文档库 最新最全的文档下载
当前位置:文档库 › 如何求解圆方程

如何求解圆方程

如何求解圆方程
如何求解圆方程

高考数学复习圆的方程专题练习(附答案)

高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。以下是圆的方程专题练习,请考生查缺补漏。 一、填空题 1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0 和x轴都相切,则该圆的标准方程是________. [解析] 设圆心C(a,b)(a0,b0),由题意得b=1. 又圆心C到直线4x-3y=0的距离d==1, 解得a=2或a=-(舍). 所以该圆的标准方程为(x-2)2+(y-1)2=1. [答案] (x-2)2+(y-1)2=1 2.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________. [解析] 因为点P关于直线x+y-1=0的对称点也在圆上, 该直线过圆心,即圆心满足方程x+y-1=0, 因此-+1-1=0,解得a=0,所以圆心坐标为(0,1). [答案] (0,1) 3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________. [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x

联立可求得圆心为(1,-4). 半径r=2,所求圆的方程为(x-1)2+(y+4)2=8. [答案] (x-1)2+(y+4)2=8 4.(2019江苏常州模拟)已知实数x,y满足 x2+y2-4x+6y+12=0,则|2x-y|的最小值为________. [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令 x=2+cos , y=-3+sin ,则|2x-y|=|4+2cos +3-sin | =|7-sin (-7-(tan =2). [答案] 7- 5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________. [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号. [答案] 9 6.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________. [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1, 而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

高中数学圆的方程专题复习

高二数学辅导资料(三) 内容:圆与方程 本章考试要求 考试内容 要求层次A B C 圆与方程 圆的标准方程与一般方程√ 直线与圆的位置关系 √ 两圆的位置关系√ 用直线和圆的方程解决简单的问 题 √空间直角坐标系 空间直角坐标系√ 空间两点间的距离公式√ 一、圆的方程 【知识要点】 圆心为,半径为的圆的标准方程为: 时,圆心在原点的圆的方程为:. 圆的一般方程,圆心为点,半径,其中. 圆系方程:过圆:与圆: 交点的圆系方程是 (不含圆), 当时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一求圆的方程 问题1.求满足下列各条件圆的方程: 以两点,为直径端点的圆的方程是 求经过,两点,圆心在直线上的圆的方程;

过点的圆与直线相切于点,则圆的方程是? 考点二圆的标准方程与一般方程 问题2.方程表示圆,则的取值范围是 考点三轨迹问题 问题3.点与圆上任一点连线的中点轨迹方程是 问题4.设两点,,动点到点的距离与到点的距离的比为,求点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 直线与圆的位置关系 位置关系相切相交相离 几何特征 代数特征 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为,圆的半径为,圆心到直线的距离为,则直线与 圆的位置关系满足以下关系: 直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:(其中为圆的半径,直线到圆心的距离). 圆与圆的位置关系:①设两圆的半径分别为和,圆心距为,则两圆的位置关系满足关系: 位置关系外离外切相交内切内含 几何特征 代数特征无实数解一组实数解两组实数解一组实数解无实数解 ②设两圆,,若两圆相交,则两圆的公共弦所在的直线方程 是 相切问题的解法:

圆的方程的求解和对称问题

圆的方程的求解和对称问题 1. 圆的方程 (1) 圆的定义:平面上与一个定点的距离等于定长的点的集合. 确定一个圆:圆心和半径 (2)圆的标准方程. (x-a)2+(y-b)2=r 2 ,方程表示圆心为 ( a, b ),半径为r 的圆. 特别地,x 2+y 2=r 2表示以原点为圆心,半径为r 的圆 (3)圆的一般方程 x 2+y 2+Dx+Ey+F=0 (1) 当D2+E2-4F>0时,表示圆心为( -D/2 , -E/2 ),半径 的圆. (2) 当D2+E2-4F=0时,表示一个点( -D/2 , -E/2 ); (3) 当D2+E2-4F<0时,它不表示任何图形. 2. 与圆有关的对称 (1) 圆关于点对称:只需用中点坐标公式求出所求圆圆心即可. (2) 圆关于直线对称:只需求出所求圆圆心即可. ① 已知圆圆心与所求圆圆心两点构成的直线的斜率与已知直线斜率之积为 -1. ② 已知圆圆心与所求圆圆心两点中点在已知直线上. 圆的方程的求解:方法:待定系数法 Eg1:求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程. 20)1(22=++y x Eg 2:过点A (4,1)的圆C 与直线x-y-1=0相切于点B (2,1),则圆C 的方程 为 (x-3)2+y 2=2 对称问题:

Eg1:已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为( C ) A. (x+1)2+y2=1 B. x2+y2=1 C. x2+(y+1)2=1 D. x2+(y-1)2=1 Eg2:圆(X+2)2+Y2=5 关于原点( O, O )对称的圆的方程为( A ) A. (x-2)2+y2=5 +(y-2)2=5 C. (x+2)2+(y+2)2=5 +(y+2)2=5

圆的方程_基础 知识讲解

圆的方程 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 【要点梳理】 【高清课堂:圆的方程370891 知识要点】 要点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释: (1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2 2 2 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时: ||||a b r ==;过原点:222a b r += (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 要点二:点和圆的位置关系 如果圆的标准方程为2 2 2 ()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()2 2 200||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()2 2 200||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()2 2 200||CM r x a y b r ?时,方程2 2 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ?为圆心, 为半径. 要点诠释: 由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当2240D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 22)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22= ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

圆的方程练习题

1 圆的方程练习题 1.圆x 2+y 2 -4x=1的圆心及半径分别是 ( ) A .(2,0),5 B . C . D .(2,2),5 2 .方程x 2+y 2 +2x-4y-6 =0表示的图形是 ( ) A .以(1,- 2)为圆心 B .以(1,2)为圆心 为半径的圆 C .以(-1, -2)为圆心 D .以( -1,2)为圆心 3.过点A (6,0),B (1,5),且圆心在直线2x-7y+8=0上的圆的方程为( ) A .(x+3)2+(y+2)2=13 B .(x+3)2+(y-2)2 =13 C .(x-3)2+(y-2)2=13 D .(x-3)2+(y+2)2 =13 4.方程(x-a )2+(y-b )2 =0的图形是 ( ) A .一个圆 B .两条直线 C .两条射线 D .一个点 5.已知点A (2,4),B (8,-2),以AB 为直径的圆的方程 ( ) A .(x-5)2+(y-1)2=18 B .(x-5)2+(y-1)2 =72 C .(x+5)2+(y+1)2=18 D .(x+5)2+(y+1)2 =72 6.与圆x 2+y 2 -2x+4y+3=0的圆心相同,半径是5的圆的方程是( ) A .(x-1)2+(y+2)2=25 B .(x-1)2+(y+2)2 =5 C .(x+1)2+(y-2)2=25 D .(x+1)2+(y-2)2 =5 7.已知圆x 2+y 2 +2x-4y-a=0的半径为3,则 ( ) A .a=8 B .a=4 C .a=2 D .a=14 8.圆心在C (-1,2),半径为 ( ) 11A. B.2213cos 1C. D.23sin 2x x y y x x y y θθ θθ θθ θθ ? ?=+=-+????=-=?????=-+=-+????=+?=+??

解析几何 圆的方程

07-05 圆的方程 点一点——明确目标 掌握圆的标准方程、一般方程、参数方程,能根据需要选择园方程的恰当形式解决问题. 做一做——热身适应 1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 . 解析:由D 2+E 2-4F >0,得7t 2-6t -1<0, 即- 7 1

求圆的切线方程的几种方法

1 求圆的切线方程的几种方法 在直线与圆的位置关系中,相切是一个重要的位置关系.众所周知,在圆上的点可以作一条直线与该圆相切,过圆外一点可以作二条直线与该圆相切.本文就如何求圆的切线方程的方法展开讨论,供同学们参考. 1.利用几何性质来求切线方程 当直线与圆相切时,圆心到直线的距离等于半径.因此,利用点到直线的距离公式即可以求出切线方程. 例1 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (3,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,显然不是圆的切线. 设所求的直线的斜率为k ,直线方程为y -2=k (x -3), 化为一般形式为kx -y -3k +2=0. 由于直线与圆相切,故圆心到直线的距离d 等于半径2,即 d =|-1-3k +2|k 2+1=|3k -1|k 2+1 =2, 解得k =3±265 . 所以切线方程为y -2=3±265 (x -3). 点评:求切线方程时,点到直线的距离公式相当重要,不能记错.设直线方程时,一定要考虑直线的斜率不存在时的情况,避免漏解. 2.利用方程的判别式来求切线方程 当直线与圆相切时,直线与圆只有一个公共点,此时圆的方程与直线联立,利用判别式等于零即可以求出切线方程. 例2 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (2,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,直线x =2是圆的切线. 当过P 的直线的斜率存在时,设所求的直线方程为y -2=k (x -2). 直线方程与圆的方程联立,整理,得(1+k 2)x 2+2k (1-2k )x +4k 2-4k -3=0, 因为直线与圆只有一个公共点,故Δ=4k 2(1-2k )2-4(1+k 2)(4k 2-4k -3)=0. 解得k =-34 . 所以所求的切线方程是x =2或y -2=-34 (x -2). 点评:利用判别式求解时计算量比较大,本题注意不能漏解了x =2. 3.利用垂直关系求切线方程 当已知切点时,我们可以利用圆心与切点的连线与直线垂直、斜率之积为-1来求出切线方程. 例3 已知圆C 的方程是x 2+(y -1)2=4,求以P (3,2)为切点的切线方程. 解:由已知得圆心O (0,1),点P 在圆C 上,显然x =3不是圆的切线. 设切线方程为l :y -2=k (x -3). 由直线OP ⊥l 得k ·k OP =-1,所以k =-1k OP =-3. 所以切线方程为y -2=-3(x -3)即y =-3x +5. 点评:由直线垂直求出切线的斜率,可以避免繁杂的计算. 小结:在求圆的切线方程时,先判断切线方程有几条,再是注意特殊情况(如斜率不存在),三是注意使用哪种方法计算最简捷.

《圆的方程》专题

《圆的方程》专题 2019年( )月( )日 班级 姓名 1.圆的定义及方程 ?标准方程强调圆心坐标为(a ,b ),半径为r . ?(1)当D 2+E 2-4F =0时,方程表示一个点????-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. 二、常用结论汇总——规律多一点 (1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是???? ? A =C ≠0, B =0,D 2+E 2-4AF >0. (2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.

三、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程(x -a )2+(y -b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+4mx -2y =0不一定表示圆.( ) (4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 2 0+Dx 0+Ey 0+F >0.( ) 答案:(1)√ (2)× (3)× (4)√ (二)选一选 1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 解析:选D 因为圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3). 2.圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2,选D. 3.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( ) A .(-1,1) B .(-3,3) C .(-2,2) D.?? ? ? - 22, 22 解析:选C ∵点(0,0)在(x -m )2+(y +m )2=4的内部,∴(0-m )2+(0+m )2<4,解得-2<m < 2.故选C. (三)填一填 4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.

高中数学圆的方程综合训练试题

圆的方程综合训练试题 一、选择题 1.直线0643=+-y x 与圆4)3()2(2 2=-+-y x 的位置关系是( ) A.过圆心 B.相切 C.相离 D.相交但不过圆心王新敞 2.若直线0=++a y x 与圆a y x =+2 2相切,则a 为( ) A.0或2 B.2 C.2 D.无解王新敞 3.两圆094622 =+-++y x y x 和0191262 2=-+--+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离王新敞 4.以M (-4,3)为圆心的圆与直线052=-+y x 相离,那么圆M 的半径r 的取值范围是( ) A.0<r <2 B.0<r <5 C.0<r <25 D.0<r <10 5.两圆2 2 2 r y x =+与r r y x ()1()3(2 2 2 =++->0)外切,则x 的值是( ) A.10 B. 5 C.5 D. 2 10 王新敞 6.已知半径为1的动圆与圆16)7()5(2 2 =++-y x 相切,则动圆圆心的轨迹方程是( ) A.25)7()5(2 2=++-y x B. 17)7()5(22=++-y x 或15)7()5(2 2=++-y x C. 9)7()5(2 2=++-y x D. 25)7()5(22=++-y x 或9)7()5(2 2=++-y x 王新敞 7.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ) A. 16)4()3(22=++-y x B. 16)4()3(2 2=-++y x C. 9)4()3(22=++-y x D. 9)4()3(2 2=-++y x 王新敞 二、填空题 8.圆02410222=-+-+y x y x 与圆08222 2=-+++y x y x 的交点坐标是 王新敞

圆的一般方程练习题

课时作业23 圆的一般方程 (限时:10分钟) 1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2 2,则a 的值为( ) A .-2或2 或32 C .2或0 D .-2或0 解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到 直线的距离|1-2+a |12+-1 2=22,解得a =0或2. 答案:C 2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:圆心为? ?? ??a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限. 答案:D 3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为 ( ) A .0 B .2 C .4 D .1 解析:由题意可知,直线y =2x +b 过圆心(-1,2), ∴2=2×(-1)+b ,b =4. 答案:C 4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________. 解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1), k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分

别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x+y-3=0. 答案:x-y-3=0x+y-3=0 5.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为? ? ? ? ? - D 2,- E 2, 由题意得 ?? ? ??42+72+4D+7E+F=0, -32+62-3D+6E+F=0, 2· ? ? ? ? ? - D 2+? ? ? ? ? - E 2-5=0. 即 ?? ? ??4D+7E+F=-65, 3D-6E-F=45, 2D+E=-10, 解得 ?? ? ??D=-2, E=-6, F=-15. 所以,所求的圆的方程为x2+y2-2x-6y-15=0. (限时:30分钟) 1.圆x2+y2+4x-6y-3=0的圆心和半径分别为() A.(2,-3);16B.(-2,3);4 C.(4,-6);16 D.(2,-3);4 解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4. 答案:B 2.方程x2+y2+4x-2y+5m=0表示圆的条件是() 1 C.m< 1 4D.m<1 解析:由42+(-2)2-4×5m>0解得m<1. 答案:D 3.过坐标原点,且在x轴和y轴上的截距分别是2和3的圆的方程为() A.x2+y2-2x-3y=0 B.x2+y2+2x-3y=0 C.x2+y2-2x+3y=0

知识讲解圆的方程基础

圆的方程 【学习目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 【要点梳理】 【高清课堂:圆的方程370891 知识要点】 要点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释: (1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2 2 2 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时: ||||a b r ==;过原点:222a b r += (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 要点二:点和圆的位置关系 如果圆的标准方程为2 2 2 ()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()22 2 00||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()22 2 00||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()22 2 00||CM r x a y b r ?时,方程2 2 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ?为圆心, 为半径. 要点诠释: 由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当22 40D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2 2 40D E F +-<时,方程没有实数解,因而它不表示任何图形.

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

高中数学圆的方程专题复习

1 / 4 高一数学辅导资料 内容:圆与方程 本章考试要求 一、圆的方程 【知识要点】 1.圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 0==b a 时,圆心在原点的圆的方程为:222r y x =+. 2.圆的一般方程02 2 =++++F Ey Dx y x ,圆心为点,2 2D E ?? -- ???,半径2 r = , 其中0422 >-+F E D . 3.圆系方程:过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 交点的圆系方程是()22221112220x y D x E y F x y D x E y F λ+++++++++=(不含圆2C ), 当1λ=-时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一 求圆的方程 问题1. 求满足下列各条件圆的方程: ()1以两点(3,1)A --,(5,5)B 为直径端点的圆的方程是 ()2求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程; ()3过点()4,1A 的圆C 与直线10x y --=相切于点()2,1B ,则圆C 的方程是? 考点二 圆的标准方程与一般方程 问题2.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 考点三 轨迹问题

问题3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是 问题4.设两点()3,0A -,()3,0B ,动点P 到点A 的距离与到点B 的距离的比为2,求P 点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 1.直线与圆的位置关系 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为△,圆的半径为r ,圆心C 到直线l 的距离为d 则直线与 圆的位置关系满足以下关系: 2.直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:AB =r 为圆的半径,d 直线到圆心的距离). 0:111221=++++F y E x D y x C 0:222222=++++F y E x D y x C 则两圆的公共弦所在的直线方程是 4.相切问题的解法: ①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为1-(或一条直线存在斜率,另一条不存在) ③利用直线与圆的方程联立的方程组的解只有一个,即0=?来求解. 特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为 . 圆222)()(r b y a x =-+-的切线方程为 【互动探究】 考点一 直线与圆的位置关系 问题1:()1已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 .A l 与C 相交 .B l 与C 相切 .C l 与C 相离 .D 以上三个选项均有可能 ()2直线l :1mx y m -+-与圆C :() 2 211x y +-=的位置关系是 .A 相离 .B 相切 .C 相交 .D 无法确定,与m 的取值有关. ()3过点()1,3P 引圆2244100x y x y +---=的弦,则所作的弦中最短的弦长为

圆的一般方程 (精)

二 圆的一般方程 标准方程 举例子 642)2(0 142)1(2222=+--+=++-+y x y x y x y x 知识点 ■1 一般方程: (1)当0422>-+F E D 时, 表示 ; (2)当0422=-+F E D 时, 表示 ; (3)当0422<-+F E D 时, ; 特点:(1)22,y x 系数相同且不等于0;(2)不含xy 项. ■2.形如022=+++++F Ey Dx Cy Bxy Ax 的方程表示圆的充要条件: ① ② ③ ■3问题:圆的标准方程与圆的一般方程各有什么特点? 例1.方程052422=+-++m y mx y x 表示圆,则m 范围是: . 例2.求经过三点)1,1(-A ,)4,1(B ,)2,4(-C 的圆的方程. 例3.求圆心在直线053=-+y x 上,并且经过原点和点(3,-1)的圆的方程 例4已知两点)9,4(1P ,)3,6(2P ,求以21P P 为直径的圆的方程. ■4直径两端点坐标),(11y x A ,),(22y x B 圆的直径式方程: 例5.已知点P 是圆1622=+y x 上的一个动点,定点)0,12(A ,当点P 在圆上运动时,线段PA 的中点M 的轨迹是什么?

练习 1.若方程0422=+--+m y x y x 表示的曲线是圆,则有( ) A .21≤ m B .21-+=++++F E D F Ey Dx y x 所表示的曲线关于直线x y =对称,那么必有( )A .D=E B .D=F C .E=F D .D=E=F 4.方程221||y y x -=-表示的曲线是( ) A .两条半圆 B .一个圆 C .半个圆 D .两个圆 5.方程0 )()(22=+++b y a x 的图形是( ) A .点),(b a B . 点),(b a -- C .以),(b a 为圆心的圆 D . 以),(b a --为圆心的圆 6.求证:对于任意实数m ,方程032422=--++m y mx y x 的曲线都是圆 7. ABC ?三个顶点坐标分别为)5,1(-A ,)2,2(--B ,)5,5(C ,求其外接圆方程. 8.已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆 (1)求实数m 的取值范围(2)求该圆半径r 的取值范围(3)求圆心的轨迹方程 9.已知点P 是圆0422=-+x y x 上的一个动点,点Q 的坐标为(2,6),当点P 在圆上运动时,线段P Q 的中点M 的轨迹是什么? 10.求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程

相关文档
相关文档 最新文档