文档库 最新最全的文档下载
当前位置:文档库 › 信号与线性系统分析_(吴大正_第四版)习题答案

信号与线性系统分析_(吴大正_第四版)习题答案

信号与线性系统分析_(吴大正_第四版)习题答案
信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4))(sin )(t t f ε= (5))(sin )(t r t f =

(7))(2)(k t f k ε= (10))(])1(1[)(k k f k

ε-+= 解:各信号波形为

(2)∞<<-∞=-t e t f t ,)(

(3))()sin()(t t t f επ=

(4))(sin )(t t f ε=

(5))

f=

r

t

)

(sin

(t

(7))

t

=

(k

f kε

(

2

)

(10))

f kε

k

=

(k

+

-

(

(

]

)1

)

1[

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

(11))]7()()[6sin()(--=k k k k f εεπ

12))]()3([2)(k k k f k ---=εε

解:各信号波形为

(1))2()1(3)1(2)(-+--+=t t t t f εεε

(2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε

(8))]5()([)(--=k k k k f εε

(11))]7()()[6

sin()(--=k k k k f εεπ

(12))]()3([2)(k k k f k

---=εε

1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=

解:

1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

(1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6))25.0(-t f

(7)dt

t df )

( (8)dx x f t ?∞-)( 解:各信号波形为

(1))()1(t t f ε-

(2))1()1(--t t f ε

(5))21(t f -

(6))25.0(-t f

(7)dt t df )

(

(8)dx x f t

?∞-)(

1-7 已知序列)(k f 的图形如图1-7所示,

画出下列各序列

的图形。

(1)

)()2(k k f ε- (2))2()2(--k k f ε (3)

)]4()()[2(---k k k f εε (4))2(--k f (5))1()2(+-+-k k f ε (6))3()(--k f k f

解:

1-9 已知信号的波形如图1-11所示,分别画出)(t f 和dt

t df )(的波形。

解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的两倍而得)。将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。再将)3(+t f 的波形右移3个单位,就得到了)(t f ,如图1-12(c)所示。dt

t df )(的波形如图1-12(d)所示。

1-10 计算下列各题。

(1)[]{})()2sin(cos 22

t t t dt

d ε+ (2))]([)1(t

e dt d t t δ-- (5)dt t t t )2()]4sin([2++?∞

∞-δπ (8)dx x x t

)(')1(δ?∞--

1-12 如图1-13所示的电路,写出

(1)以)(t u C 为响应的微分方程。

(2)以)(t i L 为响应的微分方程。

1-20 写出图1-18各系统的微分或差分方程。

1-23 设系统的初始状态为)0(x,激励为)( f,各系统的全

响应)(?y 与激励和初始状态的关系如下,试分析各系统是否是线性的。

(1)?+=-t t dx x xf x e t y 0)(sin )0()(

(2)

?+=t dx x f x t f t y 0)()0()()( (3)?+=t

dx x f t x t y 0)(])0(sin[)( (4))2()()0()5.0()(-+=k f k f x k y k

(5)∑=+=k

j j f kx k y 0)()0()(

1-25 设激励为)(?f ,下列是各系统的零状态响应)(?zs y 。判断各系统是否是线性的、时不变的、因果的、稳定的?

(1)dt

t df t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π=

(4))()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=

(7)∑==k j zs j f k y 0)()( (8)

)1()(k f k y zs -=

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) f= r t ) (sin (t (7)) t = (k f kε ( 2 ) (10)) f kε k = (k + - ( ( ] )1 ) 1[

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f

(5) )2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

吴大正《信号与线性系统分析》笔记及习题(连续系统的时域分析)【圣才出品】

第2章连续系统的时域分析 2.1 复习笔记 一、LTI连续系统的响应 1.微分方程的经典解 该微分方程的全解由齐次解y h(t)和特解y p(t)组成,即 齐次解y h(t)是微分方程的解。y h(t)的函数形式仅与系统本身的特性有关,而与激励f(t)的函数形式无关,称为系统的固有响应或自由响应。 特解y p(t)的函数形式由激励信号确定,称为强迫响应。 2.零输入响应 激励为零时,仅由系统的初始状态所引起的响应称为零输入响应,用表示。在零

输入条件下,(2.1)式右端为零,化为齐次方程,即 若其特征根都为单根,则零输入响应为 式中为待定系数。由于激励为零,故有初始值为 3.零状态响应 系统的初始状态为零时,仅由输入信号所引起的响应称为零状态响应,用表示。此时(2.1)式如下 初始状态。若微分方程特征根都为单根,则零状态响应为 式中为待定系数,为方程的特解。 4.全响应 如果系统的初始状态不为零,在激励f(t)的作用下,LTI系统的响应称为全响应,它是零输入响应和零状态响应之和,即。 二、关于初始状态的讨论 1.0-状态和0+状态

0-状态称为零输入时的初始状态,即初始值是由系统的储能产生的;0+状态称为加入输入后的初始状态,即初始值不仅有系统的储能,还受激励的影响。 2.从0-状态到0+状态的跃变 (1)当系统已经用微分方程表示时,系统的初始值从0-状态到0+状态有没有跳变决定于微分方程右端自由项是否包含δ(t)及其各阶导数。 (2)如果包含有δ(t)及其各阶导数,说明相应的0-状态到0+状态发生了跳变。 3.0+状态的确定 (1)已知0-状态求0+状态的值,可用冲激函数匹配法。 (2)求0+状态的值还可以用拉普拉斯变换中的初值定理求出,见第5章内容。 三、冲激响应和阶跃响应 1.冲激响应 由单位冲激函数δ(t)所引起的零状态响应称为单位冲激响应,记为h(t),即h(t)=T[{0},δ(t)]。 2.阶跃响应 输入信号为单位阶跃函数ε(t)时系统的零状态响应,称为阶跃响应,即g(t)=T[{0},ε(t)]。 四、卷积积分 1.卷积积分的定义 已知定义在区间(–∞,+∞)上的两个函数f1(t)和f2(t),则定义积分

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

关于高等数学课后习题答案

习题6?2 1? 求图6?21 中各画斜线部分的面积? (1) 解 画斜线部分在x 轴上的投影区间为[0? 1]? 所求的面积为 6 1]2132[)(10 22310=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0? 1]? 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A ? 解法二 画斜线部分在y 轴上的投影区间为[1? e ]? 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e ?

(3) 解 画斜线部分在x 轴上的投影区间为[?3? 1]? 所求的面积为 3 32]2)3[(1 32=--=?-dx x x A ? (4) 解 画斜线部分在x 轴上的投影区间为[?1? 3]? 所求的面积为 3 32 |)313()32(31323 12= -+=-+=--?x x x dx x x A ?

2. 求由下列各曲线所围成的图形的面积? (1) 22 1x y =与x 2?y 2?8(两部分都要计算)? 解? 3 423 8cos 16402+=-=?ππ tdt ? 3 46)22(122-=-=ππS A ? (2)x y 1=与直线y ?x 及x ?2? 解? 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A ?

(3) y ?e x ? y ?e ?x 与直线x ?1? 解? 所求的面积为 ?-+=-=-1 021)(e e dx e e A x x ? (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 3? 求抛物线y ??x 2?4x ?3及其在点(0? ?3)和(3? 0)处的切线所围成的图形的面积? 解? y ???2 x ?4?

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

《信号与系统要点复习》吴大正第四版

一、信号的傅里叶变换对 ?傅氏正变换 ?傅氏反变换 二、欧拉公式 三、常用信号傅里叶变换 1、第1组---时域:模拟单频信号 ?傅里叶变换: ) (ω δ πA A ? t t f F t d e)( ) (jω ω- ∞ ∞ - ?= ω ωωd e) ( 2 1 )(j t F t f?∞∞-π = 00 00 j j j j 1 cos(e e) 2 1 sin(e e) 2j t t t t t t ωω ωω ω ω - - =+ =- []) ( ) ( cos ω ω δ ω ω δ π ω- + + ? t 1 t )(t δ ω t )(t δ 时域单位冲激函数及频谱 t ω t ) (ω δ ) ( 2ω δ πA 时域直流函数及频谱 正弦、余弦函数及频谱

? 频谱图: ? 物理含义:类似于直流信号,都是只含某一个频率的频率分量,所以它们 的密度频谱都是冲激函数。 2、第2组 时域: 数字信号 ? 单位冲激序列函数 为 周期且 波形图 频谱图 ? 单脉冲信号 波形图 频谱图 [] )()(sin 000ωωδωωδπω--+ ?j t t e 0j ωt 0cos ω t 0sin ω∑∞ -∞=-=n T nT t t ) ()(δδ0 2ωπ=T T ∑∑∞ -∞ =∞ -∞=-=-?n n T n n T t ) ()(12)(000ωωδωωωδπδ()a () b ) 2 ( Sa )()(00ωτ τω=?F t f

周期矩形脉冲( 幅度为 1 、宽度为τ、周期为 T ) 的傅立叶变换。 波形图 四、傅里叶变换的几个重要结论(性质) (1)带宽受限于无限 时域受限 频域无限 频域受限 时域无限 (2)时域卷积与频域卷积 )()()()(2121ωωF F t f t f ??* )()()()(2121t f t f F F ??*ωω (3)尺度展缩 ∑∑∞ -∞=∞ -∞=-=-? n n T n n n n T t f )()2(Sa )()2(Sa 2)(00000ωωδτωτωωωδτωπτ 2 τ 2 -2 2

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

吴大正信号系统总结

第一章 计算信号的周期P5 看P5中间一段关于周期计算的文字说明 P6页记住欧拉公式1.2-9 会判断是能量信号还是功率信号,或者是非功率非能信号(P7) 记住能量公式(1-2-14),功率公式(1-2-15) 会信号的基本运算,压缩,平移,反转。(考研画图题)会做P11例题1.3-2 P12-P22单位冲激函数和阶跃函数,定义,性质。P16不看 必须记住公式1.4-5, 1.4-6,1.4-7 1.4-8,1.4-9a和1.4-9b;取样性质的1.4-11. P17到P19公式都记住p20公式1.4-36, 1.4-37a, 1.4-37b, 1.4-38和1.4-39 特别是记住单位冲激偶函数的性质。 系统的分类。 1) 时变系统与非时变系统。 2)线性非线性判断。(奇次性,叠加性,线性) 3)线性动态系统的分解性,零输入线性,零状态线性 4)因果系统判断 5)稳定性判断 由系统模拟框图会写微分或者差分方程 第二章 1、P42微分方程的经典解中怎么区分齐次解和特解,区分自由响应和强迫响应 2、P49 与的求解会例题2.1-3 3、时域法零输入和零状态的求解 4、P52冲激响应和阶跃响应 5、P60 图解法求卷积积分(知道其步骤和方法)。卷积的函数式计算参考例题2.3-2 6、卷积的性质。特别是含有冲激函数的。P69 公式2.4-4 ,2.4-5 ,2.4-6 ,2.4-7,2.4-8 做例题2.4-2 7、卷积的微分和积分性质 P75以后的相关函数不看 第三章 1、P86的经典解法零输入和零状态的解法做下面对应的例题 记住公式3.1-26和3.1-30 会区分自由响应和强迫响应注意与零输入和零状态的区别,齐次解和特解 单位序列和序列响应,考试必考p95 2、阶跃响应 3、P101两个卷积和 例题3.3-1要会做 卷结和性质要会 3.4反卷积不考不用看 第四章(考研重点章节) 1 P120会求傅里叶级数。记住P121的公式

吴大正-信号与系统公式

第一章 信号与系统 信号的分类 确定信号 周期信号 连续时间信号 能量信号 随机信号 非周期信号 离散时间信号 功率信号 信号的时域运算 (1)移位 ()为常数00,t t t f + 00>t ,()0t t f +为()t f 波形在t 轴上左移0t ; 00a ,()at f 波形为()t f 的波形在时间轴上压缩为原来的a 1 ; 10<

0,0t (2)冲激函数 0,0)(≠=t t δ Dirac 定义 1)(=? ∞ ∞ -dt t δ (3)阶跃函数与冲激函数的关系 ()dt t d t εδ= )( dx x t t ?∞ -=)()(δε (4)阶跃函数的积分)(t r 斜坡函数=== ? ∞ -)()()(t t dx x t r t εε ,0,0>

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根 课后习题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

期末考试《信号与系统课程要点(吴大正)》

信号与线性系统复习提纲 第一章 信号与系统 1.信号、系统的基本概念 2.信号的分类,表示方法(表达式或波形) 连续与离散;周期与非周期;实与复信号;能量信号与功率信号 3.信号的基本运算:加、乘、反转和平移、尺度变换。 图解时应注意仅对变量t 作变换,且结果可由值域的非零区间验证。 4.阶跃函数和冲激函数 极限形式的定义;关系;冲激的Dirac 定义 阶跃函数和冲激函数的微积分关系 冲激函数的取样性质(注意积分区间) )()0()()(t f t t f δδ?=?;? ∞ ∞ -=?)0()()(f dt t t f δ )()()()(111t t t f t t t f -?=-?δδ;? ∞∞ -=-?)()()(11t f dt t t t f δ 5.系统的描述方法 数学模型的建立:微分或差分方程 系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离) 由时域框图列方程的步骤。 6.系统的性质 线性:齐次性和可加性;分解特性、零状态线性、零输入线性。 时不变性:常参量 LTI 系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI 系统) LTI 系统零状态响应的微积分特性 因果性、稳定性(可结合第7章极点分布判定)

1. 微分方程的经典解法:齐次解+特解(代入初始条件求系数) 自由响应、强迫响应、瞬态响应、稳态响应的概念 0—~0+ 初值(由初始状态求初始条件):目的,方法(冲激函数系数平衡法) 全响应=零输入响应+零状态响应;注意应用LTI 系统零状态响应的微积分特性 特别说明:特解由激励在t>0时或t>=0+的形式确定 2. 冲激响应)(t h 定义,求解(经典法),注意应用LTI 系统零状态响应的微积分特性 阶跃响应)(t g 与)(t h 的关系 3. 卷积积分 定义及物理意义 激励)(t f 、零状态响应)(t y f 、冲激响应)(t h 之间关系)()()(t h t f t y f *= 卷积的图示解法(了解) 函数与冲激函数的卷积(与乘积不同) )()()(t f t t f =*δ;)()()(11t t f t t t f -=-*δ 卷积的微分与积分 复合系统冲激响应的求解(了解)

信号与线性系统分析吴大正复习题答案

专业课习题解析课程 第2讲 第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

信号与线性系统分析报告吴大正习题问题详解

专业课习题解析课程 第2讲 第一章信号与系统(二)

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4)) t fε= (sin )(t (5)) t f= r )(t (sin

(7))( t f kε )(k 2 = (10))(])1( 1[ k f kε )(k = - +

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε

(2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε

解析几何第四版吕林根课后习题答案

第三章 平 面 与 空 间 直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M CD 的(3)(ⅰ)设平面通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=? 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 0=. 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: }5,2,3{z AB +-= ⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面. 解:平行于x 轴的平面方程为 00 1 011112 =--+-z y x .即01=-z . 同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z .

⑵设该平面的截距式方程为 132=+-+-c z y x ,把点()4,2,3-M 代入得19 24-=c 故一般方程为02419812=+++z y x . ⑶若所求平面经过x 轴,则()0,0,0为平面内一个点, {}2,1,5-和{}0,0,1为所求平面的方位矢量, ∴ .11 6 cos ,119cos ,112cos -=== ?γβ 则该平面的法式方程为: .01111 6 119112=--+z y x 既 .0121692=--+z y x

信号与线性系统分析吴大正第四版第一章习题答案

专业课习题解析课程 第1讲 第一章信号与系统(一)

专业课习题解析课程 第2讲 第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6 sin( )(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f

吴大正《信号与线性系统分析》笔记及习题(系统函数)【圣才出品】

第7章系统函数 7.1 复习笔记 一、系统函数 1.系统函数的基本概念 LTI系统的系统函数是复变量s或z的有理分式,它是s或z的有理多项式与 之比,即 (1)对于连续系统,系统函数定义为 (2)对于离散系统,系统函数定义为 极点和零点的值可能是实数、虚数或复数。由于与的系数都是实数,所以零、极点若为虚数或复数,则必共轭成对。 系统的极点确定了的时域波形形式,对的幅度和相位均有影响,系统的零点只影响的幅度和相位,而对的时域波形形式无影响。

2.系统的因果性和稳定性 (1)因果性判别 因果系统(连续的或离散的)指的是,系统的零状态响应不出现于激励之前的系统。 ①对于连续时间系统 时域判别: s域判别:的收敛域为收敛坐标以右的s平面系统为因果系统,换言之的极点都在收敛轴的左边。 ②对于离散时间系统 时域判别: 复频域判别:的收敛域是收敛半径为的圆外区域系统为因果系统,换言之,的极点都在收敛域内部。 (2)稳定性判别 稳定系统定义:一个系统,如果对任意的有界输入,其零状态响应也是有界的,则称该系统是有界输入有界输出稳定系统。 ①对于连续时间系统 时域判别: s域判别:的收敛域包含jω虚轴系统稳定。 系统稳定性判别公式与傅里叶变换是否存在判别公式相同,由此可知如果系统稳定,则

系统的频率响应一定存在。进而可知,如果一个连续时间函数的拉氏变换存在,但其傅里叶变换未必存在,如果其拉氏变换收敛域包括虚轴,则其傅里叶变换也存在。 ②对于离散时间系统 时域判别: 复频域判别:H(z)的收敛域包含单位圆|z|=1系统稳定。 注意:“”表示充分必要条件,而“”表示充分条件。 3.梅森公式 利用梅森公式可以根据信号流图很方便地求得输入输出间的系统函数。梅森公式为 其中 Δ称为信号流图的特征行列式; 为所有不同回路的增益之和; 为所有两两互不接触回路的增益乘积之和; 为所有三个互不接触回路的增益乘积之和; 表示由源点到汇点的第条前向通路的标号; P i表示由源点到汇点的第i条前向通路增益; Δi表示第i条前向通路特征行列式的余子式,它是与第i条前向通路不相接触的子图的特征行列式。

解析几何第四版吕林根课后习题答案第三章

第三章平 §3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点M J QI-I)和点M2(1,—1,0)且平行于矢量{—1,0,2}的平面(2)通过点M^l,—5,1)和 M 2 (3,2,—2)且垂直于xoy坐标面的平面; (3)已知四点A(5,1,3) , B(1,6,2) , C(5,0,4) D(4,0,6)。求通过直线AB且平行于直线CD的平面, 并求通过直线AB且与MBC平面垂直的平面。 解:(1) M1M2 ={_2,_2,1},又矢量{—1,0,2}平行于所求平面, 故所求的平面方程为: 般方程为:4x -3y+2Z -7 =0 (2)由于平面垂直于xoy面,所以它平行于z轴,即{0,0,1}与所求的平面平行,又 M 1M 2 ={2,7,-3},平行于所求的平面,所以要求的平面的参数方程为: 般方程为:7(x—1)—2(y+5)=0,即7x—2y-17 = 0。 (3)( i)设平面兀通过直线AB,且平行于直线CD : AB={m,5,—1},CD ={-1,0,2} 从而兀的参数方程为: 般方程为:10x +9y + 5z-74=0。 (ii)设平面兀'通过直线AB,且垂直于MBC所在的平面 AB ={75,-1},ABX AC ={-4,5,-1}x{0T,1} ={4,4,4} =4{1,1,1} 均与兀’平行,所以兀’的参数式方程为: 般方程为:2X+ y -3z - 2 = 0 . 2.化一般方程为截距式与参数式: 兀:X +2y-z+4 =0. 解:兀与三个坐标轴的交点为:(—4,0,0), (0—2,0), (0,0,4), 所以,它的截距式方程为:△+丄+2 =1 又与所给平面方程平行的矢量为:{4, —2,0},

信号与系统吴大正第四章作业

信号与系统吴大正第四章作业

信号与线形系统(第四版)吴大正主编 第四章课后习题: 4.1证明()()cos ,cos 2,,cos t t nt L (n 为正整数)是在区间()0,2π的正交函 数集。它是否是完备的正交函数集? 解:由于????=≠=ππ20 ,,0cos cos n m n m mtdt nt 所以在区间 ()0,2π内是正交函数集。 存在mt sin 使得??????=≠=ππ20 ,2,0sin cos n m n m mt nt 所以不是完备的正交函数集。 4.2上题中的函数集在区间 ()0,π是否是正交函数集? 解:??????=≠=π π0,2,0cos cos n m n m mtdt nt 所以仍为正交函数集。 4.3讨论图4.1-2所示的前6个沃尔什函数在 ()0,1区间内是否是正交函数集。 解:由题意得()?==1 05,4,3,2,1,0,k dt t k Wal ()()?≤≤≤≤≠=1 50,50,,0,,n m n m dt t n Wal t m Wal ()()?≤=≤=1 50,1,,n m dt t n Wal t m Wal 所以前6个沃尔什函数在 ()0,1区间内是正交函数集。 4.4前四个勒让德函数多项式为 ()10=t P ()t t P =1

()??? ??-=212322t t P ()??? ??-=t t t P 232 533 证明它们在 ()1,1-区间内是正交函数集。 解:由题意得()()01 111 10=?=?--tdt dt t p t p ()()0212311 221 1 0=???? ??-=?--dt t dt t p t p ()()0232 511 331 1 0=???? ??-=?--dt t t dt t p t p ()()0212 311 321 1 1=???? ??-=?--dt t t dt t p t p ()()0232 511 2431 1 1=???? ??-=?--dt t t dt t p t p ()()02123232 511 2331 1 2=???? ??-??? ??-=?--dt t t t dt t p t p 所以前四个勒让德函数多项式在 ()1,1-区间内是正交函数集。 4.5实周期信号()f t 在区间,22T T ?? - ??? 内的能量定义为 ()222T T E f t dt -=? 如有和信号 ()()()12f t t t f f =+ (1)若()1t f 与()2t f 在区间,22T T ?? - ??? 内相互正交,证明和信号的总能量等于

相关文档
相关文档 最新文档