文档库 最新最全的文档下载
当前位置:文档库 › 线性代数 第三章 向量与线性方程组 例题

线性代数 第三章 向量与线性方程组 例题

线性代数 第三章  向量与线性方程组 例题
线性代数 第三章  向量与线性方程组 例题

1.设α1=(1 2

?1 0),α2=(

1

3

1

2

),α3=(

2

4

?2

),α4=(

1

1

3

5

),α5=(

2

2

3

),求向量组α1,α2,α3,α4,α5的

一个极大(最大)无关组,并将其余向量用该极大无关组线性表出。

2.设A为mxn阶矩阵,B为nxp阶矩阵,C为pxs阶矩阵,R(C)=p,且ABC=0,证明B=0.

3.设A为mxn阶矩阵,X与b为m维列向量,Y为n维列向量,证明AY=b有解的充要条

件是满足A T X=0的所有X均满足b T=0.

4. 设α1=(1003),α2=(11?12),α3=(1

2?2a ),β=(01b ?1

)问a,b 为何值时, (1) β不能由α1,α2,α3线性表出

(2) β可以由α1,α2,α3线性表出,并且写出表达式

5. 设A=(λ+312

λλ?113λ+3λλ+3

),讨论AX=0的解的情况。

6. 设A=(1

11a b c a 2

b 2

c 2

),讨论AX=0的解的情况。

7. 设A=(1 10 1 1 1

2 20?132a ?3?21a ),β=(01b ?1

),讨论方程组AX=β的解的情况。

8. 设A=(λ111λ111λ),b=(1

λλ2

),讨论方程组AX=b 的解的情况。

9. 已知三阶矩阵A 的第一行为a,b,c ,且a,b,c 不全为0,矩阵B=(1

232463

6k

)(k 为常数)满足AB =0,求AX =0的通解。

10. 设4元齐次线性方程组(I ){2x 1+3x 2?x 3=0x 1+2x 2+x 3?x 4=0

,且已知另一个四元齐次线性方程组(II )的一个基础解系为α1=(2

?1a +21

),α2=(?124a +8),(1)求(I )的一个基础解系。 (2)a 为何值时(I )与(II )有非零公共解,并求所有非零公共解。

11. 在上例中将α1,α2改为α1=(a ?5

1?1?1),α2=(?6a +3?12

)求(I )与(II )的所有非零公共解。

12.已知非齐次线性方程组(I ){?2x 1+x 2+ax 3?5x 4=1x 1+2x 2?x 3+6x 4=43x 1+2x 2+x 3+2x 4=c

与(II) {x 1+x 4=1

x 2?2x 4=2x 3+x 4=1为通解方程组

求a,b,c 的值。

13.设α1,α2,α3为AX=0的一个基础解系,β1=α1+α2+α3,β2=α1+2α2+3α3,β3=α1+6α2?α3,证明β1,β2,β3也是AX=0的一个基础解系。

14. 设α1,α2,…,αs为AX=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,(t1,t2为实数)问t1,t2满足什么条件时,β1,β2,…,βs也是AX=0的一个基础解系。

15.设α可以由α1,α2,…,αm线性表出,但不能由α1,α2,…,αm?1线性表出,证明αm可由α1,α2,…,αm?1线性表出。

16. 设α1,α2,α3,α4线性相关,其中任意三个线性无关,证明存在全不为0的数k1,k2,k3,k4使k1α1+k2α2+k3α3+k4α4=0。

17. 已知α1,α2,α3线性相关, α2,α3,α4线性无关,问:(1)α1可否由 α2,α3,α4线性表出,(2)α4可否由α1, α2,α3线性表出,并说明理由。

18.设n维向量组α1,α2,…,αn?1线性无关且其中每一个向量与β1,β2分别都正交,证明β1,β2线性无关。

19.证明α1,α2,…,αm 线性无关的充要条件是行列式D=|α1α1α1α2α2α1α2α2?α1αm ?α2αm ??αm α1

αm α2???αm αm |≠0。

20.设αi =(a i1,a i2,…,a im )T (i=1,2,3…r,r

已知β=(a 1,a 2,…,a im )T 是齐次线性方程组(i){ a 11x 1+a 12x 2+?+a 1n x n =0a 21x 1+a 22x 2+?+a 2n x n =0::a r1x 1

+a r2x 2+?+a rn x n =0的一个非零解,证明β,a 1,a 2,…,a r 线性无关。

21.设n 阶矩阵A,B 满足R(A)+R(B)

22.设X1,X2,…,Xn-r为AX=0的一个基础解系X0,为AX=b(b≠0)的一个特解,证明:

(1)X0, X1,X2,…,Xn-r线性无关

(2)X0, X0+ X1,X0+ X2,…, X0+ Xn-r线性无关

23.设A为(n-1)x n矩阵,|Aj|表示A中划去第j列所构成的行列式,证明:

(1)ξ=(|A1|-|A2|),… ,(?1)n?1|An|T为AX=0的解

(2)当R(A)=n-1时(1)中的解ξ为AX=0的一个基础解系。

24.设A为n阶矩阵,证明AX=b对对任意b有解的充分条件为|A|≠0。

25.已知向量组α1,α2,…,αr中每一个向量均可由向量组β1,β2,…,βr线性表出,且向量组α1,α2,…,αr线性无关,证明:

(1)r≤s

(2)存在βk(1≤k≤s)使βk,α1,α2,…,αr线性无关

26 设β1=α2+α3+?+αn,β2=α1+α3+?+αn,…,β1=α1+α2+?+αn?1,(n≥2),证明α1,α2,…,αn与向量组β1,β2,…,βn等价。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

线性代数 第三章向量

n维向量部分 这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。常出现在选择题中。 回顾: n维向量的运算 1.定义:设 ,,k为数域P中的数,定义 ,称为向量与的和; ,称为向量与数k的数量乘积. 2.向量运算的基本性质 1) 2) 3) 4) 5) 6) 7) 8),9),, 10)若,则即,若,则或 1 向量组的秩、极大无关组的相关题型 知识点 极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足 i) 线性无关 ii) 对任意的,可经线性表出 则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩 定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质: 1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同. 一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.) 3)若向量组可经向量组线性表出,则 秩秩. 例1 设向量组 (1)求此向量组的秩; (2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。

例2 选择题 若向量组的秩为 r,则() (A)必定r秩(向量组II) (C)秩(向量组I)<秩(向量组II) (D)不能确定秩(向量组I)与秩(向量组II)的大小关系 2 向量组的线性相关性的判定或根据向量相关性求参数 知识点:1对向量组,设 若如果存在不全为零的数,使上式成立,则向量组线性相关。 若当且仅当上式才成立,则线性无关。 2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。(注意它的逆否定理) 3 利用矩阵的秩或行列式 设有 s个n维列向量组,设A=(), 则当秩A=s时,线性无关;当秩A

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式41 234334461 5671122 D ==-,试求4142A A +与4344A A +、 三、利用多项式分解因式计算行列式 1.计算2211 23122313 1513 19x D x -=-、 2.设()x b c d b x c d f x b c x d b c d x =,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1、设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2、设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2 A =,试计算行列式1*(3)22.A A O O A -??-???? 3、设A 就是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式

||.A 4、设矩阵210120001A ????=?????? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5、设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1、若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345 ,则行列式1||________.B E --= 2、设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1、设,,A B A B +都就是可逆矩阵,求:111().A B ---+ 2、设0002100053123004 580034600A ????????=???????? ,求1.A -

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数总结材料汇总情况+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:

(1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

20XX考研数学线代典型题型分析.doc

试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程

组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

线性代数典型例题

A = C 1,: 2,: 3), B =(:1 : 2 : 3, j 2 24 3√ 1 3: 2 9 3) 线性代数 第一章行列式 典型例题 、利用行列式性质计算行列式 、按行(列)展开公式求代数余子式 四、抽象行列式的计算或证明 1. 设四阶矩阵 A=[2>,3 2,4 3, 4],B=「,2 2,3 3,4 4],其中2, 3, 4 均为四 维列向量,且已知行列式|A| = 2,|B|=-3,试计算行列式|A - B|. A 1 2. 设A 为三阶方阵,A 为A 的伴随矩阵,且IAI=',试计算行列式 2 "(3A ) j -2A * 0〕 2 L :O AT 3. 设A 是n 阶(n 工2)非零实矩阵,元素a ij 与其代数余子式A j 相等,求行列式|A|. 2 1 0 4. 设矩阵 A= 1 2 0 ,矩阵 B 满足 ABA * = 2BA*+E ,则 |B|= ________ . '0 0 1 J 5. 设>1√?2, : 3均为3维列向量,记矩阵 已知行列式D 4 = 1 3 1 1 2 3 5 1 3 4 6 2 4 4 7 2 =-6 ,试求 A 41 A 42 与 A 43 ' A 44. 三、利用多项式分解因式计算行列式 1 1 、t W 1 2 — X 1 ?计算D = 1 5 1 9-x 2 2 ?设 f(x)= X b b b b X C C C C X d d d ,则方程f (X) =O 有根X = d

如果I A ∣=1,那么| B |= __ . 五、n阶行列式的计算 六、利用特征值计算行列式 1. 若四阶矩阵A与B相似,矩阵A的特征值为丄丄,则行列式 2 3 4 5 1 IB -E∣= _________ . 2. 设A为四阶矩阵,且满足|2E ? A∣=0,又已知A的三个特征值分别为-1,1,2,试计算行列式|2A 3E |. 第二章矩阵 典型例题 一、求逆矩阵 1. 设代B, A ■ B都是可逆矩阵,求:(A J■ B」)」. -00021〕 00053 2.设 A =12300,求A JL 45800 34600 一 二、讨论抽象矩阵的可逆性 1. 设n阶矩阵A满足关系式A3? A2- A- E =0,证明A可逆,并求A^l. 2. 已知A3 =2E,B = A2 -2A ? 2E ,证明B可逆,并求出逆矩阵。 3. 设A = E Xy T ,其中X, y均为n维列向量,且X T y = 2 ,求A的逆矩阵。 4. 设代B为n阶矩阵,且E-AB可逆,证明E - BA也可逆。 三、解矩阵方程 1 1 -1 1. 设矩阵A= -1 1 1 ,矩阵X满足A*X=A*+2X,求矩阵X . J -1 1 J 1 0 0 0 1 1

线性代数 第三章 测验

(1)设n 阶方阵A 的秩rn (5)设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=B 所对应的齐次线性方程组,则下列结论正确的是:( ) (A )若AX=0仅有零解,则AX=B 有唯一解; (B )若AX=0有非零解,则AX=B 有无穷多解; (C )若AX=B 有无穷多个解,则AX=0仅有零解; (D )若AX=B 有无穷多个解,则AX=0有非零解。 (6)设向量组(Ⅰ):α1,α2,…,αr 可由向量组(Ⅱ):β1,β2,…,βS 线性表示,则( ) (A )当rS 时,向量组(Ⅱ)必线性相关; (C )当rS 时,向量组(Ⅰ)必线性相关; 7. 已知一个向量组为???? ? ???????--=????????????-=????????????=????????????=????????????=1311,4152,2312,1021,120154321ααααα,求该向量组的秩及该向量组的一个最大线性无关组, 并把其余列向量用该最大无关组线性表示.. 8. 当λ取何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ?++=?++=??++=? (1) 有唯一解;(2)无解;(3)有无 穷多解,并求通解.

居余马线性代数第三章课后习题

第三章 课后习题及解答 将1,2题中的向量α表示成4321,,,αααα的线性组合: 1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T 4T 3T 21T --=--=--===αααααT 2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα 解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 解得.4 1,41,41,454321-=-===k k k k 所以432141414145ααααα--+= . 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得 02321=++k k k ,04321=+++k k k k , 0342=-k k ,1421=-+k k k . 解得 .0,1,0,14321=-===k k k k 所以31ααα-=. 判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T 3T 2T 1===ααα 4. ()().3,0,7,142,1,3,0,)4,2,1,1(T 3T 2T 1==-=βββ, 解:

3.设存在 321,,k k k 使得0332211=++αααk k k ,即 ?????=++=++=+0650320321 32131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关. 4.设存在 321,,k k k 使得0332211=++βββk k k ,即 ???????=++=++=+-=+0 14240720303321321 2131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件. 解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性 无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是 0=α. 6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法, 假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关, 则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立. 7.证明:若21,αα线性无关,则2121,αααα-+也线性无关. 证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,

线性代数总结汇总+经典例题

(一)行列式概念和性质线性代数知识点总结 1 行列式 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1))行列互换(转置),行列式的值不变 (2))两行(列)互换,行列式变号 (3))提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4))拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这 个行列式就等于两个行列式之和。 (5))一行(列)乘k加到另一行(列),行列式的值不变。 (6))两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则 7、n 阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为 b 的行列式的值: (三)按行(列)展开 9、按行展开定理: (1))任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2))行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式 乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A| ·|B| (3)|A T|=|A| (4)|A -1|=|A| -1 (5)|A*|=|A| n-1 (6))若A 的特征值λ1、λ2、,, λn ,则 (7))若 A 与B 相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1 )非齐次线性方程组的系数行列式不为0 ,那么方程为唯一解

线性代数第3章(知识梳理)

本章结构 0 m n m n A x b A x ????→?=? →???→?=? →→??6444444444447444444444448矩阵表示消元法 非齐次向量表示向量与向量组的线性组合 线性方程组 矩阵表示消元法 齐次向量表示向量组的线性相关性向量组的极大无关组、秩  齐次线性方程组 非齐次线性方程组 解的性质、基础解系、全部解 解的性质、全部解 常用方法:1????→????????→??????→初等行变换 初等行变换 初等行变换 非零首元上面元素消成零非零首元消成“”相应矩阵阶梯形简化阶梯行最简阶梯 1、矩阵A 化等价标准形 A ????→初等行变换 阶梯形,求出矩阵A 的秩r ,则标准形 r I O D O O ??= ? ?? 2、求矩阵A 的逆 ()()1A I I A -→M M 3、消元法求线性方程组Ax b =的解 增广矩阵()A b M →行最简阶梯 4、求矩阵A 的秩 A →阶梯形 5、判断向量β能否由向量组12,,,s αααL 线性表示 以12,,,,s αααβL 为列向量的矩阵→行最简阶梯 6、求向量组12,,,s αααL 的秩和一个极大无关组,并将其它向量用该极大无关组线性表示 以12,,,s αααL 为列向量的矩阵→行最简阶梯 7、用基础解系表示(非)齐次线性方程组的全部解 增广矩阵()A b M →行最简阶梯 一、用消元法求解非齐次线性方程组m n A x b ?= 1、() A b M u u u u u u u u u u u u u u u r 初等行变换阶梯形矩阵,进而求出()r A 和(,)r A b 2、观察()r A 和(,)r A b 的关系:(1) ()(,)r A r A b ≠,方程组无解;(2) ()=(,)r A r A b ,方程组有解: ①、()=(,)r A r A b n =,方程组有唯一解; ②、()=(,)r A r A b n <,方程组有无穷多个解.

(完整版)线性代数第三章向量试题及答案

第三章 向量 1、基本概念 定义1:由n 个数构成的一个有序数组[]n a a ,,a 21ΛΛ称为一个n 维向量, 称这些数为它的分量。分量依次是a 1,a 2,? ,a n 的向量可表示成: =α[]n a a ,,a 21ΛΛ,称为行向量,或=T α[]T n a a ,,a 21ΛΛ称为列向量。 请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n 矩阵,右边是n ?1矩阵)。习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。 一个m ?n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21ΛΛ时(它们都是表示为列的形式!)可记A =(m ααα,,21ΛΛ )。 矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。 两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等. 2、向量的线形运算 3、向量组的线形相关性 定义2:向量组的线性组合:设m ααα,,21ΛΛ是一组n 维量,m k k k ΛΛ21,是 一组数,则m m k k k αααΛΛ++2211为m ααα,,21ΛΛ的线性组合。 n 维向量组的线性组合也是n 维向量。 定义3:线形表出:如果n 维向量β能表示成m ααα,,21ΛΛ的一个线性组 合,即=βm m k k k αααΛΛ++2211,则称β可以用量组m ααα,,21ΛΛ线性表示。 判别β是否可以用m ααα,,21ΛΛ线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x ΛΛΛ2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βαααM ΛΛm 21,为增广矩阵的线性方程组。反之,判别 “以 ()βM A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为 β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。 定义4:线性相关:对m 个n 维向量m ααα,,21ΛΛ,若存在一组不全为0 的数m k k k ΛΛ21,,使得m m k k k αααΛΛ++2211=0成立,则称向量组 m ααα,,21ΛΛ线性相关。 包含0向量的向量组肯定线性相关,有相等向量或成比例向量的向量组线性相 关,单个向量是0向量时线性相关。 定义5:线性无关:向量组m ααα,,21ΛΛ,只有当m k k k ΛΛ21,全为0时, 才有m m k k k αααΛΛ++2211=0成立,则称向量组m ααα,,21ΛΛ线性无关。 单个向量是非0向量时线性无关。 向量组m ααα,,21ΛΛ “线性相关还是无关”也就是向量方程 m m k k k αααΛΛ++2211=0 有没有非零解(仅有0解),也就是以m ααα,,21ΛΛ为系数矩阵的齐次线性方程组有无非零解(仅有0解). ?????? ?=+++=+++=+++0 002211222212112121 11m nm n n m m m m x a x a x a x a x a x a x a x a x a ΛΛ ΛΛΛΛΛΛΛΛΛΛΛ

线性代数汇总汇总+经典例题

线性代数汇总汇总+经典例题

————————————————————————————————作者:————————————————————————————————日期:

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

【复旦版线代】线性代数第三章课后习题及详细解答

习题 三 1. 略.见教材习题参考答案. 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 略.见教材习题参考答案. 5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关. 【证明】因为 1234123412341312342() 2()0 +++=+++?+++=+?-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关. 6. 设向量组12,,,r L ααα线性无关,证明向量组12,,,r L βββ也线性无关,这里 12.i i +++L β=ααα 【证明】 设向量组12,,,r L βββ线性相关,则存在不全为零的数12,,,,r k k k L 使得 1122.r r k k k +++=L 0βββ 把12i i +++L β=ααα代入上式,得 121232()()r r r r k k k k k k k +++++++++=0L L L ααα. 又已知12,,,r L ααα线性无关,故 1220,0, 0.r r r k k k k k k +++=??++=?? ??=? L L L L L 该方程组只有惟一零解120r k k k ====L ,这与题设矛盾,故向量组12,,,r L βββ线性无关. 7. 略.见教材习题参考答案. 8. 12(,,,),1,2,,i i i in i n ααα==L L α.证明:如果0ij a ≠,那么12,,,n L ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=L α

相关文档 最新文档