文档库 最新最全的文档下载
当前位置:文档库 › 李贤平《概率论与数理统计第一章》答案

李贤平《概率论与数理统计第一章》答案

李贤平《概率论与数理统计第一章》答案
李贤平《概率论与数理统计第一章》答案

第1章 事件与概率

2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ;

(3)C AB ?;(4)BC A ?.

3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和.

6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。

8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ;

(2)0)1(321321=-+-+--n n n n n n nC C C C Λ;

(3)∑-=-++=r a k r a b a k b r k a C C C

0.

9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。

10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;

(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。

11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。

12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。

13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。

14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

16、任意从数列Λ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<<ΛΛ21,试求M x m =的概率,这里N M ≤≤1

18、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少

19、从n 双不同的鞋子中任取2r(2r

(2)只有一对鞋子;(3)恰有两对鞋子;(4)有r 对鞋子。

20、袋中有n 只球,记有号码n ,,2,1Λ,求下列事件的概率:(1)任意取出两球,号码为1,2;(2)任意取出3球,没有号码1;(30任意取出5球,号码1,2,3,中至少出现一个。

21、袋中装有N ,,2,1Λ号的球各一只,采用(1)有放回;(1)不放回方式摸球,试求在第k 次摸球时首次摸到1号球的概率。

24、从52张扑克牌中任意抽取13张来,问有5张黑桃,3张红心,3张方块,2张草花的概率。

25、桥牌游戏中(四人各从52张纸牌中分得13张),求4张A 集中在一个人手中的概率。

26、在扑克牌游戏中(从52张牌中任取5张),求下列事件的概率:(1)以A 打头的同花顺次五张牌;(2)其它同花是非曲直次五比重牌;(3)有四张牌同点数;(4)三张同点数且另两张也同点数;(5)五张同花;(6)异花顺次五张牌;(7)三张同点数;(8)五比重中有两对;(9)五张中有一对;(10)其它情况。

27、某码头只能容纳一只船,现预知某日将独立来到两只船,且在24小时内各时刻来到有可能性都相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一船要在江中等待的概率。

28、两人约定于7点到8点在某地会面,试求一人要等另一人半小时以上的概率。

33、设n A A A ,,,21Λ是随机事件,试用归纳法证明下列公式:

∑∑=≥>≥--++-

=n i i j n n n j i i n A A A P A A P A P A A A P 1121121)()1()()()(ΛΛY ΛY Y 。

36、考试时共有N 张考签,n 个学生参加考试)(N n ≥,被抽过的考签立刻放回,求在考试结束后,至少有一张考签没有被抽过的概率。

37、甲,乙丙三人按下面规则进行比赛,第一局由甲,乙参加而丙轮空,由第一局的优胜者与丙进行第二局比赛,而失败者则轮空,比赛用这种方式一直进行到其中一个人连胜两

局为止,连胜两局者成为整场比赛的优胜者。若甲,乙,丙胜每局的概率各为1/2,问甲,乙,丙成为整场比赛优胜者的概率各是多少

39、给定()()()B A P r B P q A P p Y ===,,,求()AB P 及()B A P 。 40、已知:()()()B A C AB C B P A P AB P ??=,,,证明:)()()(C P A P AC P ≥。

43、利用概率论的想法证明下列恒等式: a

A a a A a A A A a A a A A a A =+-?-++-----+--+)1()1(12)()2)(1()1)((11ΛΛΛ 其中A ,a 都是正整数,且a A >。

46、证明Ω的一切子集组成的集类是一个-σ域。

47、证明:-σ域之交仍为-σ域。

48、证明:包含一切形如),(x -∞的区间的最小-σ域是一维波雷尔-σ域。

解答

2、解:(1)ABC A C A B A ABC A BC A ??????=且显然)(,若A 发生,则B 与C 必同时发生。

(2)A C ?????=且A B A C B A C B A Y Y Y ,B 发生或C 发生,均导致A 发生。

(3)A C AB ??与B 同时发生必导致C 发生。

(4)C B A BC A Y ???,A 发生,则B 与C 至少有一不发生。

3、解:n A A A Y ΛY Y 21)()(11121----++-+=n n A A A A A A ΛΛ

(或)=121121-+++n n A A A A A A A ΛΛ.

6、解:(1){至少发生一个}=D C B A Y Y Y .

(2){恰发生两个}=C A BD B A CD D A BC C B AD D B AC D C AB +++++.

(3){A ,B 都发生而C ,D 都不发生}=D C AB .

(4){都不发生}=D C B A D C B A Y Y Y =.

(5){至多发生一个}=C B A D D B A C D C A B D C B A D C B A ++++

CD BD BC AD AC AB Y Y Y Y Y =.

8、解:(1)因为n n n n n n x nC x C x C x ++++=+Λ2211)1(,两边对x 求导得

12112)1(--+++=+n n n n n n x nC x C C x n Λ,在其中令x=1即得所欲证。

(2)在上式中令x=-1即得所欲证。

(3)要原式有意义,必须a r ≤≤0。由于k b b k b r b b a r a b a C C C C -++-+==,,此题即等于

要证∑=++-+≤≤=a k r b b a k b b r k a a r C C C

00,.利用幂级数乘法可证明此式。因为

b a b a x x x ++=++)1()1()1(,比较等式两边r b x +的系数即得证。

9、解:15.033

5/311151516===A A A A P

10、解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任

意排,所以5/2!5/!42=?=p

(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷

出现在左边,剩下三卷可在中间三人上位置上任意排,所以

10/1!5/!32=?=p

(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁

边}=10

71015252=-+. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P

(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=?=P

11、解:末位数吸可能是2或4。当末位数是2(或4)时,前两位数字从剩下四个数字中

选排,所以 5/2/23524=?=A A P

12、解:m n m

n m n m n C C C C P 33/321=

13、解:P{两球颜色相同}=P{两球均白}+P{两球均黑}+P{两球均红}

33.0625

20725925152562572510253==?+?+?=.

14、解:若取出的号码是按严格上升次序排列,则n 个号码必然全不相同,N n ≤。N 个不

同号码可产生!n 种不同的排列,其中只有一个是按严格上升次序的排列,也就是说,一

种组合对应一种严格上升排列,所以共有n N C 种按严格上升次序的排列。总可能场合数

为n N ,故题中欲求的概率为n n N N C P /=.

16、解:因为不放回,所以n 个数不重复。从}1,,2,1{-M Λ中取出m-1个数,从}

,1{N M Λ+中取出m n -个数,数M 一定取出,把这n 个数按大小次序重新排列,则必有M x m =。

故n N m n M N m M C C C C P /1111----=。当11-<-m M 或m n M N -<-时,概率0=P .

18、解:有利场合是,先从6双中取出一双,其两只全取出;再从剩下的5双中取出两双,从其每双中取出一只。所以欲求的概率为48.033

16/4121212252216===C C C C C C P

19、解:(1)有利场合是,先从n 双中取出2r 双,再从每双中取出一只。

)2(,/)(222122n r C C C P r n r r n <=

(2)有利场合是,先从n 双中取出一双,其两只全取出,再从剩下的1-n 双中取出22-r 双,从鞭每双中取出一只。

r n r n r r n r r n n C C n C C C C C P 2222122222212221221/2/)(------==.

(3)r n r n n r C C C P 22422242/2---=.

(4)r n r r n C C C P 2222/)(=r n r n C C 22/=.

20、解:(1)P{任意取出两球,号码为1,2}=2/1n C .

(2)任取3个球无号码1,有利场合是从除去1号球外的1-n 个球中任取3个球的组合数,故 P{任取3球,无号码1}3

31/n n C C -=.

(3)P{任取5球,号码1,2,3中至少出现1个}=P -1{任取5球,号码1,2,3不出现}553/1n n C C --=.

其中任取5球无号码1,2,3,有利场合是从除去1,2,3号球外的3-n 个球中任取5个球的组合数。

21、解:(1)有利场合是,前1-k 次从1-N 个号中(除1号外)抽了,第k 次取到1号球, k k k k N N N N P /)1(/1)1(11---=?-=

(2)考虑前k 次摸球的情况,N A A P k N k N /1/111=?=--。

22.(老师的解法)P=)!(n m A A n m m m +

23.

24、解:0129.0/1352213313313513==C C C C C P

25、解:0106.041352

94313131326133913521313132613399434414=?==C C C C C C C C C C C C P . 或解为,4张A 集中在特定一个手中的概率为135294844/C C C ,所以4张A 集中在一个人

手中的概率为 0106.0/41352948=?=C C P .

26、解:(1)0000015.0/4552==C P . 这里设A 只打大头,若认为可打两头AKQJ10及A2345,

则答案有变,下同。

(2)取出的一张可民由K ,Q ,…,6八个数中之一打头,所以

0000123.0/5521814==C C C P .

(3)取出的四张同点牌为13个点中的某一点,再从剩下48张牌中取出1张,所以 .00024.0/55244113==C C C P

(4)取出的3张同点占有13个点中一个点,接着取出的两张同点占有其余12个点

中的一个点,所以 .00144.0/5522411234113==C C C C C P

(5)5张同花可以是四种花中任一种,在同一种花中,5张牌占有13个点中5个点,

所以 .00198.0/55251314==C C C P

(6){异花顺次五张牌}={顺次五张牌}-{同花顺次五张牌}。顺次五张牌分别以A ,K ,…,6九个数中之一打头,每张可以有四种不同的花;而同花顺次中花色只能是四种花中一种。所以

p = P{顺次五张牌}-{同花顺次五张牌}[].0000294.0/)(5

52191451419=-=C C C C C

(7)三张同点牌占有13个点中一个占有剩下12个点中两个点,所以.0211.0/)(55221421234113==C C C C C P

(8)P{五张中有两对}=P{五张中两对不同点}+P{五张中两对同点}

.0475.0//5521411244113552141112424212=+=C C C C C C C C C C C

(9).423.0/)(55231431224113==C C C C C p

(10)若记(i )事件为i A ,则94835251,,,A A A A A A A A ????而事件

95,,A A Λ两两不相容,所以∑===-=???

? ??-=9595.506.0)(11i i i i A P A P p Y

27、解:设x ,y 分别为此二船到达码头的时间,则

240,240≤≤≤≤y x . 两船到达码头的时间与由上述

条件决定的正方形内的点是一一对应的(如图)

设A 表事件“一船要等待空出码头”,则A发生意味 4

着同时满足下列两不等式 4,3≤-≤-x y y x 由几何概率得,事件A的概率,等于正方形CDEF中直线43≤-≤-x y y x 及 之间的部分面积,与正方形CDEF 的面积之比,即

27.01152/31124/21212021242222==?????

???? ???+?-=PA

28、解:设x ,y 分别为此二人到达时间,则 y 87,87≤≤≤≤y x 。显然,此二人到达时间 ),(y x 与由上述条件决定的正方形CDEF 内和 点是一一对应的(如图)。 设A 表事件“其中一人必须等另外一人的 时间1/2小时以上“,则A 发生意味着满足如下 0 不等式 2

121>->-x y y x 或。由几何概率得, 事件A 的概率等于ΔGDH 及ΔFMN 的面积之和与正方形CDEF 的面积之比,所以

41)11/()21212121(21)(=??+?=A P

33、证:当2=n 时,)(212121A A A A A A -=Y Y ,1A 与212A A A -两者不相容,所以

)()()()()(212121221A A P A P A P A A A P A A P -+=-=Y .

此即当2=n 时原式成立。

设对1-n 原式成立,现证对n 原式也成立。

}{)(1111n n n n A A A P A A A P Y Y ΛY Y Y ΛY --=

}{)()(1111n n n n A A A P A P A A P Y Y ΛY Y ΛY ---+= }

{)()(12111n n n n n n A A A A A A P A P A A P ---+=Y ΛY Y Y ΛY

对前后两项分别应用归纳假设得

)

(11n n A A A P Y Y ΛY -?

?????-++-=--≥>≥--=∑∑)()1()()(1121111n n i j n j i i n n A A P A A P A P ΛΛ)(n A P + ??

????-++----≥>≥--=∑∑)()1()()(121111n n n j n i n i j n n j n i n i n i A A A A A A P A A A A P A A P ΛΛ

)()1()()(21111n n i j n j i i n i A A A P A A P A P ΛΛ-≥>≥=-++-

=∑∑.

至此,原式得证。

36、解:设考签编号为N ,,2,1Λ,记事件}{号考签未被抽到第x A i =,则

n n i N N A P /)1()(-=, ΛΛ),(/)2()(j i N N A A P n n j i ≠-=, 0/)()(21=-=n n N N N N A A A P Λ;

诸i A 相容,利用第33题公式计算得

P={至少有一张考签未被抽到}}{21N A A A P Y ΛY Y = ∑∑=≥>≥--++-=N i i j N N N j

i i A A A P A A P A P 11

211)()1()()(ΛΛ 01)1()2()1(1221+-++---=--n N N N n n N n n N

N C N n C N N C Λ ∑-=---=1

111)()1(N i n n N i N i N C .

37、解:这些比赛的可能结果,可以用下面方法表示:

,,,,,,,,,,,,aa acc acbb acbaa acbacc acbacbb bb bcc bcaa bcabb bcabcc bcabcaa L L

其中a 表甲胜,b 表乙胜,c 表丙胜。

在这些结果中,恰巧包含k 个字母的事件发生的概率应为k 21,如aa 发生的概率为1/4,acbb 发生的概率为1/16等等。则

[][]Λ++++=)()()()()(bcabcc P acbacc P bcc P acc P c p 7

2212212212963

=+?+?+?=Λ. 由于甲,乙两人所处的地位是对称的,所以)()(b p a p =,得 14

5)721(21)()(=-==b p a p .

39、解:)()()(B B A P B A P B A P -=-=Y q r B P B A P -=-=)()(Y r B A P B A P B A P -=-==1)(1)()(Y Y .

40、证:设21)(,C B A C C BC =-=.由B A C ?可得,B A C Y ?,

∴21C C C Y =,φ=21C C I (1)

又AB C ?∴AB BC A AC ==)(1 再由)()(1C P B P ≥得

)()()()()()(11C P A P B P A P AB P AC P ≥== (2)

由A C ?2并利用1)(≤A P 得

)()()()(222C P A P C P AC P ≥= (3)

由(1),(2),(3)可得

{})

()()(2121AC AC P C C A P AC P Y Y ==)()()()()()(2121C P A P C P A P AC P AC P +≥+=

[])

()()()()(21C P A P C P C P A P =+=

43、证:设袋中有A 个球,其中a 个是白球,不还原随机取出,第k 次才首次取得白球的

概率为 k A a k a A k A A A P 11--=)

1()2)(1()2()1)((+---+-----=k A A A A k a A a A a A a ΛΛ )1,,2,1(+-=a A k Λ. 因为袋中有a 个白球,a A -个黑球,若一开始总是取到黑球,直到把黑球取完为止,则至迟到第1+-a A 次一定会取到白球;也就是说,第一次或第二次…或至迟到第1+-a A 次取得白球事件是必然事件,其概率为1。所以

1211+-+++=a A p p p Λa

a A A a A a A A a A a A a )1()1(12)()1()(+-?-++--+=ΛΛΛ 等式两边同乘以a

A 得 a A a a A a A A A a A a A A a A =+-?-++-----+--+

)1()1(12)()2)(1()1)((11ΛΛΛ.

46、证:记F={Ω的一切子集}

(i )Ω是Ω的子集,所以F ∈Ω。

(ii) 若F A ∈,则A 是Ω的子集,A -Ω也是Ω的子集,所以F A A ∈-Ω=。 (iii)F i A i ∈=),2,1(Λ,当然有Λ,2,1,=?Ωi A i 。任一Y i i A

∈ω。必有某一i A ,使

i A ∈ω,所以Ω∈ω,从而i i A i Y ?

Ω,即i i A i Y 也是Ω的一个子集,故F A i i i

∈Y 。 ∴F 是-σ域。 47、证:设)(T t F t ∈是-σ域,记Y T t t F

F ∈=.

(i) ∈Ω每一t F ,所以I T

t t F ∈∈Ω,即F ∈Ω.

(ii) F A ∈,则∈A 每一t F ,由t F 是-σ域得∈A 每一t F ,所以t T t F A Y ∈∈,从而F A ∈. (iii) F i A i ∈=),2,1(Λ,则诸t A 必属于每一t F ,由于t F 是-σ域,所以Y i

i A ∈每一t

F ,即F F A t T t i i

=∈∈I Y .

∴f 是-σ域。

48、证:一维波雷尔-σ域{}),[b a m B =是由左闭右开区间灶产生的-σ域,{}),(~

x M B -∞=是由形如),(x -∞区间类产生的-σ域。

因为 ),(),(),[a b b a -∞--∞=

等式左边是B ~中两个集的差,由此知B ~包含一切形如),[b a 的集,而B 是由一切形如)

,[b a 的集类产生的-σ域,所以B B ?~。 又由于 Y ∞

=+--=-∞1)1,[),(n n x n x x ,

等式右边是B 中集的可列并,由此知B 包含一切形如),(x -∞的集,与上段同理得B B ~?.

∴B B =~.

李贤平《概率论与数理统计》标准答案

李贤平《概率论与数理统计》标准答案

————————————————————————————————作者:————————————————————————————————日期: 2

第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律 的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 2211~2n m n n e n m n π -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论基础-李贤平-试题+答案-期末复习

第一章 随机事件及其概率 一、选择题: 1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( ) A .A B A C + B .()A B C + C .ABC D .A B C ++ 2.设B A ? 则 ( ) A .()P A B I =1-P (A ) B .()()()P B A P B A -=- C . P(B|A) = P(B) D .(|)()P A B P A = 3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一 定独立 A .()()()P A B P A P B =I B .P (A|B )=0 C .P (A|B )= P (B ) D .P (A|B )= ()P A 4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( ) A .a-b B .c-b C .a(1-b) D .b-a 5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 互不独立 D .A 与B 互不相容 6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ?,则一定成立的关系式是( ) A .P (A| B )=1 B .P(B|A)=1 C .(|A)1p B = D .(A|)1p B = 7.设A 、B 为任意两个事件,则下列关系式成立的是 ( ) A .()A B B A -=U B .()A B B A -?U C .()A B B A -?U D .()A B B A -=U 8.设事件A 与B 互不相容,则有 ( ) A .P (A B )=p (A )P (B ) B .P (AB )=0 C .A 与B 互不相容 D .A+B 是必然事件

概率论答案 - 李贤平版 - 第三章

第三章 随机变量与分布函数 1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻 0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。 2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。 3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k N c k f Λ==(2),,2,1,!)(Λ==k k c k f k λ 0>λ。 4、证明函数)(2 1)(||∞<<-∞=-x e x f x 是一个密度函数。 5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。 6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=-a P ξ。 7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F 1)(=+∞F 。 8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。 9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服 从[0,1]均匀分布。 10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使 )}()()()(ex p{)(x S D x T Q x f ++=θθθ, 则称},{Θ∈θθf 是一个单参数的指数族。证明(1)正态分布),(20σm N ,已知0m ,关于参数σ; (2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。 但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。 11、试证)2(22),(cy bxy ax ke y x f ++-=为密度函数的充要条件为,0,0,02<->>ac b c a π2 b a c k -=。 12、若)(),(21y f x f 为分布密度,求为使),()()(),(21y x h y f x f y x f +=成为密度函数,),(y x h 必须而且 只需满足什么条件。 13、若),(ηξ的密度函数为 ???>>=+-其它, 00,0,),()2(y x Ae y x f y x ,

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

李贤平-《概率论与数理统计-第一章》答案

李贤平-《概率论与数理统计-第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ?;(4)BC A ?. 3、试把n A A A 21表示成n 个两两互不相容事件 的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C ; (2)0)1(321321 =-+-+--n n n n n n nC C C C ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)

第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。 16、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的 概率,这里N M ≤≤1 18、从6只不同的手套中任取4只,问其中恰有

李贤平 第2版《概率论基础》第五章答案

1 第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论答案(李贤平)

第一章 事件与概率 1、解: (1) P {只订购A 的}=P{A(B ∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30. (2) P {只订购A 及B 的}=P{AB}-C }=P(AB)-P(ABC)=0.10-0.03=0.07 (3) P {只订购A 的}=0.30, P {只订购B 的}=P{B-(A ∪C)}=0.35-(0.10+0.05-0.03)=0.23. P {只订购C 的}=P{C-(A ∪B )}=0.30-(0.05+0.08-0.03)=0.20. ∴P {只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73. (4) P{正好订购两种报纸的} =P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC) =(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14. (5) P {至少订购一种报纸的}= P {只订一种的}+ P {恰订两种的}+ P {恰订三种的} =0.73+0.14+0.03=0.90. (6) P {不订任何报纸的}=1-0.90=0.10. 2、解:(1)ABC A C A B A ABC A BC A ??????=且显然)(,若A 发生,则B 与C 必同时发生。 (2)A C ?????=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。 (3)A C AB ??与B 同时发生必导致C 发生。 (4)C B A BC A ???,A 发生,则B 与C 至少有一不发生。 3、解:n A A A 21)()(11121----++-+=n n A A A A A A (或)=121121-+++n n A A A A A A A . 4、解:(1)C AB ={抽到的是男同学,又不爱唱歌,又不是运动员}; C B A ={抽到的是男同学,又爱唱歌,又是运动员}。 (2)A BC A ABC ??=,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时,B C ?成立。 (4)A=B 及C B A C A ==?=,当男学生的全体也就是不爱唱歌的学生全体,也就不是运动员的学生全体 时成立。也可表述为:当男学生不爱唱歌且不爱唱歌的一定是男学生,并且男学生不是运动员且不是运动员的是男学生时成立。 5、解:设袋中有三个球,编号为1,2,3,每次摸一个球。样本空间共有3个样本点(1),(2),(3)。设{}{}{}3,3,1,2,1===C B A , 则{}{}},2{,1,3,2,1},3{=-===B A B A B A A {}3,2,1=+C A 。 6、解:(1){至少发生一个}=D C B A . (2){恰发生两个}=C A BD B A CD D A BC C B AD D B AC D C AB +++++.

李贤平概率论与数理统计第二章答案

第2章 条件概率与统计独立性 1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少? 2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。 3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。 5、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。 6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少? 7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少? 9、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回时出正面的概率,并讨论当∞→n 时的情况。 10、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。 11、设一个家庭中有n 个小孩的概率为 ?????=--≥=,0,11,1,n p ap n ap p n n 这里p p a p /)1(0,10-<<<<。若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1)2/(2+-k k p ap 。 12、在上题假设下:(1)已知家庭中至少有一个男孩,求此家庭至少有两个男孩的概率; (2)已知家庭中没有女孩,求正好有一个男孩的概率。

概率论答案_李贤平版_第二章

第二章 条件概率与统计独立性 1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少? 2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。 3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。 4、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。 5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。 6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋, 然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少? 7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第 二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少? 8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回 时出正面的概率,并讨论当∞→n 时的情况。 9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。以 pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。 10、设一个家庭中有n 个小孩的概率为 ??? ??=--≥=,0,11, 1,n p ap n ap p n n 这里p p a p /)1(0,10-<<<<。若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有 )1(≥k k 个男孩的概率为1)2/(2+-k k p ap 。 11、在上题假设下:(1)已知家庭中至少有一个男孩,求此家庭至少有两个男孩的概率; (2)已知家庭中没有女孩,求正好有一个男孩的概率。 12、已知产品中96%是合格品,现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98, 而误认废品为合格品的概率为0.05,求在简化方法检查下,合格品的一个产品确实是合格品的概率。 13、设A ,B ,C 三事件相互独立,求证B A AB B A -,,Y 皆与C 独立。

概率论答案---李贤平版---第二章

概率论答案---李贤平版---第二章

第二章条件概率与统计独立性 1、字母M,A,X,A,M分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM的概率是多少? 2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。 3、若M件产品中包含m件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。 4、袋中有a只黑球,b吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b)。 5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。 6、甲袋中有a只白球,b只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少? 7、设的N个袋子,每个袋子中将有a只黑球,b只白球,从第一袋中取出一球放入第二袋中,然后从第二

袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少? 8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回时出正面的概率,并讨论当∞→n 时的情况。 9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。 10、设一个家庭中有n 个小孩的概率为 ?? ? ??=--≥=,0,11,1,n p ap n ap p n n 这里p p a p /)1(0,10-<<<<。若认为生一个小孩为男孩可女 孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1 )2/(2+-k k p ap 。 11、在上题假设下:(1)已知家庭中至少有一个男孩,求此家庭至少有两个男孩的概率; (2)已知家庭中没有女孩,求正 好有一个男孩的概率。 12、已知产品中96%是合格品,现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为

概率论答案李贤平版第二章

第二章 条件概率与统计独立性 1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概 率是多少? 2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。 3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件 下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。 4、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。 5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。 6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然 后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少? 7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第 二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少? 8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回 时出正面的概率,并讨论当∞→n 时的情况。 9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。以 pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。 10、设一个家庭中有n 个小孩的概率为 ?????=--≥=,0,11,1,n p ap n ap p n n 这里p p a p /)1(0,10-<<<<。若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1)2/(2+-k k p ap 。 11、在上题假设下:(1)已知家庭中至少有一个男孩,求此家庭至少有两个男孩的概率; (2)已知家庭中没有女孩,求正好有一个男孩的概率。 12、已知产品中96%是合格品,现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为, 而误认废品为合格品的概率为,求在简化方法检查下,合格品的一个产品确实是合格品的概率。 13、设A ,B ,C 三事件相互独立,求证B A AB B A -,, 皆与C 独立。

李贤平_《概率论与数理统计_第四章》答案

概率论 数字特征与特征函数 2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。 3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。 7、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。 9、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞ =≥= 1 }{k k P E ξξ。 11、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(| |∞<<∞-=--x e x p x λ μλ 0>λ。试求 ξE ,ξD 。 13、若21,ξξ相互独立,均服从),(2 σa N ,试证π σξξ+ =a E ),max (21。 17、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放 入乙袋中,求从乙袋中再摸一球而为白球的概率。 20、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第 二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求 n S 。 21、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体 质重量,试说明这样做的道理。 24、若ξ的密度函数是偶函数,且2 E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。 25、若,ξη的密度函数为22 221,1 (,)0,1 x y p x y x y π?+≤?=??+>?,试证:ξ与η不相关,但它们不独立。 27、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。 26、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。 28、若123,,ξξξ是三个随机变量,试讨论(1)123,,ξξξ两两不相关;

概率论答案 - 李贤平版 - 第四章

第四章 数字特征与特征函数 1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶 数或奇数而取数值0及1,试求ηE 及ηD 。 2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。 3、随机变量μ取非负整数值0≥n 的概率为 !/n AB p n n =,已知a E =μ,试决定A 与B 。 4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。 5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞ =≥=1 }{k k P E ξξ 。 6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(| |∞<<∞-=--x e x p x λμλ 0>λ。试求 ξE ,ξD 。 7、若21,ξξ相互独立,均服从),(2σa N ,试证π σξξ+ =a E ),max(21。 8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放 入乙袋中,求从乙袋中再摸一球而为白球的概率。 9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第 二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求 n S 。 10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体 质重量,试说明这样做的道理。 11、若ξ的密度函数是偶函数,且2 E ξ <∞,试证ξ与ξ不相关,但它们不相互独立。 12、若,ξη的密度函数为22 221,1 (,)0,1x y p x y x y π?+≤?=??+>? ,试证:ξ与η不相关,但它们不独立。 13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。 14、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。

李贤平版概率论第一章答案

第一章 事件与概率 1、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ?;(4)BC A ?. 2、试把n A A A 21表示成n 个两两互不相容事件的和. 3、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 4、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C ; (2)0)1(321321=-+-+--n n n n n n nC C C C ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 5、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 6、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 7、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 8、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有 )(,,321321m m m m m m m =++只的概率。 9、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 10、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。 11、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的概率,这里N M ≤≤1。 12、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少? 13、从n 双不同的鞋子中任取2r(2r

概率论答案 - 李贤平版 - 第四章

第四章 数字特征与特征函数 1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶 数或奇数而取数值0及1,试求ηE 及ηD 。 2、袋中有k 号的球k 只,n k ,,2,1Λ=,从中摸出一球,求所得号码的数学期望。 3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。 4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望 及方差。 5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞ =≥=1}{k k P E ξξ。 6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ 0>λ。试求 ξE ,ξD 。 7、若21,ξξ相互独立,均服从),(2σa N ,试证π σξξ+=a E ),max (21。 8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放 入乙袋中,求从乙袋中再摸一球而为白球的概率。 9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第 二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。 10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体 质重量,试说明这样做的道理。 11、若ξ的密度函数是偶函数,且2 E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。 12、若,ξη的密度函数为22221,1(,)0,1 x y p x y x y π?+≤?=??+>?,试证:ξ与η不相关,但它们不独立。 13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。 14、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。

李贤平《概率论与数理统计》标准答案

第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,, n ξξ的算术 平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,, ξξ的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11 ()n n n ηξξ= ++,11 ()n n a E E n ξξ= ++,则{}i ξ服从大数定律 的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

相关文档
相关文档 最新文档