晶格参数为a R=b R=0.455nm,c R=0.288nm, β=90°,Z=2。 在68℃以下,单斜晶VO2(M)形成。沿着c轴方向的两个四价钒使晶格扭曲,进而导致对称性降低。在室温下VO2(M)相的晶格参数为a M=0.575nm,b M=0.542nm,c M=0.538nm, β=122.6°,Z=4。由上述数据可观察到VO2(M)的晶格参数与VO2(R)的晶格参数息息相关:a M=2c R,b M =a R ,c M = b R - c R ,VO2(M)结构也是八面体。如图X.2-2。 二、二氧化钒(VO2)薄膜的相转变温度 在常温下二氧化钒薄膜处于半导体态,其电阻随温度升高而减小;当温度继续升高,薄膜电阻突然下降,随后薄膜电阻随温度升高而增大(见图X.2-3)。从图中还可观察到温度上升时和温度下降时的电阻-温度特性曲线并不完全重合,把这种具有类似铁磁材料迟滞特征的现象,称为热滞回线,即温度的变化落后于电阻的变化。图2是VO2单晶典型的电阻-温度曲线。半导体态电阻偏离线性的电阻Rs与金属态偏离线性的电阻R M 之差的50%阻值对应的温度称为转变温度,温度升高曲线对应的转变温度记作T SMH,温度降低时对应的转变温度记作T SMC,两者温度之差称为转变宽度(?T)。 本实验测量VO2薄膜的电阻-温度特性,与VO2单晶的电阻-温度曲线形状有所不同,但是基本概念仍适用。

相关文档