文档库 最新最全的文档下载
当前位置:文档库 › 氧化钒薄膜的电阻特性研究

氧化钒薄膜的电阻特性研究

氧化钒薄膜的电阻特性研究
氧化钒薄膜的电阻特性研究

氧化钒薄膜的电阻特性研究

1. 学习二氧化钒(VO 2)薄膜晶体结构及相转变等相关知识;

2. 掌握利用恒流源测量薄膜电阻的方法,计算不同温度范围内的电阻变化率;

3. 利用作图法处理数据,作出升温曲线和降温曲线并归纳总结热滞现象。

真空腔(四探针调节架、载物台、加热棒及热偶),电学组合箱(2个

XMT612智能温控仪、1

个恒流源、1个数字电压表)。

二氧化钒(VO

2)薄膜是一种具有热滞相变特性的材料,随着温度的升高,在

68 C 附近会发生单斜结构和金红石结构的晶型转变,与此同时由半导体转变为金属态,此转变在纳秒级时间范围内发生,随之伴随着电阻率、磁化率、光的透过率和反射率的可逆突变。这些卓越的特性有着诱人的发展前景,可以用来制作光电开关材料、热敏电阻材料、光电信息存储器、激光致盲武器防护装置、节能涂层、偏光镜以及可变反射镜等器件等。

一、二氧化钒(VO 2)薄膜的晶体结构

图X.2-1单斜晶结构VO 2(M )

图X.2-2金红石结构VO 2(R )

二氧化钒型态结构是以钒原子为基本结构的体心四方晶格,氧原子在其八面体的位置,有四种不同形态的结构:(1)金红石结构VO2(R);(2)轻微扭曲金红石结构的单斜晶VO2(M);(3)非常接近V6O13结构的单斜晶结构VO2(B);(4)四方晶结构VO2(A)。二氧化钒在68℃时发生相变,在68℃以下时VO2(M)存在,反之,在68℃以上时则为金红石结构VO2(R),VO2(R)和VO2(M)型态的相转变是可逆的。同时VO2(B)→VO2(R)也可以发生相转化,VO2的另一个金属相VO2(A)是其相转变过程的中间相。VO2(B)型是一种亚稳态氧化物,经过对VO2(B)型薄膜进行退火处理,能够使其转变成VO2(R)型的稳定结构,但是VO2(A)和VO2(B)型态的相转变是不可逆的。

对VO2而言,最稳定的结构是VO2(R),其稳定的范围是68℃到1540℃之间。如图X.2-1所示,高温形态的四方金红石结构具有高对称性,V4+离子占据中心位置,而 O2-则包围 V4+离子组成一个八面体,此八面体的四重轴是沿着(110)或(011)排列。C R轴的钒原子组成等距(d v-v=0.286 nm)的长链,为八面体的共用边。VO2(R)的晶格参数为a R=b R=0.455nm,c R=0.288nm, β=90°,Z=2。

在68℃以下,单斜晶VO2(M)形成。沿着c轴方向的两个四价钒使晶格扭曲,进而导致对称性降低。在室温下VO2(M)相的晶格参数为a M=0.575nm,b M=0.542nm,c M=0.538nm, β=122.6°,Z=4。由上述数据可观察到VO2(M)的晶格参数与VO2(R)的晶格参数息息相关:a M=2c R,b M =a R ,c M = b R - c R ,VO2(M)结构也是八面体。如图X.2-2。

二、二氧化钒(VO2)薄膜的相转变温度

在常温下二氧化钒薄膜处于半导体态,其电阻随温度升高而减小;当温度继续升高,薄膜电阻突然下降,随后薄膜电阻随温度升高而增大(见图X.2-3)。从图中还可观察到温度上升时和温度下降时的电阻-温度特性曲线并不完全重合,把这种具有类似铁磁材料迟滞特征的现象,称为热滞回线,即温度的变化落后于电阻的变化。图2是VO2单晶典型的电阻-温度曲线。半导体态电阻偏离线性的电阻Rs与金属态偏离线性的电阻R M 之差的50%阻值对应的温度称为转变温度,温度升高曲线对应的转变温度记作T SMH,温度降低时对应的转变温度记作T SMC,两者温度之差称为转变宽度(?T)。

本实验测量VO2薄膜的电阻-温度特性,与VO2单晶的电阻-温度曲线形状有所不同,但是基本概念仍适用。

三、四探针针法测量薄膜电阻

电阻率的高精度测量需要采用四端测量技术,也称为四探针测量法,在半导体和薄膜测试技术中得到广泛应用。四探针法分为直线四探针法和方形四探针法,按发明人又分为Perloff 法、Rymaszewski 法、范德堡法、改进的范德堡法等。本专题我们采用常规直线四探针法,其原理图见图X.2-4,其中最外侧两个探针通恒流,中间两个探针取电压,则当样品面积远远大于四探针中相邻两探针间距时,中间两个探针之间材料R 2的电

阻率分两种情况考虑:1)如果对厚度为三倍探针针距以上的体材样品电阻率为)1(2I U

S ?π=ρ

其中S 为针间距;2)如果对厚度远小于针间距的薄膜样品,则利用公式

)2(2ln d I U ??π=ρ

计算,d 为薄膜样品厚度。在半导体专业测量中常考虑边缘和厚度效应,以上两个公式两边需要乘上修正因子。在大学生物理实验中,我们忽略两种效应对电阻率的影响。

图X.2-3 二氧化钒晶体的电阻-温度特性曲线

图X.2-4 四探针原理图

1、真空的获得

本实验的仪器装置示意图见图。仪器由四探针组件,温度控制仪,2个加热器、2个K型热电偶、真空腔及机械泵组成。

抽真空过程:检查真空腔下面的空气阀(图X.2-4中5)是否关闭,安装好玻璃罩,打开旋转机械泵的开关,逆时针旋转截止阀(图X.2-4中8),观察压力表的指针变化,抽真空到压力表显示0.01MPa以下,顺时针旋转截止阀至完全关闭,关上机械泵电源,真空可保持4个小时以上。

充气过程:测试完成后,尽快打开空气阀,观察压力表的指针变化。逆时针旋转截止阀,让截止阀两侧都充气到一个大气压,防止机械泵中润滑油倒流至软管中。当压力表指针达到0.1MPa以上是,可以拿开玻璃罩。

2、温度的控制

温度校准:打开仪器总电源,预热5~10分钟。根据室内温度,校准实时温度。具体步骤:按温控仪的“set”键(参见附录1参数设定),输入0089,调节菜单顺序,激活PSb,进行温度零点误差修正值。

P、I、D参数调整练习:在大气环境中,选择一个加热棒和热偶。将加热棒和热偶,都放入样品台中相应的插孔中。打开加热棒电源,从室温升高温度到60 C,记录温度

图X.2-4

1,2-温控仪3—电压表,4—恒流源, 5—空气阀,6—机械泵,7—气压表,8—截止阀,9—加热棒,10—热偶,11—样品台,12—四探针,13—微调旋钮,14—玻璃罩,15—电学组合箱接线柱(abcdefghijkl),16—真空腔接线柱(a'b'c'd'e'f'g'h'i'j'k'l')。

升高20?C所需升温的时间t1。关闭加热棒电源,按温控仪的“set”键,输入0036,记录下P、I、D的数值(参见附录2中PID算法)。试着增大或减小P、I、D的数值,重新开启加热器电源,记录温度升高20?C所需升温的时间t2,并关闭所选加热棒电源。比较t1和t2,理解如何利用P、I、D参数控制温度。

升温过程:选择另一个加热器,检查其P、I、D的数值是否与所记录的相同,如果不同,请按记录修改。设定温度至120?C,打开加热棒电源,在40—120?C均匀取点,记录电流与电压值。将电流换向,测量反向电压。

降温过程:关掉加热棒电源,自然环境中降温,在120—40?C,均匀取点,记录电流与电压值。将电流换向,测量反向电压。

3、薄膜电阻的测量

四探针组件,由四根等间距探针,微调支架,恒流源及电压表构成。调节微调支架旋钮,当四探针与薄膜接触后,在A、D两根探针间通电流,测量B、C两根探针的电压。由电流值和电压值可直接计算B、C间的电阻值,利用公式(2)可计算电阻率。本实验所采用的样品薄膜厚度为200nm。

薄膜电阻测量步骤:

1)依次连接电学组合箱和真空腔上的接线柱(a-a', b-b', c-c', d-d', e-e', f-f', g-g', h-h', i-i', j-j',k-k', l-l'),(参看图X.2-4)。

2)利用万用表粗测电阻值后,确定恒流源的量程和数字电压表的量程。

3)待测样品放到样品台上,接通恒流源,测得电压,计算室温下,0.1MPa下样品的电阻值,并记录。

4)在真空环境中测试样品的电阻值,检查真空腔的空气阀是否关闭,放上玻璃罩,

打开机械泵,抽真空到压力表显示0.01MPa以下,顺时针旋转气体截止阀,并关闭机械泵电源。

5)打开加热棒电源,设定温度至120?C(40—120?C,均匀取点),记录电流与电压值。将电流换向,测量反向电压。取正反向电压的平均值,计算升温时样品的电阻值。

6)关闭加热棒电源,降温(120—40?C,均匀取点),记录电流与电压值。将电流换向,测量反向电压。取正反向电压的平均值,计算降温时样品的电阻值。

7)测试完成后,关闭电学组合箱电源。打开空气阀,逆时针缓慢旋转截止阀,当压力表指针达到0.1MPa以上是,可以拿开玻璃罩。

8)提高四探针微调支架,使探针离开样品表面,用镊子将样品放入样品盒中。

注意事项:

1. 四探针与薄膜接触后再打开恒流源,避免打火花;

2. 探针与薄膜表面接触松紧要适度,太松,接触不良;太紧,又容易将针弄断;

3.注意加热棒的温度不要超过150?C。

1.熟练掌握机械泵、截止阀和空气阀的使用方法,反复练习将真空腔压强从

0.1MPa

降低到0.01MPa以下;再充气到0.1MPa。

2.选择一个加热器,练习手动调节P、I、D参数进行温度的控制。

3.换另一个加热器,进行薄膜电阻的测量。要求:

1)大气环境中,学习选择合适的恒流源和数字电压表的量程,测量其电阻值,并记

录。

2)在真空环境中测试升温(40—120?C,均匀取点10个以上)和降温(40—120?C,

均匀取点10个以上)时样品的电阻值,并记录。

4. 取薄膜厚度为200nm,利用公式在一个坐标系内绘制升温和降温时电阻率-温度曲

线,确定升温(T SMH)和降温时相转变温度(T SMC),计算转变温度宽度,并估算温度在50~100?C内的电阻率变化的数量级。

1.简单描述VO2薄膜热滞曲线与VO2单晶热滞曲线的区别?

2.如果降温过程太慢,如何操作进行测试降温曲线?

3.误差产生原因有哪些?

附录1 XMT612智能PID 温度的控制仪

XMT612智能PID 温度控制仪是该仪器的主要控温装置,如图1所示。热电阻为Pt100、Cu50,可实现热电偶T 、R 、J 、B 、S 、K 、E 、WRe3-WRe25等10种信号兼容输入,时间比例PID 控制输出可选继电器触点输出或SSR 无触点电平输出,2路继电器输出,可实现双限报警或三位式控制,具备超强自整定功能,自动适应被控制对象,超调抑制功能。其主要技术参数如下: ◆工作电源:AC85-260V/DC85-360V (小于2W)

◆继电器:AC220V/3A

◆SSR 电平:开路电压 8V

◆温度测量精度: 0.2%FS 短路电流40mA

◆超限显示:“EEEE ”

◆环境湿度:≤ 85% RH

◆环境温度:0~+50℃

图1 XMT612智能PID 温度控制仪

参数设定

一、设定要点

1、按 后进入设定状态;

2、使用 、 、 输入密码和参数;

3、按 确认;

4、使用参数向下选择键 或参数向上选择键 选择新参数。 二、初始功能参数

1、进入方式,按 后,输入密码0089,主要调节PSb ,传感器零点误差修正值,调节范围-1000~1000?C ;

set ∨ ∧ > set ∧

∨ set

set 2、cd ,工作方式,选“0”为加热;选“1”为制冷;

3、调节温度传感器类型,P 是K 型热电偶,测温范围-200~1300 C ,内部阻抗100K 。 三、PID 及相关参数

PID 参数主要决定仪表的控制精度和响应速度,一般设定好后不建议调整。

1、进入方式,按 后,输入密码0036,分别调节P 、I 、d 。

2、 P ,比例带,调节范围是0.1~99.9(%),P 值增加,被控制系统温度波动减小;P 值减小,被控制系统温度波动增大;P 值过小,会导致系统震荡发散。

3、 I ,积分时间,调节范围是2~1999(秒),作用是消除静态误差,I 值减小,响应变快,稳定性降低;I 值过增大,稳定性提高,响应变慢。

4、 d ,微分时间,调节范围是0~399(秒),作用是超前控制,补偿滞后,d 值过大或过小都会导致系统稳定性下降,甚至震荡发散。

附录2

基本的PID 算法,需要整定的系数是Kp (比例系数),Ki (积分系数),Kd (微分系数)三个。这三个参数对系统性能的影响如下:

(1) 比例系数 Kp

① 对动态性能的影响 比例系数Kp 加大,使系统的动作灵敏,速度加快,Kp 偏大,振荡次数加多,调节时间加长。当Kp 太大时,系统会趋于不稳定,若Kp 太小,又会使系统的动作缓慢;

② 对稳态性能的影响 加大比例系数Kp ,在系统稳定的情况下,可以减小静差,提高控制精度,但是加大Kp 只是减少静差,不能完全消除。

(2) 积分系数 Ki

① 对动态性能的影响 积分系数Ki 通常使系统的稳定性下降。Ki 太大,系统将不稳定;Ki 偏大,振荡次数较多;Ki 太小,对系统性能的影响减少;而当Ki 合适时,过渡特性比较理想;

② 对稳态性能的影响 积分系数能消除系统的静差,提高控制系统的控制精度。但是若Ki 太小时,积分作用太弱,以致不能减小静差。

(3) 微分系数 Kd

微分控制可以改善动态特性,如超调量减少,调节时间缩短,允许加大比例控制,使静差减小,提高控制精度。但当Kd偏大或偏小时,超调量较大,调节时间较长,只有合适的时候,才可以得到比较满意的过渡过程。

对系数实行“先比例,后积分,再微分”的整定步骤

(1)首先只整定比例部分。即将比例系数由小到大,并观察相应的系统响应,直到得到反应快,超调小的响应。

(2)加入积分环节。整定时首先置积分系数Ki一个较小的值,并将第(1)步中整定的比例系数略为缩小(例如缩小为原值的0.8倍),然后增大Ki,使在保持系统良好动态性能的情况下,静差得到消除。在此过程中,可根据响应的好坏反复改变比例系数与积分系数。(3)若使用比例积分调节器消除了静差,但动态过程经反复调整仍不能满意,则可加入微分环节。在整定时,可先置微分系数为0,在第一步的基础上,增大Kd,同时相应地改变比例系数和积分时间。

二氧化钒薄膜的结构_制备与应用

二氧化钒薄膜的结构、制备与应用 Ξ 许 ,邱家稳,何延春,李强勇,赵印中,王洁冰 (兰州物理研究所,甘肃兰州 730000)摘 要:综述了VO 2薄膜的结构特点、相变、制备工艺特性,以及薄膜研究、应用和开发现状,认为VO 2薄膜 具有较好的开发前景。 关键词:薄膜;结构;特性;制备 中图分类号:O484.1 文献标识码:A 文章编号:1006-7086(2001)03-0136-03 STRUCTURE AN D PREPARATION AN D APPL ICATION FOR VANADIUM DIOXIDE THIN FI LMS XU Min ,QIU Jia-w en ,HE Yan-chun ,L I Q iang -yong ,ZHAO Yin-zhong ,WANG Jie-bing (Lanzhou I nstitute of Physics ,Lanzhou 730000,China) Abstract :The micro-structure ,the phase transition ,preparation and processing properties of VO 2thin films are described .The pressent situation ,development and application of VO 2thin film are given.There will be a good developing prospect in VO 2thin film. K ey w ords :thin film ;structure ;properties ;preparation ;application. 1 引 言 近年来,由于光谱干涉、激光及空间光学等技术的飞跃发展,促使光学薄膜向集光、电、热等多功能于一身的方向发展,形成一膜多用的态势。其中氧化钒薄膜就是这一类具有光、电特性的薄膜器件。在一定的温度条件下,其原有的半导体性质快速变为金属性质。由传输能量变为阻挡光能量通过。这使它的热触发开关电路应用前景十分诱人。比照其它类型的开关器件,在光学系统中,它将以体积小、重量轻、构造简单、作用特殊、造价相对低廉等优越性而具有极高的潜在应用价值。 2 V O 2薄膜相变,原理及性质 1958年,科学家Morin [1]在贝尔实验室发现了钒和钛的氧化物具有半导体-金属相变特性。其中氧化钒材料的相变性能较好。实验表明:氧化钒的相变通常与结构相变相联系。发生相变时,氧化钒的结构畸变到较低的对称形式。促使氧化钒薄膜发生相变的条件是温度。VO 2薄膜相变温度T =68℃。在常温下VO 2薄膜呈现半导体状态具有单斜结构,对光波有较高的透射能力。当薄膜在外界条件下,温度升高到T 时,薄膜原始状态迅速发生变化,此时VO 2薄膜显示金属性质,变为四方晶格晶体结构,它对光波具有较高的反射。 图1给出了二氧化钒薄膜的高低温透射光谱曲线。从二氧化钒晶体结构上看出,VO 2薄膜在68℃发生相变,伴随着这个相变,它从四角金红石(P42/mnm )变化到单斜对称的畸变的金红石结构(P21/C )。图2给出二氧化钒的高温相和低温相结构。在四角结构中,V 4+离子占据bcc 体心位置,沿着c 轴V -V 原631 真空与低温 第7卷第3期 Vacuum &Cryogenics 2001年9月Ξ收稿日期:2001-04-05 作者简介:许 (1971-),男,甘肃省金昌市人,工程师,从事卫星激光防护技术及空间应用薄膜的研制和开发工作。

氧化钒 相变原理

1 氧化钒相变原理 1958年,科学家F.J.Morin在贝尔实验室发现钒和钦的氧化物具有半导体一金属相变特性。实验表明:促使氧化钒薄膜发生相变的条件是温度,实验得到的二氧化钒薄膜的相变温度点为68℃(T=68℃)。常温下,VO2薄膜呈现半导体状态,具有四方晶格结构,对光波有较高的透射能力。当薄膜温度在外界条件促使(例如吸收光能量)下升高到一定温度点t时,薄膜原始状态迅速发生变化,此时VO2薄膜显示金属性质,是单斜晶结构,对光波有较高的反射。薄膜光谱特性由高透陡变为高反, 如图1所示。 二氧化钒材料在转变逆过程中显示了晶体转变的一般倾向,转变温度取向由高到低,但原子的重新分类并不广泛,原来的原子群仅有轻微的失真。在过渡温度T c处,原子群的变化迅速且可逆。二氧化钒(VO2)薄膜晶格结构的变化象所有从单斜晶结构向四方晶格结构转变的材料一样,在电和光特性中伴随有较大的变化。薄膜相变前后的电导率、光吸收、磁化率及比热等物理性能均有较大的改变。氧化钒薄膜由半导体到金属态可以进行高速双向可逆转换,并具有高的空间分解能力。薄膜的转换特性除取决于样品结构和样品成分,同时还取决于样品的制备。高价氧化物脱氧还原后的膜不均匀且多孔,因而降低了转换特性。总而言之,氧化钒薄膜相变特性的优劣取决于薄膜的质量。

2 VO2的相变特征 2.1 相变晶体学 图2表示了四方相VO2(R)和单斜相VO2(M)的晶体结构。a为高温四方金红石结构,单位晶胞中的8个顶角和中心位置被V4+占据,而这些V4+的位置正好处于由O2-构成的八面体中心。当VO2发生相变时,V4+偏离晶胞顶点位置,晶轴长度发生改变,β角由90°变为123°,变成单斜结构。相变后,形成的V-V键不再平行于原来的c r轴,形成折线型的V-V链,钒原子间距离按265pm和3l2pm的长度交替变化,同时a m轴的长度变为原来c r轴的两倍,体积增加约1%。热力学也证明,VO2相变为一级相变,相变前后具有体积的改变。氧八面体的结构也从正八面体变为偏八面体,两个V-O键间的夹角由90°变为78~99°,如图3所示。 图2 VO2 两种晶胞结构示意图(黑点为V4+,白点为O2- 图3 VO2 相变时的氧八面体变化

二氧化钒薄膜的制备及性能表征

2011年3月15日第34卷第6期 现代电子技术 M odern Electro nics T echnique M ar.2011V ol.34N o.6 二氧化钒薄膜的制备及性能表征 赵 萍1,李立珺1,张 洋2 (1.西安邮电学院电子工程学院,陕西西安 710121; 2.香港科技大学工学院,香港九龙) 摘 要:通过激光脉冲沉积法,分别在C sapphir e 和R sapphir e 衬底上制备了单相二氧化钒(VO 2)薄膜。用X 射线衍射法表征了不同实验条件下制备的二氧化钒薄膜的结构性质,分析表明在600 ,10-2to rr 的氧气分压下,生长15min 可得到单相的二氧化钒(V O 2)薄膜;重点研究了激光能量对薄膜电学性质的影响,实验结果表明激光能量在500~600M J 时制备的二氧化钒薄膜具有最好的电学性质。 关键词:脉冲激光沉积;二氧化钒;薄膜;X 射线衍射;电学性质 中图分类号:T N919 34;O 782+;O722+.4;O792 文献标识码:A 文章编号:1004 373X(2011)06 0148 03 Synthesis and Characterization of VO 2Thin Films ZH A O P ing 1,L I L i jun 1,ZH A N G Y ang 2 (1.Schoo l o f Elec t roni c Engineering,Xi an University of Post s and T eleco mmuni cat i o ns,Xi an 710121,China; 2.Scho ol o f Eng ineering ,H o ng kong U niv ersity o f Scie nce and T echnolo gy ) Abstract :Single phase VO 2thin films w ere sy nthesized v ia pulsed laser deposition met ho d o n C sapphir e and R sapphire substrates.T he st ruct ur e pro per ties o f V O 2thin films under differ ent experimental conditio ns wer e characterized by X r ay dif fr action.T he results sho w that single phase V O 2thin film can be pr epar ed in 15minut es,at 600 ,10-2t orr pr essure of o x y gen.T he laser energ y impacts on electr ical propert ies of VO 2thin films are discussed.Experimental r esult s sho w that the VO 2thin films pr epar ed at the laser energ y of 500~600M J has the best elect rical pr operties. Keywords :pulsed laser deposition;V O 2;thin f ilms;XRD;electrical pro pert ies 收稿日期:2010 12 09 基金项目:国家自然科学基金资助项目(60976020);陕西省教 育厅资助项目(112Z051) 20世纪50年代末,F.J.M orin 发现二氧化钒(VO 2) 在341K(68 )存在半导体到金属的相变转换,称为SMT(Semiconductor Metal Transition )。从那时起,人们对VO 2的金属 半导体相变以及与这些相变伴随的光学和电学性质上的突然变化很感兴趣。在所有不同类型的钒氧化物中,VO 2因其相变温度接近室温而被研究得最多[1 3]。随着温度的升高,在68 时,二氧化钒由低温半导体相转变成高温金属相,材料的结构性能同时可在瞬间突变,晶体结构由低温单斜结构向高温金红石结构转变,电阻率发生几个数量级的变化,同时伴随着磁化率,折射率和透射率的可逆的变化。二氧化钒的相变性质使其具有广泛的应用前景,如太阳能控制材料、红外辐射测热计、热敏电阻、致热开关、可变反射镜、VO 2红外脉冲激光保护膜、晶体管电路和石英振荡器等稳定化的恒温槽、透明的导电材料、光盘材料、全息存储材料、电致变色显示材料、非线性和线性电阻材料等等。自20世纪90年代初期,美国Honeywell 公司研制成功一种利用二氧化钒薄膜作为热敏材料的新型红外器件后,对而氧化钒特性的研究己经日益引起人们广泛的兴趣。因此,对VO 2 的研究具有十分重要的意义。 随着工艺技术的发展,多种镀膜技术被用以制备VO 2薄膜,脉冲激光沉积(Pulsed Laser Deposition,PLD)法与其他方法,如M OCVD,Sol gel 法 [4 7] ,反应 磁控溅射法[8 9]等相比,具有实验周期短,样品表面均匀,光电性能好的特点。本文采用PLD 法,在不同的氧气偏压、生长温度、衬底取向以及激光能量条件下,制备 了二氧化钒薄膜样品,并对其结构和电学性能做了表征,分析了二氧化钒薄膜的生长条件对其结构和电学性能的影响,对薄膜制备的最佳工艺做了深入研究。1 试 验 1.1 二氧化钒薄膜的制备 在此采用PLD 方法制备二氧化钒薄膜。其具体过程如下:首先将10g 二氧化钒粉末(分析纯)均匀混合,加入10m L 甲醇,制成悬浮液,在80 恒温下放置30min 后取出,研磨成粉末,然后置于加压机内加压,得到二氧化钒靶材,将所制得的靶材放入高温炉内,在1000 的氩气气氛中退火4h,制得实验用靶材。 将制得的靶材固定在PLD 仪器中,采用C sap phire(氧化铝)和R sapphire(氧化铝)作为基底,以不同的激光能量,在10-2 tor r 氧气分压,600 温度下,轰击

热敏电阻温度特性的研究

热敏电阻温度特性的研究 一、实验目的:了解和测量热敏电阻阻值与温度的关系 二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适 用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示 )/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R , 即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为 0T 时的电阻值0R ,就可以利用式(3)计算在

二氧化钒的相变

生长在c轴蓝宝石衬底上VO2薄膜的相变特性在许多显示绝缘体(半导体)—金属相变的金属氧化物中,VO2备受关注。作为典型的过渡型金属氧化物,VO2薄膜展现出良好的从绝缘体到金属的相变。当温度高于340K时,VO2具有四角金红石相(P42/mnm)的金属,当温度低于340K时,VO2具有单斜晶体结构(P21/C)的绝缘体。在绝缘到金属的相变过程中,VO2的光学和电学性质发生巨大的变化,其中电阻值有几个数量级的变化,并且在红外区域的透射率发生巨大改变。这些性质,使得VO2有望应用于各类传感器,转换开关,光存储器件和红外探测器中。VO2的低温单斜晶相源于高温四角金红石相的钒原子沿着c轴配对并有微小的扭曲。这种相变过程中的钒原子重新排布,导致单斜晶相中的3d不成键(t2g)轨道伸展并交叠,最终导致在四角金红石相中窄的导带。 研究背景 材料的结构相变以及相变后所产生的一系列性质的改变一直是物理学家和材料学家所关注的热点问题;VO2结构相变研究最早始于上世纪六七十年代,1959年美国科学家F.J.Morin[1]首次发现VO2在温度达到340K时发生相变。 两种关于VO2相变的争论 1.Peierls等人提出Peierls模型机制[2 3]:Peierls模型认为晶体结构发生变化导致原子周期势发生变化,而势场的变化又导致能带的结构发生变化,因而发生金属-绝缘相变。所以当VO2的温度超过相变临界温度点时,晶体晶格将发生崎变,最终导致晶体的金属-绝缘相变。 2.MottN.F.等人提出Mott-Hubbard模型[4 5]:Mott-Hubbard机制则视相变材料为一个强电子关联体系,认为晶体的相变是由于材料内部电子浓度变化导致的,也可以认为是电子之间强相互作用造成的。当晶体中电子浓度低于某一临界值时,晶体处于半导体态或绝缘态,导电性较差;当晶体中电子浓度高于临界值时,晶体则转变为金属相,从而具有金属的特性。 研究现状 目前VO2薄膜制备方法有溅射法、激光脉冲沉积法、化学气相沉积法等。常用的衬底有硅衬底,蓝宝石衬底,TiO2衬底等。现在关于VO的研究主要有两个方向:一方面,通过一些比较先进的技术手段来进一步探究VO2机理的研

一种制备氧化钒薄膜的新工艺

收稿日期:2002-12-17. 基金项目:国家自然科学基金资助项目(60106003);华中科技大学研究生科技创新基金资助项目(Y CJ-02-003).材料、结构及工艺 一种制备氧化钒薄膜的新工艺 王宏臣1,易新建1,2,黄 光3,肖 静1,陈四海1 (华中科技大学1.光电子工程系;2.激光国家重点实验室;3.图像识别与人工智能教育部重点实验室,湖北武汉430074) 摘 要: 采用两步法工艺,即先在衬底上溅射一层金属钒膜,再对其进行氧化的方法,在硅和氮化硅衬底上制备了高电阻温度系数的混合相VO x 多晶薄膜。电学测试结果表明:厚度为50nm 的氧化钒薄膜的方块电阻和电阻温度系数(T CR)在室温时分别达到50k 和0.021K -1。 关键词: 红外探测器;氧化钒薄膜;离子束溅射淀积;热敏薄膜 中图分类号: TN213 文献标识码: A 文章编号: 1001-5868(2003)04-0280-03 A New Method for Preparation of Vanadiu m Oxide Thin Film WANG Hong chen 1,YI Xin jian 1,2,H UANG Guang 3,XIAO Jing 1,CHEN Si hai 1 (1.Dept.of Optoelectronic Engineering;2.State Key Laboratory for Laser Technology;3.State Key Laboratory for Imaging Processing and Intelligent Control,Huazhong University of Science and Technology,Wuhan 430074,CHN) Abstract: M ix ed phase vanadium oxide thin films w ith high temperature coefficient of resistance (TCR)are made on Si and Si 3N 4substrates using a new method.The tests indicate that the square resistance and TCR of the vanadium oxide thin film (50nm )are 50k and 0.021K -1at room temperature,respectively.Key words: IR detectors;vanadium ox ide thin film;ion sputtering deposition;thermo sensitive thin film 1 引言 非致冷热红外探测器可以在室温下正常工作,与必须在低温致冷系统协助下才能正常工作的光子探测器相比,在低成本、低功耗、长寿命、宽谱段探测、微型化和可靠性等诸多方面都具有明显的优势[1,2]。在非致冷红外成像领域,以热敏电阻微测辐射热计为核心的非致冷红外焦平面已经取得重要突破并达到实用化,在军事和部分民用领域获得了广泛的应用,成为热成像技术中最令人注目的突破之一 [3] 。 非致冷红外微测辐射热计是利用探测器敏感元的热敏特性来探测红外辐射的,因此材料的热敏特 性是决定微测辐射热计探测性能的重要因素。各国研究者都在积极探索开发新的高性能热敏材料。衡量薄膜材料热敏特性优良与否的指标有多个,如薄膜的电阻温度系数、方块电阻、1/f 噪声和光谱吸收率。薄膜的电阻温度系数被定义为薄膜的电阻率随温度的相对变化率。热敏薄膜材料的电阻温度系数与材料的电荷载流子浓度和迁移率等因素有关。 以VO 2为基的混合相氧化钒(VO x )薄膜在室温附近电阻温度系数可以达到- 2.00 10-2K -1,大约是金属薄膜的5~10倍,而且具有较小的1/f 噪声和合适的方块电阻以及较高的红外光谱吸收率,其制备工艺又与CMOS 工艺兼容,所以该薄膜材料是目前用于微测辐射热计热敏材料的理想选择。 2 氧化钒薄膜的制备 制备氧化钒薄膜的方法很多,如反应离子溅射、 280 SEMIC ONDUC TOR OPTOELECTRONIC S Vol.24No.4Aug.2003

热敏电阻温度特性研究实验教案

热敏电阻温度特性研究实验 一、实验简介 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。热敏电阻作为温度传感器具有用料省、成本低、体积小等优点,可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。本实验的目的是了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。 二、实验原理 1.半导体热敏电阻的电阻—温度特性 热敏电阻的电阻值与温度的关系为: R=Ae B/T(1) A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为: α=1 R t dR dT (2) R t是在温度为t时的电阻值。 2.惠斯通电桥的工作原理,如图所示: 惠斯通电桥原理图 四个电阻R1,R2,R3,R x组成一个四边形,即电桥的四个臂,其中R x就是待测热敏电阻。在四边形的一对对角A和C之间连接电源,而在另一对对角B和D 之间接入检流计G。当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。平衡时必有R x=(R2/R1)?R3,(R2/R1)和R3都已知,R x即可求出。 电桥灵敏度的定义为: S= ?n ?R x/R x (3) 式中?R x指的是在电桥平衡后R x的微小改变量,?n越大, 说明电桥灵敏度越

高。 三、实验内容 1.用箱式电桥研究热敏电阻温度特性 (1)使用内接电源和内接检流计,按照实验电路图连线。 (2)线路连接好以后,检流计调零。 (3)调节直流电桥平衡。 (4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/ R0),计算出室温时直流电桥的电桥灵敏度。 (5)调节适当的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻值R t;再将自耦调压器输出电压值调为0V,使水慢慢冷却,降温过程中每隔5℃测量一次热敏电阻值R t,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。 (6)根据测量结果,利用公式R=R∞e B/T和α=1 R t dR dT ,分别求取温度T趋于 无穷时的热敏电阻阻值R∞、热敏电阻的材料常数B以及50℃时的电阻温度系数α。 2.用自组式电桥研究热敏电阻温度特性 (1)按下图所示实验电路图正确连线。 直流电桥测电阻电路图 (2)线路连接好以后,检流计调零。 (3)调节直流电桥平衡。 (4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=?n/(?Rx/Rx)或S=?n/(?Ro/Ro),计算出室温时直流电桥的电桥灵敏度。 (5)选择合适的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻阻值;再将自耦调压器输出电压值调为0V,在水温的从85℃下降到室温的过程中,每隔5℃测量一次热敏电阻阻值,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。 (6)根据测量结果,求取温度T趋于无穷时的热敏电阻阻值R∞、热敏电阻的材料常数B以及50℃时的电阻温度系数α。 四、实验仪器

热敏电阻的温度特性的研究

实验 项 目: 实验 目 的: 1、测定负温度系数热敏电阻的电阻—温度特性,并利用直线拟合的数据处理方法,求其材料常数。 2、了解以热敏电阻为检测元件的温度传感器的电路结构及电路参数的选择原则。 3、学习运用线性电路和运放电路理论分析温度传感器电压—温度特性的基本方法。 4、掌握以叠代法为基础的温度传感器电路参数的数值计算技术。 5、训练温度传感器的实验研究能力。 实验 仪 器: 热敏电阻的温度特性的研究
1. TS—B3 型温度传感综合技术实验仪; 2. 磁力搅拌电热器; 3. ZX21 型电阻箱; 4. 数字万用表; 5. 水银温度计(0-100℃); 6. 烧杯;7. 变压器油
实验 原 理: 具有负温度系数的热敏电阻广泛的应用于温度测量和温度控制技术中。这类热敏电阻大多数是由一些过度金属氧化物(主要有 Mn、Co、Ni、Fe 等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制作而成,它们具有 P 型半导体的特性。对于一般半导体材料,电阻率随 温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。但对上述过渡金属氧化物则有所不同,在室温范围内基本上已全部 电离,即载流子浓度基本与温度无关,此时主要考虑迁移率与温度的关系,随着温度升高,迁移率增加,所以这类金属氧化物半导体的电阻率下 降,根据理论分析,对于这类热敏电阻的电阻—温度特性的数学表达式通常可以表示为: Rt=R25?exp[Bn(1/T - 1/298)] (1)
其中 Rt 和 R25 分别表示环境为温度 t℃和 25℃时热敏电阻的阻值;T=273+t ;Bn 为材料常数,其大小随制作热敏电阻时选用的材料和配方而异, 对于某一确定的热敏电阻元件,它可由实验上测得的电阻—温度曲线的实验数据,用适当的数据处理方法求得。 下面对以这种热敏电阻作为检测元件的温度传感器的电路结构、工作原理、电压—温度特性的线性化、电路参数的选择和非线性误差等问题论述 如下: 一、电路结构及工作原理 电路结构如图 1a 示,它是由含 Rt 的桥式电路及差分运算放大电路两个主要部分组成。当热敏电阻 Rt 所在环境温度变化时,差分放大器的输入 信号及其输出电压 V0 均要发生变化。传感器输出电压 V0 随检测元件 Rt 环境温度变化的关系称温度传感器的电压—温度特性。为了定量分析这 一特征,可利用电路理论中的戴维南定理把图 1a 示的电路等效变换成图 1b 示的电路,在图 1b 中:
图1
电路原理图及其等效电路
(2) 它们均与温度有关,而
(3) 与温度无关。根据电路理论中的叠加原理,差分运算放大器输出电压 V0 可表示为:
(4)

氧化钒薄膜的电阻特性研究

氧化钒薄膜的电阻特性研究 1. 学习二氧化钒(VO 2)薄膜晶体结构及相转变等相关知识; 2. 掌握利用恒流源测量薄膜电阻的方法,计算不同温度范围内的电阻变化率; 3. 利用作图法处理数据,作出升温曲线和降温曲线并归纳总结热滞现象。 真空腔(四探针调节架、载物台、加热棒及热偶),电学组合箱(2个 XMT612智能温控仪、1 个恒流源、1个数字电压表)。 二氧化钒(VO 2)薄膜是一种具有热滞相变特性的材料,随着温度的升高,在 68 C 附近会发生单斜结构和金红石结构的晶型转变,与此同时由半导体转变为金属态,此转变在纳秒级时间范围内发生,随之伴随着电阻率、磁化率、光的透过率和反射率的可逆突变。这些卓越的特性有着诱人的发展前景,可以用来制作光电开关材料、热敏电阻材料、光电信息存储器、激光致盲武器防护装置、节能涂层、偏光镜以及可变反射镜等器件等。 一、二氧化钒(VO 2)薄膜的晶体结构 图X.2-1单斜晶结构VO 2(M ) 图X.2-2金红石结构VO 2(R )

二氧化钒型态结构是以钒原子为基本结构的体心四方晶格,氧原子在其八面体的位置,有四种不同形态的结构:(1)金红石结构VO2(R);(2)轻微扭曲金红石结构的单斜晶VO2(M);(3)非常接近V6O13结构的单斜晶结构VO2(B);(4)四方晶结构VO2(A)。二氧化钒在68℃时发生相变,在68℃以下时VO2(M)存在,反之,在68℃以上时则为金红石结构VO2(R),VO2(R)和VO2(M)型态的相转变是可逆的。同时VO2(B)→VO2(R)也可以发生相转化,VO2的另一个金属相VO2(A)是其相转变过程的中间相。VO2(B)型是一种亚稳态氧化物,经过对VO2(B)型薄膜进行退火处理,能够使其转变成VO2(R)型的稳定结构,但是VO2(A)和VO2(B)型态的相转变是不可逆的。 对VO2而言,最稳定的结构是VO2(R),其稳定的范围是68℃到1540℃之间。如图X.2-1所示,高温形态的四方金红石结构具有高对称性,V4+离子占据中心位置,而 O2-则包围 V4+离子组成一个八面体,此八面体的四重轴是沿着(110)或(011)排列。C R轴的钒原子组成等距(d v-v=0.286 nm)的长链,为八面体的共用边。VO2(R)的晶格参数为a R=b R=0.455nm,c R=0.288nm, β=90°,Z=2。 在68℃以下,单斜晶VO2(M)形成。沿着c轴方向的两个四价钒使晶格扭曲,进而导致对称性降低。在室温下VO2(M)相的晶格参数为a M=0.575nm,b M=0.542nm,c M=0.538nm, β=122.6°,Z=4。由上述数据可观察到VO2(M)的晶格参数与VO2(R)的晶格参数息息相关:a M=2c R,b M =a R ,c M = b R - c R ,VO2(M)结构也是八面体。如图X.2-2。 二、二氧化钒(VO2)薄膜的相转变温度 在常温下二氧化钒薄膜处于半导体态,其电阻随温度升高而减小;当温度继续升高,薄膜电阻突然下降,随后薄膜电阻随温度升高而增大(见图X.2-3)。从图中还可观察到温度上升时和温度下降时的电阻-温度特性曲线并不完全重合,把这种具有类似铁磁材料迟滞特征的现象,称为热滞回线,即温度的变化落后于电阻的变化。图2是VO2单晶典型的电阻-温度曲线。半导体态电阻偏离线性的电阻Rs与金属态偏离线性的电阻R M 之差的50%阻值对应的温度称为转变温度,温度升高曲线对应的转变温度记作T SMH,温度降低时对应的转变温度记作T SMC,两者温度之差称为转变宽度(?T)。 本实验测量VO2薄膜的电阻-温度特性,与VO2单晶的电阻-温度曲线形状有所不同,但是基本概念仍适用。

热敏电阻温度特性的研究带实验数据处理

本科实验报告 实验名称:热敏电阻温度特性的研究 (略写) 实验15热敏电阻温度特性的研究 【实验目的和要求】 1. 研究热敏电阻的温度特性。 2. 用作图法和回归法处理数据。 【实验原理】 1. 金属导体电阻 金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示: )1(320 ++++=ct bt t R R t α (1) 式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。 在很多情况下,可只取前三项: )1(20bt t R R t ++=α (2) 因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似

写成: )1(0t R R t α+= (3) 式中α称为该金属电阻的温度系数。 2. 半导体热敏电阻 热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为 T B T e A /0=ρ (4) 式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。其电阻率的温度特性为: T B T e A ?'=ρρ (5) 式中A '、 ρ B 为常数,由材料物理性质决定。 对(5)式两边取对数,得 A T B R T ln 1 ln += (6) 可见T R ln 与T 1 成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。 3. 实验原理图

热致变色二氧化钒薄膜的研究进展

热致变色二氧化钒薄膜的研究进展* 刘东青,郑文伟,程海峰,刘海韬 (国防科技大学新型陶瓷纤维及其复合材料国防科技重点实验室,长沙410073) 摘要 二氧化钒薄膜具有优异的热致变色特性,已成为功能材料领域研究的热点。结合二氧化钒的结构分析了其热致变色特性;综述了二氧化钒薄膜的制备方法,着重评述了溅射法、化学气相沉积法及溶胶-凝胶法等几种常用方法;阐述了二氧化钒薄膜在智能窗、新兴光子晶体、伪装隐身技术方面的应用前景;最后指出了其今后的研究与发展方向。 关键词 热致变色 二氧化钒 薄膜 伪装隐身中图分类号:T B34;O484 文献标识码:A Research Prog ress on T herm ochromic V anadium Dioxide T hin Film LIU Dongqing,ZH ENG Wenw ei,CHEN G H aifeng,LIU Haitao (K ey L ab of CFC,National U niv ersity of Defense T echnolog y,Changsha 410073) Abstract T he V O 2thin film,w hich has ex cellent thermochr omic pr operties,has been one o f the most interes -ting functional materials.T he thermo chr omic pr operty is analysed combined w it h the cry st al st ructur e of V O 2.T he preparatio n metho ds of V O 2thin film,especially sputt ering,chemical v apo ur deposition and so-l g el metho ds,a re presented.V O 2thin film has g reat pro spects in many fields,and the po tential applicatio ns in smar t w indow ,especially in the new fields:photo n cr ystal,camouflag e and stealthy technolo gy ,ar e view ed.F inally,the futur e st udy and de -velo pment directio ns ar e po inted o ut. Key words ther mochromic,vanadium dio xide,thin f ilm,camouflag e and st ea lth *武器装备预研基金 刘东青:男,1986年生,硕士研究生,主要从事功能薄膜与伪装材料方面的研究 E -mail:dong qing_1986@https://www.wendangku.net/doc/8510605445.html, 0 引言 二氧化钒(VO 2)是一种过渡金属氧化物,自1959年F.J.M orin [1] 在贝尔实验室发现V O 2具有金属-绝缘体相变(M IT )的性质以来,研究者们就对这种氧化物产生了极大兴趣,在结构特征、相变机理、合成制备及实际应用等方面开展了广泛的研究。 V O 2在T c =341K 时发生由低温绝缘体态向高温金属态快速可逆的一级位移型相变[2,3],相变前后VO 2的晶胞如图1所示(图中还标示出了单斜结构的主要晶面)。当T >T c 时V O 2为四方金红石结构,记为VO 2(R),空间群P 42/m nm (N o.136),晶胞参数a T =b T =455pm,c T =286pm 。当T T c 时V O 2对红外光具有高透射性,T

关于氧化钒特性研究汇总

南京理工大学 关于氧化钒特性研究 学院:电子工程与光电技术学院 作者: 岳超李贺王贵圆黄伟 题目: 关于氧化钒特性研究 老师:富荣国 评分: 2013 年 11 月

中文摘要

外文摘要

关于氧化钒特性研究第I 页共I 页 目次 1 绪论 (1) 1.1摘要 (1) 1.2国内外研究现状 (1) 2氧化钒晶体结构与特性 (2) 2.1V2O5晶体结构与特性 (2) 2.2VO2晶体结构与特性 (3) 2.3V2O3晶体结构与特性 (4) 2.4钒的各种氧化物的结构与特性比较 (4) 3 相变原理 (5) 3.1相变原理背景介绍 (5) 3.2 VO2的相变特性及理论 (5) 4氧化钒材料在红外探测中的应用 (7) 4.1红外探测器综述 (7) 4.1.1光子红外探测器 (8) 4.1.2热敏红外探测器 (9) 4.2氧化钒热敏薄膜研究 (11) 4.2.1测辐射热计热敏材料 (11) 4.2.2氧化钒热敏薄膜研究 (12) 总结 (15)

1 绪论 1.1摘要 V-O系是一个有多种化学计量配比化合物的系统,由于V的价态结构非常复杂,可以和氧结合形成以状态存在的多种氧化物以及它们的混合相。氧化钒种类很多,主要有V2O5,VO2,V2O3,VO等, 且常常共存,不同组分的氧化钒薄膜其电学性质有明显的不同。例如:单晶和多晶态的五氧化二钒具有较高的TCR(电阻温度系数), 但其电阻率大,与微测辐射热计的外围电路不易匹配;而V2O3和VO 薄膜在室温下导体, 电阻率和TCR 都非常小. 相比之下,VO2薄膜在室温附近具有TCR 高, 电阻率小等特性,是制备测辐射热计的最佳热敏材料。 1.2国内外研究现状 20世纪90年代起,兰州物理研究所报道过VO2材料的制备方法研究,并利用它们作为热致变色薄膜材料。电子科技大学和重庆光电研究所合作报道了它们制备VO2膜的研究,主要用途为制作室温工作的红外传感器。华中科技大学光电国家实验室九五期间在国家科技部和863计划支持下国内研制了一系列钒的氧化物膜系,其中利用VO2薄膜材料研制了室温工作的红外传感器,达到下列技术指标:阵列规模:128 元线列;单元尺寸:50 ×50英寸;工作温度:室温;电阻温度系数(TCR):2%;噪声等效温差(NETD):200 /mk。 并且,利用VO2为基的材料在MOS开关晶体管的研究方面,已完成原理性试验;在光开关的研究方面,已完成原理样片研究,并且基于光开关原理,研究了该材料在强激光防护方面的应用,在近红外光(1.06um)和远红外(10.6um)波段进行了抗强激光实 验,测试结果表明:消光比为15左右,能量阈值为150 J/cm 2 ,开关时间不高于1 us。 美国Honeywell公司利用VO2为敏感红外线的薄膜材料,研制了320×240元室温工作的非制冷红外焦平面传感器,在20世纪90年代中期已经面市,被美国称为第三代红外传感器,开辟了红外技术在民用市场上的应用,目前每年以60%的市场增长率迅猛发展。加拿大国家光学研究院利用VO2和V2O5的半导体—金属态可逆转变,研制室温和高温应用的相变型光开关,美国纽约州先进传感技术和美国洛克威尔国际科学中心利用V02和V2O3的金属—绝缘体在强激光作用下可逆转变,研制高速抗强激光防护材料,在10.6um激光作用下,消光比达到20dB。

测量热敏电阻的温度系数

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

相关文档