文档库 最新最全的文档下载
当前位置:文档库 › 变化的电磁场知识点总结

变化的电磁场知识点总结

变化的电磁场知识点总结

一、电磁场

麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:*均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场

*均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场

*电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立

的部分,有机的统一为一个整体,并成功预言了电磁波的存在)

二、电磁波

1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)

2、性质:*电磁波的传播不需要介质,在真空中也可以传播

*电磁波是横波

*电磁波在真空中的传播速度为光速

*电磁波的波长=波速*周期

3、电磁振荡

LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B均随时间周期性变化

振荡周期:T=2πsqrt[LC]4、电磁波的发射

*条件:足够高的振荡频率;电磁场必须分散到尽可能大的.空间*调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频

#调幅:使高频电磁波的振幅随低频信号的改变而改变

#调频:使高频电磁波的频率随低频信号的改变而改变

(电磁波发射时为什么需要调制?通常情况下我们需要传输的

信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)

5、电磁波的接收

*电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

*调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程

*解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波

(收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音)

5、电磁波的应用

电视、手机、雷达、互联网

6、电磁波普

无线电波:通信

红外线:加热物体(热效应)、红外遥感、夜视仪可见光:照明、摄影

紫外线:感光、杀菌消毒、荧光防伪

X射线:医用透视、检查、探测

r射线:工业探伤、放疗

高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点整理 高中物理电磁波电磁场知识点汇总整理 物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。下面是店铺整理的高中物理电磁波电磁场知识点汇总整理,欢迎大家分享。 1、麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。 (2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。 2、电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。 (2)电磁波是横波 (3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1、电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈

平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2、磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3、楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动;

电磁场理论知识点总结

电磁场与电磁波总结 第1章 场论初步 一、矢量代数 A ? B =AB cos θ A B ?=AB e AB sin θ A ?( B ? C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz 单位矢量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d d z ρ?ρρ?l 矢量面元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位矢量的关系 ?=??=e e e e e =e e e e z z z ρ??ρρ? 3. 球坐标系 矢量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位矢量的关系 ?=??=e e e e e =e e e e r r r θ? θ??θ cos sin 0sin cos 0 001x r y z z A A A A A A ????????????=-?? ????????????????????? sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ???? ?????? ? ?=-????????????-?????? θ?θ?θ? θθ?θ?θ?? sin 0cos cos 0sin 0 10r r z A A A A A A ???? ?????? ??=-???????????????? ??θ??θθθθ 三、矢量场的散度和旋度

变化的电磁场知识点总结

变化的电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:*均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 *均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 *电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:*电磁波的传播不需要介质,在真空中也可以传播 *电磁波是横波 *电磁波在真空中的传播速度为光速 *电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B均随时间周期性变化 振荡周期:T=2πsqrt[LC]4、电磁波的发射

*条件:足够高的振荡频率;电磁场必须分散到尽可能大的.空间*调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 #调幅:使高频电磁波的振幅随低频信号的改变而改变 #调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的 信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 *电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 *调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 *解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波 (收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音) 5、电磁波的应用 电视、手机、雷达、互联网 6、电磁波普

高考物理电场与磁场知识点公式总结大全

高考物理电场与磁场知识点公式总结大全 物理,在很多人的眼里是理综成绩的“杀手”。那是因为高中物理知识点多,难度大,导致很多人对物理产生了恐惧心理,关于高考物理电场和磁场的总结,下面由小 编为整理有关高考物理知识点公式总结电场与磁场的资料,希望对大家有所帮助! 高考物理磁场公式总结 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电 粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动 V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛 =mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径 和线速度无关, 洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 高考物理电场公式总结 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电 荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量 k=9.0×109N m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在 它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

电磁场理论知识点总结

电磁场理论知识点总结 1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由 四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和 法拉第电磁感应定律的积分形式。这些方程描述了电场和磁场随空间和时 间的变化规律。 2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。这种相 互作用是电磁波传播的基础。 3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中 传播,它是由电场和磁场相互耦合而成的波动现象。电磁波的传播速度不 同于物质中的电磁波传播速度,它是真空中的最大可能速度。 4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发 生变化时,会在导体中产生感应电流。这个现象被广泛应用于发电机、变 压器等电磁设备中。 5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和 磁场称为静电场和静磁场。在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。静电场和静磁场的研究对于理解电磁场的基本性 质和应用具有重要意义。 6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射 出电磁波。这种辐射就是电磁辐射,它是电磁波传播的一种形式。辐射场 是指由电磁辐射产生的电场和磁场。

7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两 个重要参数。频率指的是电磁波单位时间内振动的次数,单位是赫兹;波 长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。 8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义, 可以推导出电磁场的能量和动量公式。电磁场携带能量和动量,可以与物 质相互作用,这是实现无线通信、光学传输等现代科技的基础。 9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通 过电磁场的边界条件来描述。边界条件包括麦克斯韦方程组的边界条件和 介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。 10.电磁场的量子性质:根据量子力学理论,电磁场也具有粒子性质,被称为光子。光子是电磁波的量子,它具有能量和动量,并与物质相互作用。光子的量子性质是理解光电效应、激光等现象的基础。 以上是电磁场理论的一些重要知识点总结。电磁场理论是现代物理学 的基础之一,它不仅揭示了自然界中电磁现象的规律,也为电磁技术的发 展提供了理论指导。

电磁感应与电磁场的知识点总结

电磁感应与电磁场的知识点总结电磁感应是电磁学中的一个重要概念,指的是导体中的电流会受到 磁场的影响而产生感应电动势。而电磁场则是由电荷和电流所产生的 物理现象,可以用来描述电磁力的作用。本文将对电磁感应与电磁场 的相关知识点进行总结,帮助读者更好地理解这一领域。 一、电磁感应 1. 法拉第电磁感应定律 法拉第电磁感应定律是电磁感应研究的基础,它表明当导体中的磁 场发生变化时,会产生感应电动势。具体表达式为:感应电动势等于 磁通量变化率的负值乘以线圈的匝数。这个定律解释了电磁感应现象 的产生原理。 2. 楞次定律 楞次定律是法拉第电磁感应定律的补充,它描述了感应电流的方向。根据楞次定律,感应电流的产生会产生磁场,其磁场的方向使得感应 电流所产生的磁场与引发感应电流变化的磁场方向相反。换言之,楞 次定律说明了感应电流的方向与磁场变化的关系。 3. 磁通量与磁感应强度 磁通量描述的是磁场通过某一平面的程度,与磁场的面积和磁感应 强度有关。磁感应强度表示单位面积上的磁通量,它的方向垂直于磁 场线。通过改变磁通量和磁感应强度,可以实现对电磁感应的控制。

二、电磁场 1. 静电场与静电力 静电场是由电荷所产生的一种场,它可以通过电场线来表示。静电 力是静电场作用在电荷上的力,根据库仑定律,静电力与电荷之间的 距离和大小成反比。 2. 磁场与磁力 磁场是由电流所产生的一种场,它可以通过磁感线来表示。磁力是 磁场对电荷和电流所产生的力,它的方向垂直于磁场线和电荷或电流 的方向。 3. 电磁场和电磁力 电磁场是由电荷和电流共同产生的场,它是电场和磁场的综合体现。电磁力是电场和磁场对电荷和电流所产生的综合力,它同时包含了静 电力和磁力的作用。 4. 麦克斯韦方程组 麦克斯韦方程组是描述电磁场性质的基本方程,它由四个方程组成。其中包括了法拉第电磁感应定律、库仑定律以及电磁场的高斯定律和 安培环路定律。麦克斯韦方程组的推导和理解有助于深入学习电磁场 的原理和性质。 总结:

电磁场知识点总结

第18章:电磁场与电磁波 一、知识网络 二、重、难点知识归纳 1.振荡电流和振荡电路 (1)大小和方向都随时间做周期性变化的电流叫振荡电流。能够产生振荡电流的电路叫振荡电路。自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。 (2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小 (3) LC 电路中能量的转化 : a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,电流变小时,磁场能转化为电场能。 LC 回路中电磁振荡过程中电荷、电场。 电路电流与磁场的变化规律、电场能与磁场能相互变化。 分类:阻尼振动和无阻尼振动。 振荡周期:LC T π2=。改变L 或C 就可以改变T 。 电磁振荡 麦克斯 韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3.0×108m/s 电磁波 电 磁场与电磁波 发射 接收 应用:电视、雷达。 目的:传递信息 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。 原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。 接收电路:接收天线、调谐电路和检波电路

b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电 容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大. c 、理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。回路中电 流越大时,L 中的磁场能越大。极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。 (4) LC 电路的周期公式及其应用 LC 回路的固有周期和固有频率,与电容器带电量、极板间电压及电路中电流都无 关,只取决于线圈的自感系数L 及电容器的电容C 。 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a 、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b 、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c 、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场。 d 、变化的电场和变化的磁场总是相互联系着、形成一个不可分离的统一体,称为电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场和变化的磁场不断地互相转化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。 (2)电磁波是横波。E 与B 的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c =3.0×108m/s 。 振荡电路发射电磁波的过程,同时也是向外辐射能量的过程. (3)电磁波三个特征量的关系:v =λf 4、电视和雷达 (1)电视发射、接收的基本原理 LC f LC T π频率的决定式:π周期的决定式:212==

(整理)电磁场理论知识点总结

电磁场与电磁波总结 第1章 场论初步 一、矢量代数 A • B =AB cos θ A B ⨯=AB e AB sin θ A •( B ⨯ C ) = B •(C ⨯A ) = C •(A ⨯B ) A ⨯ (B ⨯C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz 单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e z z z ρϕϕρρϕ 3. 球坐标系 矢量线元 d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕ θϕϕθ cos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤ ⎡⎤⎡⎤⎢⎥ ⎢⎥⎢ ⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ϕϕϕϕϕ sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢ ⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ θϕθϕθϕ θθϕθϕθϕ ϕ

电磁场知识点总结

高考物理知识归纳(磁场、电磁感应) 磁场 基本特性,来源, 成闭 方向(小磁针静止时极的指向,磁感线的切线方向,外部(N →S)内部(S →N)组合曲线 要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健) 脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图 能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图) 安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验 安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量 F 安=B I L ⇒ 推导 f 洛=q B v 建立电流的微观图景(物理模型) 从安培力F=ILBsin θ和I=neSv 推出f=qvBsin θ。 典型的比值定义 (E=q F E=k 2r Q ) (B=L I F B=k 2 r I ) (u=q w b a →q W 0 A A →=ϕ) ( R=I u R=S L ρ ) (C=u Q C=d k 4s πε) 磁感强度B :由这些公式写出B 单位,单位⇔公式 B= L I F ; B=S φ ; E=BLv ⇒ B=Lv E ; B=k 2r I (直导体) ;B=μNI (螺线管) qBv = m R v 2 ⇒ R =qB mv ⇒ B =qR mv ; v v v d u E B qE qBv d u === ⇒= 电学中的三个力:F 电 =q E =q d u F 安=B I L f 洛= q B v 注意:①、B ⊥L 时,f 洛最大,f 洛= q B v (f 、B 、v 三者方向两两垂直且力f 方向时刻与速度v 垂直)⇒导致粒子做匀速圆周运动。 ②、B || v 时,f 洛=0 ⇒做匀速直线运动。 ③、B 与v 成夹角时,(带电粒子沿一般方向射入磁场), 可把v 分解为(垂直B 分量v ⊥,此方向匀速圆周运动;平行B 分量v || ,此方向匀速直线运动。) ⇒合运动为等距螺旋线运动。 带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。 规律:qB mv R R v m qBv 2 =⇒= (不能直接用) qB m 2v R 2T ππ= = 1、 找圆心:①(圆心的确定)因f 洛一定指向圆心,f 洛⊥v 任意两个f 洛方向的指向交点为圆心; ②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。 2、 求半径(两个方面):①物理规律qB mv R R v m qBv 2 = ⇒= ②由轨迹图得出几何关系方程 ( 解题时应突出这两条方程 ) 几何关系:速度的偏向角ϕ=偏转圆弧所对应的圆心角(回旋角)α=2倍的弦切角θ 相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。 3、求粒子的运动时间:偏向角(圆心角、回旋角)α=2倍的弦切角θ,即α=2θ ) 360(2)(0 t 或回旋角圆心角π= ×T 4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条 件 a 、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。 b 、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。 注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。 电磁感应:. 1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。 内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 2.[感应电动势的大小计算公式] 1) E =BLV (垂直平动切割)

物理电磁场初中知识点整理

物理电磁场初中知识点整理 电磁场是物理学中非常重要的概念之一,也是电磁学的基础。初中阶段,学生接触到了一些基本的电磁场知识,本文将对电磁场的相关知识点进行整理。 一、电场的基本概念和性质 1. 电场定义:电场是指电荷周围的一种物理量,是描述电荷间相互作用的场。单位是N/C(牛/库仑)。 2. 电场的性质:电场具有方向性,由正电荷指向负电荷;电场线是用来表示电场分布的曲线,其方向与电场的方向相同;电场强度随着距离的增加而减小。 二、电磁感应和磁场 1. 电磁感应现象:当导体中的磁通量发生变化时,会在导体中产生感应电流。这就是电磁感应现象。 2. 法拉第电磁感应定律:法拉第电磁感应定律描述了感应电动势和磁通量变化之间的关系,表达式为e= -N(dФ/dt),其中e表示感应电动势,N表示线圈匝数,dФ/dt表示磁通量的变化率。 3. 磁场的定义:磁场是指产生磁力的区域。磁场可以通过磁场线进行表示,磁场线从北极(N极)指向南极(S极)。 4. 右手定则:利用右手定则可以确定通过导线产生的磁场的方向。将右手握住导线,大拇指指向电流的方向,其他四指所张成的方向就是磁场的方向。 三、电磁感应和发电机的原理 1. 电磁感应产生感应电流:当导体中的磁通量发生变化时,会在导体中产生感应电流。在发电机中,通过旋转导体的方式,利用电磁感应的原理产生电能。

2. 感应电动势的大小与导体的运动速度、导体长度和磁感应强度有关。 3. 发电机的工作原理:发电机由导体、磁场和收集电流的环形导线等部件组成。通过旋转导体,感应电动势产生,从而产生电流。 四、静电场和电场力 1. 静电场的特点:在静电场中,电荷不随时间变化,电场力为库仑力。 2. 库仑定律:库仑定律描述了静电场中电场力的大小和方向。两个电荷之间的 电场力与两电荷之间的距离成反比,与两电荷的电荷量的乘积成正比。 3. 电势能:两个电荷之间存在电场时,电场力会对电荷做功,这时电荷具有了 电势能。电势能的大小与电荷的电量、电势差有关。 以上是初中物理中与电磁场相关的知识点的整理。通过学习这些基本概念和性质,可以更好地理解和应用电磁场的知识。同时,这些知识也是学习更高级物理学科的基础。希望这些整理的内容能对你有所帮助。

高中物理电磁场公式总结

高中物理电磁场公式总结 高中物理电磁场公式 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T,1T=1N/Am 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下 (a)F向=f洛 =mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm /qB; (b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 强调:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理、回旋加速器、磁性材料 高中物理电场公式 1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数 倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作 用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2: 两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷 的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB, UAB=WAB/q=-ΔEAB/q

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳 一、简谐运动、简谐运动的表达式和图象 1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:①回复力不为零;②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动:在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义 或理解: ①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 ②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动, 3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为 适应振动特点还要引 入一些新的物理量。 ⑴位移X:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 第-1-页共9页

单摆 ⑵振幅A :做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 ⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 ⑷频率f 振动物体单位时间内完成全振动的次数。 ⑸角频率。角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 ⑹相位9:表示振动步调的物理量。 4、研究简谐振动规律的几个思路: ⑴用动力学方法研究,受力特征:回复力F=-kx ;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 ⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 ⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 ⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 5、简谐运动的表达式 2兀、一2兀 x =^sin (⑹+申。)=A sm (t +2)振幅A ,周期T ,相位〒t +化’初相9° 6、简谐运动图象描述振动的物理量 1. 直接描述量: ① 振幅A ;②周期T ;③任意时刻的位移t . 2. 间接描述量: 『12兀 ①频率f :/=T ②角速度°:e = ~T ~ ③ x-t 图线上一点的切线的斜率等于卩 3•从振动图象中的x 分析有关物理量(v ,a ,F ) 简谐运动的特点是周期性。在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;在时间上有周期性,即每经过一定时间,运动就要重复一次。我们能否利用振动图象来判断质点x ,F ,v ,a 的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。小结:①简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。②简谐运动图象反应了物体位移随时间变化的关系。③根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。 二、单摆的周期与摆长的关系(实验、探究) iT 单摆周期公式:T =2兀一 \g 上述公式是高考要考查的重点内容之一。对周期公式的理解和应用注意以下几个 问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。②单 周期、频率、角频率的关系是: 图5

高考物理电磁场归纳总结(经典)

电场知识点总结 电荷 库仑定律 一、库仑定律:2212112==r Q Q K F F ①适用于真空中点电荷间相互作用的电力 ②K 为静电力常量229/10×9=C m N K ③计算过程中电荷量取绝对值 ④无论两电荷是否相等:2112=F F . 电场 电场强度 二、电场强度:q F E =(单位:N/C ,V/m ) ①电场力qE F =; 点电荷产生的电场2r Q k E =(Q 为产生电场的电荷); 对于匀强电场:d U E =; ②电场强度的方向: 与正电荷在该点所受电场力方向相同 (试探电荷用正电荷)与负电荷在该点所受电场力方向相反 ③电场强度是电场本身的性质,与试探电荷无关 ④电场的叠加原理:按平行四边形定则 ⑤等量同种(异种)电荷连线的中垂线上的电场分布 三、电场线 1.电场线的作用: ①.电场线上各点的切线方向表示该点的场强方向 ②.对于匀强电场和单个电荷产生的电场,电场线的方向就是场强的方向 ③电场线的疏密程度表示场强的大小 2.电场线的特点:起始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不相交,不闭合. 电势差 电势 知识点: 1.电势差B A AB AB q W U ϕϕ-== 2.电场力做功:)(B A AB AB q qU W ϕϕ-== 3.电势:q W U AO AO A ==ϕ

4. 电势能:ϕεq = (1)对于正电荷,电势越高,电势能越大 (2)对于负电荷,电势越低,电势能越大 5.电场力做功与电势能变化的关系:ε∆-=电W (1)电场力做正功时,电势能减小 (2)电场力做负功时,电势能增加 静电平衡 等势面 知识点: 1.等势面 (1)同一等势面上移动电荷的时候,电场力不做功. (2)等势面跟电场线(电场强度方向)垂直 (3)电场线由电势高的等势面指向电势低的等势面 (4)等差等势面越密的地方,场强越大 2.处于静电平衡的导体的特点: (1)内部场强处处为零 (2)净电荷只分布在导体外表面 (3)电场线跟导体表面垂直 电场强度与电势差的关系 知识点: 1. 公式:d U E = 说明:(1)只适用于匀强电场 (2)d 为电场中两点沿电场线方向的距离 (3)电场线(电场强度)的方向是电势降低最快的方向 2.在匀强电场中:如果CD AB //且CD AB =则有CD AB U U = 3.由于电场线与等势面垂直,而在匀强电场中,电场线相互平行,所以等势面也相互平行 一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感应强度 1、 表示磁场强弱的物理量.是矢量. 2、 大小:B=F/Il (电流方向与磁感线垂直时的公式). 3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. 4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T . 5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. 6、 匀强磁场的磁感应强度处处相等. 7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强 度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则. 三、几种常见的磁场

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 电磁场是一个非常重要的物理知识,在人们的日常生活中普遍而深刻地存在着。它从 一种笼统的概念上描述了电、磁、引力场等和它们之间的紧密联系,由此演变到各种精彩 的物理现象,可以解释世界的特征。电磁场的基本概念指的是它能够创造出一个均匀的场,由该场来维持运动的不变性,进而发生变化,影响紧密联系的电、磁两个场。该场由 电磁力线、电磁感应力和电磁能量密度组成,可以产生动力作用,相互感应,形成短距离 的相互作用。电磁场的静态性具有可视性、可测量性和可控性等特性,使得研究者能够观 察出它的特征,同时可以通过实验来研究电磁场的某一部分,以及它们之间的相互作用等。 相对于电磁场而言,电磁波是电磁场的动态特性,它包含有在空间和时间上变化的电 磁场分量,即电场、磁场和电磁能量。它可以被视为电磁场在时间空间中的变化,电磁波 以光速传播,所谓“电磁波”是指该能量在时间空间中传播的过程。电磁波是由电磁场在 某一特定范围内相互作用所产生的,它使得电磁场以一种非常稳定的形式流动,在时间空 间中平均分布。 按照传播特性的不同,电磁波可以分为定向性的和向下的,定向的电磁波是指它的传 播方向比较固定,如光在空间传播的特性,而向下的电磁波指的是其传播方向在波的整个 传播过程中是变化的,如电子传播的特性。此外,电磁波还可以按照参数的特性来划分, 各种特性的电磁波都可以由其对应的频率来表示,这就是按照参数划分电磁波的特征。 总之,电磁场和电磁波之间存在着密切的关系,它们都是由两个重要的场--电场和磁 场--组成的,电磁波可以看作是电磁场的动态特性,它是由电磁场在空间和时间上的变化 所产生的,可以按特性来区分为定向性和向下性,也可以按参数来分成各种不同的电磁波。通过研究电磁场和电磁波,我们可以更深入地了解和研究物理现象,从而有助于拓展我们 对世界的认识。

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

磁场变化知识点总结

磁场变化知识点总结 磁场是一种由磁性物质产生的物理现象,它对周围的物质和电荷具有一定的作用。磁场的生成和变化是研究电磁现象和应用电磁技术的重要内容之一。磁场的变化是指磁场在时间和空间上发生变化的过程,这个过程包括磁场的产生、传播和消失等。磁场的变化涉及电磁感应、磁场的运动和能量传递等多个方面的知识,下面将对磁场变化的相关知识点进行总结。 一、磁场的生成和特性 1. 磁场的产生 磁场是由运动电荷和磁性物质产生的。当电荷运动时会产生磁场,这种现象称为电流产生的磁场。另外,磁性物质中的微观电流也是产生磁场的原因之一。在电磁场理论中,磁场的产生可以用安培环路定理来描述,即环流密度(电流)产生磁场的环绕效应。 2. 磁场的特性 磁场具有一些特性,如磁感应强度、磁场力线、磁通量等。磁感应强度是磁场强度的物理量,它的大小与电流的大小、电荷的速度和磁场中磁性物质的性质等有关。磁场力线是描述磁场分布的一种方式,它可以用来描绘磁力的方向和大小。磁通量是磁场穿过某一表面的磁通量总量,它是描述磁场强度的物理量。 二、电磁感应现象 1. 法拉第电磁感应定律 法拉第电磁感应定律是描述磁场变化对电路中产生感应电动势的影响的定律。它可以用来说明当磁场发生变化时,产生的感应电动势大小与磁场变化率、线圈匝数和面积等因素有关。法拉第电磁感应定律是研究电磁现象和应用电磁技术的基础之一,它可以用来解释电磁感应现象和设计电磁设备。 2. 电磁感应现象的应用 电磁感应现象在各个领域都有着广泛的应用,如发电机、变压器、感应加热等。发电机是利用电磁感应现象产生电流的设备,它是将机械能转换为电能的一种装置。在发电机中,当磁场发生变化时,导致线圈中产生感应电动势,从而产生电流。变压器是利用电磁感应现象实现电压变换的设备,它可以将高压变为低压或者低压变为高压。感应加热则是利用电磁感应现象产生热能的过程,它可以用来加热金属材料等物质。 三、磁场的运动 1. 磁场的传播

高考物理知识点总结电场与磁场

高考物理知识点总结电场与磁场 高考物理知识点总结电场与磁场 电磁场在电磁学里,电磁场是一种由带电物体产生的一种物理场。电磁学在高考物理是一种常考题型,下面由店铺为整理有关高考物理知识点总结电场与磁场的资料,希望对大家有所帮助! 高考物理知识点总结电场与磁场 1.电磁场 在电磁学里,电磁场是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。 2.电磁场与电磁波 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。 3.电磁场理论 研究电磁场中各物理量之间的关系及其空间分布和时间变化的理论。人们注意到电磁现象首先是从它们的力学效应开始的。库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。A.-M.安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。 1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场(2)非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的'电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 高考电场知识点归纳 1.电荷电荷守恒定律点电荷

⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷。带电体电荷量等于元电荷的整数倍(Q=ne) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为,其中比例常数叫静电力常量,。(F:点电荷间的作用力(N),Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点: (a)始于正电荷 (或无穷远),终止负电荷(或无穷远); (b)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。

相关文档
相关文档 最新文档