文档库 最新最全的文档下载
当前位置:文档库 › 复变函数第三章练习题

复变函数第三章练习题

复变函数第三章练习题

复变函数 第三章自测题

适用班级 电子信息工程1701、通信工程1701 教师:鱼翔

一、填空题(每题4分,共24分)

(1)如果函数()f z 在单连通域B 内处处解析,那么函数()f z 沿B 内的任何一条闭曲线C 的积分,()c f z dz =? 。

(2)解析函数在圆心处的值等于它在圆周上的 。

(3)如果()f z 在区域D 内处处解析,C 为D 内的任何一条正向简单闭曲线,它的内部完全含于D ,0z 为C 内的任意一点,

那么()0f z = 。 (4)解析函数的导数仍为解析函数,它的n 阶导数为 。

(5)若函数()32,u x y x axy =+为某一解析函数的虚部,则常数a = 。

(6)调和函数(),x y xy ?=共轭调和函数为 。

二、计算题(共64分)

1、分别沿y x =与2y x =算出积分()120i

x iy dz ++?的值。

2、求下列各式的值

1)()122z dz i z z =??-+ ???? 2)1sin 21z z dz z π=+? 3)31z z e dz z =? 4)2124

z dz z z =++? 5)32i z i e dz ππ-? 6)0cos i z zdz ? 3、计算221z dz z z γ--?,γ是包含圆周1z =在内的任何正向简单闭曲线。 三、(12分)已知调和函数22u xy y =-,求解析函数()f z u iv =+。

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数与积分变换复习题.

第一章 一、选择题 1. 一个向量顺时针旋转 3 π,向右平移3个单位,再向下平移1个单位, 对应的复数为1-,则原向量对应的复数是(A ) A. 2 B. 1 C. i D. i + 2. 设z 为复数,则方程2z z i +=+的解是(B ) A. 34i - + B. 34i + C. 3 4 i - D. 34i -- 3. 方程23z i +-= C ) A. 中心为23i - 的圆周 B. 中心为23i -+,半径为2的圆周 C. 中心为23i -+ D. 中心为23i -,半径为2的圆周 4. 15()1, 23, 5f z z z i z i =-=+=-则 12()f z z -=(C ) A. 44i -- B. 44i + C. 44i - D. 44i -+ 5. 设z C ∈,且1z =,则函数21()z z f z z -+=的最小值是(A ) A. -3 B. -2 C. -1 D. 1 二、填空题 1.不等式225z z -++<所表示的区域是曲线_________________的内部。(椭圆 22 22153()()22 x y +=) 2. 复数 2 2 (cos5sin 5) (cos3sin 3)θθθθ+-的指数表示式为_______________.( 16i e θ) 3. 方程 2112(1)z i i z --=--所表示曲线的直角坐标方程为__________________.(221x y +=) 4. 满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴 为25 的椭圆,该图形是否为区域 否 . 5.复数 () i i z --= 11 32 的模为_________,辐角为____________. (5/12π- )

复变函数复习题

复变函数复习题(2012-4-10) 第一章自测题 (一)填空题(每题3分,共15分) 1.复数10 3 (cos5sin 5)(cos3sin 3)i z i θθθθ+=-的复指数表示式为__________________; 2.设11i z i += -,则1005025____________________;z z z ++= 3.设35,arg(),4 z z i π =-=则______________;z = 4.不等式225z z -++<所表示的区域是_____________________; 5.方程232z i +-=所代表的曲线是__________________________. (二)选择题(每题3分,共15分) 1.设34,z i =-+则幅角的主值arg ( )z 4 4 .arctan .arctan 33 4 4 .arctan .arctan 3 3 A B C D π π π +-+- 2.41( )-= 22222 2 2 2 .cos sin .cos sin 4 4 4 4 33222222 2 2 .cos sin .cos sin 44 4 4 k k k k A i B i k k k k C i D i π π π π πππππππ π ππ ππ++- +- +++++-+- ++- (0,1,2,3)k = 3.设(i z t t t =+为参数),则其表示( )图形。 .A 直线; .B 双曲线; .C 圆; . D 抛物线。 4.一个向量顺时针旋转 ,3 π 向右平移3个单位,再向下平移1个单位后对应的复数为13i -,

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ( ()()()3 3331 02 3 02 302 33 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??? ???==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 02 10 2 / 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数期末考试分章节复习题

第一章复习题 1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D. 14 2. z=2-2i ,|z 2 |=( ) A. 2 B. 8 C. 4 D. 8 3. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线 B.双曲线 C.抛物线 D.圆 4. 设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xy B.x 2-y 2-2xy C.x 2+y 2+2xy D.x 2+y 2-2xy 5. arg(2-2i)=( ) A.43π- B.4π- C.4π D.4 3π 6.设2,3z w i z =+=,则( ) A .3 arg π = w B .6 arg π = w C .6 arg π - =w D .3 arg π - =w 7.设z 为非零复数,a ,b 为实数,若ib a z z +=_ ,则a 2+b 2的值( ) A .等于0 B .等于1 C .小于1 D .大于1 8.设1 1z i = -+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( ) A. e 2+2x B. e |2i+2z| C. e 2+2z D. e 2x 10. Re(e 2x+iy )=( ) A. e 2x B. e y C. e 2x cosy D. e 2x siny 11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1 D.Im z<0 12. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线 13 .下列集合为无界多连通区域的是( ) A.0<|z-3i|<1 B.Imz>π C.|z+ie|>4 D.π<<π2z arg 2 3 14.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线 15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1 D. π≤<πargz 2 1 16.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤ 2 π B .Re (z-i)<1 C .1≤Imz ≤2 D . 1≤||z i -≤4

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332 3 30 2 33 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 0330 2 3 2 33 131=??? ???==?? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 0233 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 202 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02 32 3113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 2 30 2 13 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数总练习题1

第一章练习题 1、已知方程i e z 31+=,则z Im 为 ( ) A. ln2 B. 32π C. ,...1,0,2±=k k π D. ,...1,0,23 ±=+k k ππ 2、设210z z ++=,则1173z z z ++= ( ) A.0 B. i C.-i D.1 3、设iy x z +=,则z w 1 =将圆周222=+y x 映射为 ( ) A .通过0=w 的直线 B .圆周2 1= w C .圆周22=-w D .圆周2=w 4、已知方程(1+2i)z=4+3i ,则z 为 ( ) A. 2+i B. -2+i C. 2-i D. -2-i 5、复数)3sin 3(cos z π πi +-=的三角形式是 ( ) A. 32sin 32cos ππi + B. 3sin 3cos ππi + C. 32sin 32cos ππ-+i D. 3sin 3cos ππ-+-i 6、方程1Re 2=z 所表示的平面曲线为 ( ) A.圆 B.直线 C.椭圆 D.双曲线 7、(1cos )(2sin ),02z t i t t π=+++≤≤所表示的曲线为 A. 直线 B. 双曲线 C. 抛物线 D. 椭圆 8、点集{}:5E z i i +- 表示的图形是( ) A.半平面 B.圆域 C.直线 D.点 9、下列集合为有界单连通区域的是( ) A. 10<z C. 2<-i z D. ππ <z ,则Z 一定等于( ) A .-1 B. i 2321-- C. i 2 321+ D. i 31+-

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+= 11; 2) n n i a -?? ? ? ?+=21; 3) ()11++ -=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-= 。 2. 证明:??? ????≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞=0 2n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-??? ??1 1n n z n i ch ; 6) ∑∞=??? ? ?1n n in z ln 。 7. 如果 ∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数习题解答(第3章)

p141第三章习题 (一)[ 5, 7, 13, 14, 15, 17, 18 ] 5.由积分 C1/(z+ 2)dz之值证明 [0,](1 + 2 cos)/(5 + 4cos)d= 0,其中C取单位圆周|z| = 1. 【解】因为1/(z+ 2)在圆|z内解析,故 C1/(z+ 2)dz= 0. 设C: z()= ei ,[0, 2]. 则 C1/(z+ 2)dz= C1/(z+ 2)dz= [0, 2]iei /(ei + 2)d = [0, 2]i(cos+isin)/(cos+isin+ 2)d =

[0, 2]( 2 sin+i(1 + 2cos))/(5 + 4cos)d = [0, 2]( 2 sin)/(5 + 4cos)d+i [0, 2](1 + 2cos)/(5 + 4cos)d. 所以 [0, 2](1 + 2cos)/(5 + 4cos)d= 0. 因(1 + 2cos))/(5 + 4cos)以2为周期,故 [,](1 + 2cos)/(5 + 4cos)d= 0;因(1 + 2cos))/(5 + 4cos)为偶函数,故[0,](1 + 2 cos)/(5 + 4cos)d [,](1 + 2cos)/(5 + 4cos)d= 0. 7. (分部积分法)设函数f(z),g(z)在单连通区域D内解析,,是D内两点,试证 [,]f(z)g’(z)dz= (f(z)g(z))| [,] [,]g(z)f’(z)dz. 【解】因f(z),g(z)区域D内解析,故f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’的积分都与路径无关.[,]f(z)g’(z)dz+ [,]g(z)f’(z)dz= [,](f(z)g’(z)dz+g(z)f’(z))dz

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数与积分变换(修订版-复旦大学)第四章课后的习题答案

习题四 1. 复级数1 n n a ∞=∑与1 n n b ∞=∑都发散,则级数1 ()n n n a b ∞ =±∑和 1 n n n a b ∞ =∑发散.这个命题是否成立?为什 么? 答.不一定.反例: 2211111111 i ,i n n n n n n a b n n n n ∞∞∞∞ =====+=-+∑∑∑∑发散 但2 1 1 2()i n n n n a b n ∞ ∞ ==+=? ∑∑收敛 112()n n n n a b n ∞ ∞ ==-=∑∑发散 2411 11 [()]n n n n a b n n ∞∞ ===-+∑∑收敛. 2.下列复数项级数是否收敛,是绝对收敛还是条件收敛? (1)2111i n n n +∞ =+∑ (2)115i ( )2n n ∞=+∑ (3) π 1 e i n n n ∞=∑ (4) 1i ln n n n ∞ =∑ (5) 0 cosi 2n n n ∞=∑ 解 (1) 21111 1i 1(1)i 1(1)i n n n n n n n n n n +∞ ∞∞===++-?-==+?∑∑∑ 因为11n n ∞ =∑发散,所以21 1 1i n n n +∞ =+∑发散 (2)11 15i (22n n n n ∞ ∞ ==+=∑∑发散 又因为15i 15lim()lim(i)0222 n n n n →∞ →∞+=+≠ 所以1 15i ()2n n ∞ =+∑发散 (3) πi 1 1e 1 n n n n n ∞ ∞===∑ ∑发散,又因为π11 1 ππcos isin e 1ππ(cos isin )i n n n n n n n n n n n ∞ ∞ ∞ ===+==+∑∑∑收敛,所以不绝对收敛.

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=--(3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=--

2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+ (3)(sin cos )r i θθ+ (4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--

复变函数习题答案第4章习题详解

第四章习题详解 1.下列数列a是否收敛?如果收敛,求出它们的极限: n 1)a n 1 1 ni mi ; 2) a n n i 1; 2 3)a i n n1; n1 4) ni 2 a n e; 1ni a n e。 n 5)2 0,a1 2.证明:lim n a n 1 , , a a1 1 不存在,a1,a1 3.判别下列级数的绝对收敛性与收敛性:n i 1) ;n n1 n i 2) ;ln n n2 3) 65i n 08 n;

4) n cos 02 n in 。 4.下列说法是否正确?为什么? 1)每一个幂级数在它的收敛圆周上处处收敛; 1

2)每一个幂级数的和函数在收敛圆内可能有奇点; 3)每一个在z连续的函数一定可以在z 0的邻域内展开成泰勒级数。 5.幂级数 n c能否在z0收敛而在z3发散? n z2 n0 6.求下列幂级数的收敛半径: 1) n1 n z p n (p为正整数); 2 n! n 2)z ; n nn1 3) 1 n n iz; n0 4) i n ez; n n1 5) n1 i n chz1; n nz 6) 。ln in n1 7.如果 n c n z的收敛半径为R,证明 n Re的收敛半径R。[提示: c n z n n Re c n zcz] n n0n0 8.证明:如果 c n1 lim存在,下列三个幂级数有相同的收敛半径 nc n n c n z; c n1z n1 n1 ; n1 nc n z。

2

9.设级数c收敛,而 n c发散,证明 n n c n z的收敛半径为1。 n0n0n0 10.如果级数 n c n z在它的收敛圆的圆周上一点z0处绝对收敛,证明它在收敛圆所围的闭区域上绝对收n0 敛。 11.把下列各函数展开成z的幂级数,并指出它们的收敛半径: 1) 11 3 z ; 2) 11 z 22 ; 3) 2 cos z; 4)shz; 5)chz; 6)e 2 z sin; 2 z z 7) z1 e; 8) 1 sin。 1z 12.求下列各函数在指定点z处的泰勒展开式,并指出它们的收敛半 径: 1) z z 1 1 ,z1; 2) z z 1z2 ,z2; 3

《复变函数论》第四章-22页文档资料

第四章 解析函数的幂级数表示方法 第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是: 111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数, ,Im ,Re n n n n b z a z ==一般简单记为}{n z 。按照|}{|n z 是有界或无界序列, 我们也称}{n z 为有界或无界序列。 设0z 是一个复常数。如果任给0ε>,可以找到一个正数N ,使得当 n>N 时 ε<-||0z z n , 那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作 0lim z z n n =+∞ →。 如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。 令0z a ib =+,其中a 和b 是实数。由不等式 0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及 容易看出,0lim z z n n =+∞ →等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞ →+∞ → 因此,有下面的注解: 注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。 注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于 0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个

邻域,相应地可以找到一个正整数N ,使得当n N >时,n z 在这个邻域内。 注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。 定义4.1复数项级数就是 12......n z z z ++++ 或记为1 n n z +∞ =∑,或n z ∑,其中n z 是复数。定义其部分和序列为: 12...n n z z z σ=+++ 如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是 σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作 1 n n z σ+∞ ==∑, 如果序列{}n σ发散,那么我们说级数n z ∑发散。 注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下 121321()()...()...n n z z z z z z z -+-+-++-+ 则序列{}n z 的敛散性和此级数的敛散性相同。 注2级数 n z ∑收敛于σ的N ε-定义可以叙述为: 0,0,,N n N ε?>?>>使得当时有 1 ||n k k z σε=-<∑, 注3如果级数n z ∑收敛,那么

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设z ,求z 及Arcz 。 解:由于3i z e π-== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 41212222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程44 0,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3 是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

复变函数习题答案第3章习题详解.docx

第三章习题详解 1?沿下列路线计算积分J;' z2dz o 1)自原点至3 + i的直线段; 解:连接自原点至34-1的直线段的参数方程为:z =(3+》0

(完整版)复变函数测验题库第一章复数与复变函数

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

相关文档
相关文档 最新文档