文档库 最新最全的文档下载
当前位置:文档库 › 导数研究函数性质

导数研究函数性质

导数研究函数性质
导数研究函数性质

1.导数与导函数的概念

(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx

无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0).

(2)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).

2.导数的几何意义

函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).

3.基本初等函数的导数公式

4.导数的运算法则

若f ′(x ),g ′(x )存在,则有

(1)[f (x )±g (x )]′=f ′(x )±g ′(x );

(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x )

(g (x )≠0). 5.复合函数的导数

若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a .

【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )

(2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( )

(3)曲线的切线不一定与曲线只有一个公共点.( )

(4)与曲线只有一个公共点的直线一定是曲线的切线.( )

(5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( )

1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为

________.

2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是________.

3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.

4.已知点P 在曲线y =

4e x +1

上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是__________.

5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.

题型一导数的运算

例1求下列函数的导数:

(1)y=(3x2-4x)(2x+1);

(2)y=x2sin x;

(3)y=3x e x-2x+e;

(4)y=

ln x

x2+1

(5)y=ln(2x-5).

思维升华(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.

(1)f(x)=x(2 016+ln x),若f′(x0)=2 017,则x0=________.

(2)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=________.

题型二导数的几何意义

命题点1已知切点的切线方程问题

例2(1)函数f(x)=ln x-2x

x的图象在点(1,-2)处的切线方程为__________.

(2)曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为________.

命题点2未知切点的切线方程问题

例3(1)与直线2x-y+4=0平行的抛物线y=x2的切线方程是__________.(2)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为____________.

命题点3和切线有关的参数问题

例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都

相切,且与f (x )图象的切点为(1,f (1)),则m =________.

命题点4 导数与函数图象的关系

例5 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的________(填序号).

思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:

(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0).

(2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .

(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由???

y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)

求解即可.

(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.

(1)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′(π4),f ′(x )是f (x )的导函

数,则过曲线y =x 3上一点P (a ,b )的切线方程为__________________.

(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________.

4.求曲线的切线方程条件审视不准致误

典例 (14分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.

[方法与技巧]

1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常数,其导数一定为0,即(f(x0))′=0.

2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.

3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.

[失误与防范]

1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.

2.求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者.

3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.

1.函数的单调性

在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.

2.函数的极值

一般地,当函数f(x)在点x0处连续时,

(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;

(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.

3.函数的最值

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )

(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( )

(3)函数的极大值不一定比极小值大.( )

(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )

(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )

1.函数f (x )=x 2-2ln x 的单调递减区间是__________.

2.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为____________.

3.函数f (x )=x 3-3x 2+1在x =________处取得极小值.

4.(教材改编)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为________.

5.设1

x 2的大小关系是__________________.(用“<”连接)

题型一 不含参数的函数的单调性

例1 求函数f (x )=ln x x 的单调区间.

思维升华 确定函数单调区间的步骤:

(1)确定函数f (x )的定义域;

(2)求f ′(x );

(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;

(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.

函数y =12x 2-ln x 的单调递减区间为____________.

题型二含参数的函数的单调性

例2 已知函数f(x)=ln(e x+1)-ax(a>0).

(1)若函数y=f(x)的导函数是奇函数,求a的值;

(2)求函数y=f(x)的单调区间.

思维升华(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.

(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.

(3)个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.

讨论函数f(x)=(a-1)ln x+ax2+1的单调性.

题型三利用函数单调性求参数

例3设函数f(x)=1

3x

3-

a

2x

2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y

=1.

(1)求b,c的值;

(2)若a>0,求函数f(x)的单调区间;

(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.

引申探究:在本例3(3)中,

1.若g(x)在(-2,-1)内为减函数,如何求解?

2.若g(x)的单调减区间为(-2,-1),求a的值.

3.若g(x)在(-2,-1)上不单调,求a的取值范围.

思维升华已知函数单调性,求参数范围的两个方法

(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.

(2)转化为不等式的恒成立问题:即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.

已知函数f(x)=e x ln x-a e x(a∈R).

(1)若f(x)在点(1,f(1))处的切线与直线y=1

e x+1垂直,求a的值;

(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.

5.分类讨论思想研究函数的单调性

典例(14分)已知函数f(x)=ln x,

g(x)=f(x)+ax2+bx,其中函数g(x)的图象在点(1,g(1))处的切线平行于x轴.

(1)确定a与b的关系;

(2)若a≥0,试讨论函数g(x)的单调性.

温馨提醒(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f′(x)=0是否有根;②若f′(x)=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.

(2)本题求解先分a=0或a>0两种情况,再比较1

2a和1的大小.

[方法与技巧]

1.已知函数解析式求单调区间,实质上是求f′(x)>0,f′(x)<0的解区间,并注意定义域.

2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.

[失误与防范]

1.f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.

2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.

3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.

1 导数与函数的极值、最值

题型一 用导数解决函数极值问题

命题点1 根据函数图象判断极值

例1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则函数f (x )的极大值、极小值分别是________.

命题点2 求函数的极值

例2 已知函数f (x )=ax 3-3x 2

+1-3a (a ∈R 且a ≠0),求函数f (x )的极大值与极小值.

命题点3 已知极值求参数

例3 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.

(2)若函数f (x )=x 33-a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是

____________.

思维升华 (1)求函数f (x )极值的步骤:

①确定函数的定义域;

②求导数f ′(x );

③解方程f ′(x )=0,求出函数定义域内的所有根;

④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.

(2)若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.

(1)函数y=2x-1

x2的极大值是________.

(2)设f(x)=ln(1+x)-x-ax2,若f(x)在x=1处取得极值,则a的值为________.题型二用导数求函数的最值

例4已知a∈R,函数f(x)=a

x+ln x-1.

(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;

(2)求f(x)在区间(0,e]上的最小值.

思维升华求函数f(x)在[a,b]上的最大值和最小值的步骤

(1)求函数在(a,b)内的极值;

(2)求函数在区间端点的函数值f(a),f(b);

(3)将函数f(x)的极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.

已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax (a>1

2),当x∈(-

2,0)时,f(x)的最小值为1,则a的值等于________.题型三函数极值和最值的综合问题

例5已知函数f(x)=ax2+bx+c

e x(a>0)的导函数y=f′(x)的两个零点为-3和0.

(1)求f(x)的单调区间;

(2)若f(x)的极小值为-e3,求f(x)在区间[-5,+∞)上的最大值.

思维升华求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.

已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是________.

3.利用导数求函数的最值问题

典例(14分)已知函数f(x)=ln x-ax (a∈R).

(1)求函数f(x)的单调区间;

(2)当a>0时,求函数f(x)在[1,2]上的最小值.

用导数法求给定区间上的函数的最值问题一般可用

以下几步答题

第一步:(求导数)求函数f(x)的导数f′(x);

第二步:(求极值)求f(x)在给定区间上的单调性和极值;

第三步:(求端点值)求f(x)在给定区间上的端点值;

第四步:(求最值)将f(x)的各极值与f(x)的端点值进行比较,确定f(x)的最大值与最小值;

第五步:(反思)反思回顾,查看关键点,易错点和解题规范.

温馨提醒(1)本题考查求函数的单调区间,求函数在给定区间[1,2]上的最值,属常规题型.

(2)本题的难点是分类讨论.考生在分类时易出现不全面,不准确的情况.

(3)思维不流畅,答题不规范,是解答中的突出问题.

[方法与技巧]

1.如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.

2.求闭区间上可导函数的最值时,对函数的极值是极大值还是极小值可不作判断,直接与端点的函数值比较即可.

3.当连续函数的极值点只有一个时,相应的极值必为函数的最值.

4.求极值、最值时,要求步骤规范、表格齐全,含参数时,要讨论参数的大小.[失误与防范]

1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.

2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.

3.函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.

3导数与函数的综合问题

题型一用导数解决与不等式有关的问题

命题点1解不等式

例1设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)-f(x)

x2<0

恒成立,则不等式x2f(x)>0的解集是______________.命题点2证明不等式

例2证明:当x∈[0,1]时,

2

2x≤sin x≤x.

命题点3不等式恒成立问题

例3已知定义在正实数集上的函数f(x)=1

2x

2+2ax,g(x)=3a2ln x+b,其中a>0.

设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.

(1)用a表示b,并求b的最大值;

(2)求证:f(x)≥g(x)(x>0).

思维升华(1)利用导数解不等式,一般可构造函数,利用已知条件确定函数单调性解不等式;

(2)证明不等式f(x)

(3)利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.

已知函数f(x)=ln x-a x.

若f(x)

题型二利用导数解决函数零点问题

例4(2014·课标全国Ⅱ)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.

(1)求a;

(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.

思维升华研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.

已知函数f(x)=x2+x sin x+cos x的图象与直线y=b有两个不同交点,求b的取值范围.

题型三利用导数解决生活中的优化问题

例5某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与

销售价格x(单位:元/千克)满足关系式y=

a

x-3

+10(x-6)2,其中3

数.已知销售价格为5元/千克时,每日可售出该商品11千克.

(1)求a的值;

(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

思维升华在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.

某品牌电动汽车的耗电量y与速度x之间有关系y=1

3x

3-

39

2x

2-

40x(x>0),为使耗电量最小,则速度应定为________.

典例(14分)设f(x)=a

x+x ln x,g(x)=x

3-x2-3.

(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;

(2)如果对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,求实数a 的取值范围.

[方法与技巧]

1.用导数方法证明不等式f (x )>g (x )时,找到函数h (x )=f (x )-g (x )的零点是解题的突破口.

2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.

3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.

[失误与防范]

1.利用导数解决恒成立问题时,若分离参数后得到“a

2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.

2020高考数学 课后作业 3-2 利用导数研究函数的性质

3-2 利用导数研究函数的性质 1.(文)(2020·宿州模拟)已知y=f(x)是定义在R上的函数,且f(1)=1,f′ (x)>1,则f(x)>x的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞) D.(-∞,-1)∪(1,+∞) [答案] C [解析]令F(x)=f(x)-x,则F′(x)=f′(x)-1>0,所以F(x)是增函数,∵f(x)>x,∴F(x)>0,∵F(1)=f(1)-1=0,∴F(x)>F(1),∵F(x)是增函数,∴x>1,即f(x)>x的解集是(1,+∞). (理)(2020·辽宁文,11)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) [答案] B [解析]由题意,令φ(x)=f(x)-2x-4,则 φ′(x)=f′(x)-2>0. ∴φ(x)在R上是增函数. 又φ(-1)=f(-1)-2×(-1)-4=0, ∴当x>-1时,φ(x)>φ(-1)=0, ∴f(x)-2x-4>0,∴f(x)>2x+4.故选B. 2.(2020·宁夏石嘴山一模)函数y=2x3-3x2-12x+5在[0,3]上的最大值,最小值分别是( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-16 [答案] A [解析]∵y′=6x2-6x-12=0,得x=-1(舍去)或x=2,故函数y=f(x)=2x3-3x2-12x+5在[0,3]上的最值可能是x取0,2,3时的函数值,而f(0)=5,f(2)=-15,f(3)=-4,故最大值为5,最小值为-15,故选A. 3.(文)已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为( ) A.4 27 ,0 B.0, 4 27 C.-4 27 ,0 D.0,- 4 27

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

函数的最大值与导数.doc

第1课时 课型:新授课 主备人:武果果 一、学习目标 1?借助函数图像,直观的理解函数的最大值和最小值概念; 2. 弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数于(兀)必有最大 值和最小值的充分条件; 3. 会利用导数求连续函数/(兀)在闭区间["]上的最大值和最小值。 二、 考情分析 1. 考纲要求:会求闭区间上函数的最大值与最小值; 2?考情分析:运用导数研究函数的最值; 3?备考要求:注重导数在研究函数极值与最值中的工具性作用。 三、 课前自主学习 1?导入学习 复习:(1)极大(小)值概念: ____________________________________________________ (2)求函数极值的方法: ________________________________________________ 实例导入:预习课本心完成下面问题: ⑴你能找出函数 尸/(兀)在区间上的极大值、极小值、最大值、最小值吗? (2)函数y = /(x)在开区间仏b)上的极大值、极小值、最大值、最小值存在吗? ⑶若函数)/(x)在区间[d,b ]上不连续还存在极大值、极小值、最大值、最小值吗? 新知:函数y = 在闭区间[⑦切上的最值: 一般地,如果在区间[⑦切上函数y = /(x)的图像是一条 ________ 的曲线,那么它必有最 大值和最小值. 例1?求函数/*(%) = 6 + 12x-x 3在【-亍3]上的最大值与最小值。 选2?2 § 13.3函数的最大(小)值与导数

解-7/(X)=6+12X-A3???广(0 = 由厂(兀) = 0,解得兀= 当X变化时,f(x)与#(尢)的变化情况如下表: ???函数心在[-事3]上的最大值是____ ;最小值是_______ 结论:求函数y = /(x)在[d,b]上的最值的步骤: ⑴.求函数y = /(%)在(d,b)内的_______ ; ⑵.将函数〉,= /&)的 _____ 与____________ 比较,其中最大的一个是最大值,最小的一个 是________ O 2. 自我检测 练习(1)?已知a为实数,/(x) = (x2-4)(x-a),若广(-1) = 0,求/⑴在 [-2, 2]上的最大值和最小值. 7i n (2).求函数/(x) =-2cosx-x在区间[-亍,-]上的最大值与最小值。

高中数学利用导数研究函数的性质( 极值与最值)

3.2利用导数研究函数的性质 第2课时导数与函数的极值、最值 一、基础知识 1.函数的单调性(复习) 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)一般地,求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 知识拓展 (1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. (2)函数的极大值不一定比极小值大.

(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型 1.根据函数图象判断极值 【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ) A .无极大值点、有四个极小值点 B .有三个极大值点、一个极小值点 C .有两个极大值点、两个极小值点 D .有四个极大值点、无极小值点 【答案】 C 【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点 【例2-1】设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】 D 【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当02时,f ′(x )>0, ∴x =2为f (x )的极小值点.

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二基本初等函数的导数公式

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2 . 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=? ?? ??1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3 )′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2 x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =12x 2 上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),

即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组??? ? ? y =4x -8,y =-2x -2,得 ????? x =1, y =-4. ∴A (1,-4). (2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由. 解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直, 则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤 题型三 利用导数公式求最值问题 例3 求抛物线y =x 2 上的点到直线x -y -2=0的最短距离. 解 设切点坐标为(x 0,x 2 0),依题意知与直线x -y -2=0平行的抛物线y =x 2 的切线的切点到直线x -y -2=0的距离最短.

导数研究函数性质

1.导数与导函数的概念 (1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0). (2)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ). 2.导数的几何意义 函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式 4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x ) (g (x )≠0). 5.复合函数的导数 若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为 ________. 2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是________. 3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________. 4.已知点P 在曲线y = 4e x +1 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是__________. 5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,培养学生的探究精神,提高语言表达和概括能力,

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

常见函数的导数

常见函数的导数 学习目标:能根据定义求几个简单函数的导数,加深对导数概念的理解,同时体会算法的 思想并熟悉具体的操作步骤。 学习重难点:利用导数公式求一些函数的导数 一、 知识点梳理 1. 基本初等函数,有下列的求导公式 '1.()(,)kx b k k b +=为常数 '2.()1x = 2'3.()2x x = 4.()0C '= 3'2 5.()3x x = ' 2 116.()x x =- '= 1 8.()x x ααα-'=(α为常数) 9.()ln (01)x x a a a a a '=>≠, a a 1110.(log x)log e (01)x xlna a a '= =>≠, x x 11.(e )e '= 112.(lnx)x '= 13.(sinx)cosx '= 14.(cosx)sinx '=- 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 二、典例讲解 例1、求下列函数导数。 练习:(1)5 -=x y (2) 、x y 4= (3)、x x x y = (4)、x y 3 l o g = (5)、)100() 1(l o g 1 ≠>>-= x a a x a y x ,,, (6)、y=sin( 2π+x) (7)y=sin 3 π (8)、y=cos(2π-x) (9)、y=(1)f ' 例2、1.求过曲线y=cosx 上点P( 2π ,0 ) 的切线的直线方程. 2. 若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. (1)(23)(2)(2)(3)3x x '-+='-='=4 (4)y x =3(6)y x -==0(5)sin 45y

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

高中数学高考总复习利用导数研究函数的性质习题及详解

高中数学高考总复习利用导数研究函数的性质习题及详解 一、选择题 1.(文)函数y =ax 3 -x 在R 上是减函数,则( ) A .a =1 3 B .a =1 C .a =2 D .a ≤0 [答案] D [解析] y ′=3ax 2-1, ∵函数y =ax 3-x 在R 上是减函数, ∴3ax 2-1≤0在R 上恒成立,∴a ≤0. (理)(2010·瑞安中学)若函数f (x )=x 3+x 2+mx +1是R 上的单调递增函数,则实数m 的取值范围是( ) A.? ???? 13,+∞ B.? ???? -∞,13 C.???? ??13,+∞ D. ? ?? ?? -∞,13 [答案] C [解析] f ′(x )=3x 2+2x +m ,由条件知,f ′(x )≥0恒成立,∴Δ=4-12m ≤0,∴m ≥1 3 ,故选C. 2.(文)(2010·柳州、贵港、钦州模拟)已知直线y =kx +1及曲线y =x 3+ax +b 切于点(1,3),则b 的值为( ) A .3 B .-3 C .5 D .-5 [答案] A [解析] 由条件知(1,3)在直线y =kx +1上,∴k =2. 又(1,3)在曲线y =x 3+ax +b 上,∴a +b =2, ∵y ′=3x 2+a ,∴3+a =2,∴a =-1,∴b =3. (理)(2010·山东滨州)已知P 点在曲线F :y =x 3-x 上,且曲线F 在点

P处的切线及直线x+2y=0垂直,则点P的坐标为( ) A.(1,1) B.(-1,0) C.(-1,0)或(1,0) D.(1,0)或(1,1) [答案] C [解析] ∵y′=(x3-x)′=3x2-1,又过P点的切线及直线x+2y=0垂直,∴y′=3x2-1=2,∴x=±1,又P点在曲线F:y=x3-x上,∴当x=1时,y=0,当x=-1时,y=0,∴P点的坐标为(-1,0)或(1,0),故选C. 3.(2010·山东文)已知某生产厂家的年利润y(单位:万元)及年产量 x(单位:万件)的函数关系式为y=-1 3 x3+81x-234,则使该生产厂家获 取最大的年利润的年产量为( ) A.13万件B.11万件 C.9万件D.7万件 [答案] C [解析] 由条件知x>0,y′=-x2+81,令y′=0得x=9,当x∈(0,9)时,y′>0,函数单调递增,当x∈(9,+∞)时,y′<0,函数单调递减,∴x=9时,函数取得最大值,故选C. [点评] 本题中函数只有一个驻点x=9,故x=9就是最大值点. 4.(文)(2010·四川双流县质检)已知函数f(x)的定义域为R,f′(x)为其导函数,函数y=f′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x2-6)>1的解集为( ) A.(2,3)∪(-3,-2) B.(-2,2) C.(2,3) D.(-∞,-2)∪(2,+∞)

第16课时利用导数研究函数的性质

第16 课时 利用导数研究函数的性质 编者:仇小华 审核:刘智娟 第一部分 预习案 一、知识回顾 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的 条件. 2. f (x )在(a ,b )上是增函数的充要条件是 . 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的 条件,但并不 . 4. 如果不间断的函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决实际问题中经常用到这一结论. 二、基础训练 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 3. 若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0

(整理)利用导数研究函数的性质.

专题三 利用导数研究函数的性质 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分不必要条件. 2. f (x )在(a ,b )上是增函数的充要条件是f ′(x )≥0,且f ′(x )=0在有限个点处取到. 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的必要条件,但并不充分. 4. 如果连续函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决 实际问题中经常用到这一结论. 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 答案 [e ,+∞) 解析 f ′(x )=1x ·x -(ln a +ln x )x 2=1-(ln a +ln x )x 2,因为f (x )在[1,+∞)上为减函数,故 f ′(x )≤0在[1,+∞)上恒成立,即ln a ≥1-ln x 在[1,+∞)上恒成立.设φ(x )=1-ln x ,φ(x )max =1,故ln a ≥1,a ≥e. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 答案 4 解析 若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1 x 3,则g ′(x ) = 3(1-2x ) x 4 , 所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减,因此g (x )max =g ????1 2=4,从而a ≥4. 当x <0,即x ∈[-1,0)时,同理a ≤3x 2-1 x 3.

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

3.2.1几个常用函数导数(学、教案)

3. 2.1几个常用函数导数 课前预习学案 (预习教材P 88~ P 89,找出疑惑之处) 复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ?= (2)求平均变化率y x ?=? (3)取极限,得导数/y =()f x '=x y x ??→?0lim = 上课学案 学习目标1记住四个公式,会公式的证明过程; 2.学会利用公式,求一些函数的导数; 3.知道变化率的概念,解决一些物理上的简单问题. 学习重难点:会利用公式求函数导数,公式的证明过程 学习过程 合作探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 典型例题 例1 求函数1()y f x x ==的导数 解析:因为11()()y f x x f x x x x x x x -?+?-+?==???

高中数学二轮复习专题二—利用导数研究函数的性质

专题二——利用导数研究函数的性质2009-2-24 高考趋势 导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。 考点展示 1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 . 3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45° 4.设曲线2 ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 1 5.设R a ∈,若函数ax e y x +=,R x ∈有大于零的极值点,则a 的取值范围1-,对于任意实数x ,有()0f x ≥,则 (1) (0) f f '的最小值为 2 . 7.已知函数3 ()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3 x y =的切线,则切线方程为_ 12x-y -16=0或3x-y+2=0 样题剖析 例1、设函数32 3()(1)1,32 a f x x x a x a = -+++其中为实数。 (Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值; (Ⅱ)已知不等式'2 ()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。 解: (1) ' 2 ()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 ' (1)0f = 即 310,1a a a -++==∴ (2) 方法一:由题设知:2 2 3(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即2 2 (2)20a x x x +-->对任意(0,)a ∈+∞都成立 设 2 2 ()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 2 20x x --≥,20x -≤≤∴ 于是x 的取值范围是}{ |20x x -≤≤ 方法二:由题设知:2 2 3(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即2 2 (2)20a x x x +-->对任意(0,)a ∈+∞都成立 于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22 202 x x x +≤+ 20x -≤≤∴ 于是x 的取值范围是}{|20x x -≤≤ 点评:函数在某点处取得极值,则在这点处的导数为0,反过来,函数的导数在某点的值为0,则在函数这点处取得极值。 变式1.若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是 1b ≤- 由题意可知' ()02 b f x x x =-+<+,在(1,)x ∈-+∞上恒成立, 即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-, 变式2.已知函数1 1()3 x p f x -=,2 2()23 x p f x -=?(12,,x R p p ∈为常数).则()()12f x f x ≤对所有实 数x 成立的充分必要条件(用12,p p 表示)为 (1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于 ()()12f x f x ≤(对所有实数x )这又等价于1 2 3 23 x p x p --≤,即 12 3log 23 32x p x p ---≤=对所有实数x 均成立. (*) 由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 2 B C A y x 1 O 3 4 5 6 1 2 3 4

相关文档
相关文档 最新文档