文档库 最新最全的文档下载
当前位置:文档库 › 度量空间与连续映射

度量空间与连续映射

度量空间与连续映射
度量空间与连续映射

定义2.1.1

定理2.1.1

作业

第2章度量空间与连续映射

从数学分析中读者已经熟知单变量和多变量的连续函数,它们的定义域和值域都是欧氏空间(直线,平面或空间等等)或是其中的一部分.在这一章中我们首先将连续函数的定义域和值域主要特征抽象出来用以定义度量空间,将连续函数的主要特征抽象出来用以定义度量空间之间的连续映射(参见§2.1).然后将两者再度抽象,给出拓扑空间和拓扑空间之间的连续映射(参见§2.2).随后再逐步提出拓扑空间中的一些基本问题如邻域,闭包,内部,边界,基和子基,序列等等.

§2.1度量空间与连续映射

本节重点:掌握拓扑学中度量的概念及度量空间中的连续映射的概念.

注意区别:数学分析中度量、连续映射的概念与本节中度量、连续映射的概念.

注意,在本节的证明中,应细细体会证明的方法.

首先让我们回忆一下在数学分析中学习过的连续函数的定义.函数f:R→R称为在点

∈R处是连续的,如果对于任意实数ε>0,存在实数δ>0,使得对于任何x∈R,当|x-

|<δ时,有

|f(x)-f()|<ε.在这个定义中只涉及两个实数之间的距离(即两个实数之差的绝对值)这个概念;为了验证一个函数在某点处的连续性往往只要用到关于上述距离的最基本的性质,而与实数的其它性质无关,关于多元函数的连续性情形也完全类似.以下,我们从这一考察出发,抽象出度量和度量空间的概念.

定义2.1.1 设X是一个集合,ρ:X×X→R.如果对于任何

x,y,z∈X,有

(1)(正定性),ρ(x,y)≥0并且ρ(x,y)=0当且仅当x=y;

(2)(对称性)ρ(x,y)=ρ(y,x);

(3)(三角不等式)ρ(x,z)≤ρ(x,y)+ρ(y,z)

则称ρ是集合X的一个度量.

如果ρ是集合X的一个度量,称(X,ρ)是一个度量空间,或称X是一个对于ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已作交代,不提它不至于引起混淆,这时我们称X是一个度量空间.此外,对于任意两点x,y∈X,实数ρ(x,y)称为从点x到点y的距离.

着重理解:度量的本质是什么?

例2.1.1 实数空间R.

对于实数集合R,定义ρ:R×R→R如下:对于任意x,y∈R,令

ρ(x,y)=|x-y|.容易验证ρ是R的一个度量,因此偶对(R,ρ)是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量ρ,称为R的通常度量,并且常常略而不提,迳称R为实数空间.(今后我们说实数空间,均指具有通常度量的实数空间.)

例2.1.2 n维欧氏空间.

对于实数集合R的n重笛卡儿积

=R×R×…×R

定义ρ:×→R如下:对于任意x=(),

y=,

ρ(x,y)=

容易验证(详见课本本节最后部分的附录)ρ是的一个度量,因此偶对(,ρ)是一

个度量空间.这个度量空间特别地称为n维欧氏空间.这里定义的度量ρ,称为的通常

度量,并且常常略而不提,迳称为n维欧氏空间.2维欧氏空间通常称为欧氏平面或平面.(今后说通常度量,均指满足这种公式的度量)

例2.1.3 Hilbert空间H.

记H为平方收敛的所有实数序列构成的集合,即

H={x=()|<∞}

定义ρ如下:对于任意

x=(),y=()∈H

令ρ(x,y)=

说明这个定义是合理的(即验证<∞)以及验证ρ是H的一个度量,均请参见课本本节最后部分的附录.偶对(H,ρ)是一个度量空间.这个度量空间特别地称为Hilbert空间.这里定义的度量ρ称为H的通常度量,并且常常略而不提,迳称H为Hilbert 空间.

例2.1.4 离散的度量空间.

设(X,ρ)是一个度量空间.称(X,ρ)是离散的,或者称ρ是X的一个离散度量,如果对于每一个x∈X,存在一个实数>0使得ρ(x,y)>对于任何y∈X,x≠y,成立.

例如我们假定X是一个集合,定义ρ:X×X→R使得对于任何

x,y∈X,有

ρ(x,y)=

容易验证ρ是X的一个离散的度量,因此度量空间(X,ρ)是离散的.

通过这几个例子,可知,度量也是一种映射,但它的象空间是实数.

离散的度量空间或许是我们以前未曾接触过的一类空间,但今后会发现它的性质是简单的.

定义2.1.2 设(X,ρ)是一个度量空间,x∈X.对于任意给定的实数ε>0,集合

{y∈X|ρ(x,y)<ε}

记作B(x,ε),或,称为一个以x为中心以ε为半径的球形邻域,简称为x的一个球形邻域,有时也称为x的一个ε邻域.

此处的球形邻域是球状的吗?

定理2.1.1 度量空间(X,ρ)的球形邻域具有以下基本性质:

(1)每一点x∈X,至少有一个球形邻域,并且点x属于它的每一个球形邻域;

(2)对于点x∈X的任意两个球形邻域,存在x的一个球形邻域同时包含于两者;

(3)如果y∈X属于x∈X的某一个球形邻域,则y有一个球形邻域包含于x的那个球形邻域.

证明:(1)设x∈X.对于每一个实数ε>0,B(x,ε)是x的一个球形邻域,所以x 至少有一个球形邻域;由于ρ(x,x)=0,所以x属于它的每一个球形邻域.

(2)如果B(x,)和B(x,)是x∈X的两个球形邻域,任意选取实数

ε>0,使得ε<min{ },则易见有

B(x,ε)B(x,)∩B(x,)

即B(x,ε)满足要求.

(3)设y∈B(x,ε).令=ε-ρ(x,y).显然.>0.如果z∈B(y,),则

ρ(z,x)≤ρ(z,y)+ρ(y,x)<+ρ(y,x)=ε

所以z∈B(x,ε).这证明B(y,)B(x,ε).

定义2.1.3 设A是度量空间X的一个子集.如果A中的每一个点都有一个球形邻域包含于A(即对于每一个a∈A,存在实数ε>0使得B(a,ε)A,则称A是度量空间X中的一个开集.

注意:此处的开集仅是度量空间的开集.

例2.1.5 实数空间R中的开区间都是开集.

设a,b∈R,a<b.我们说开区间

(a,b)={x∈R|a<x<b}

是R中的一个开集.这是因为如果x∈(a,b),若令

ε=min{x-a,b-x},

则有B(x,ε)(a,b).也同样容易证明无限的开区间

(a,∞)={x∈R|x>a},(-∞,b)={x∈R|x<b}

(-∞,∞)=R

都是R中的开集.然而闭区间

[a,b]={x∈R|a≤x≤b}

却不是R中的开集.因为对于a∈[a,b]而言,任何

ε>0,B(x,ε)[a,b]都不成立.类似地,半开半闭的区间

(a,b]={x∈R|a<x≤b},[a,b)={x∈R|a≤x<b}

无限的闭区问

[a,∞)={x∈R|x≥a},(-∞,b]={x∈R|x≤b}

都不是R中的开集.

定理2.1.2 度量空间X中的开集具有以下性质:

(1)集合X本身和空集都是开集;

(2)任意两个开集的交是一个开集;

(3)任意一个开集族(即由开集构成的族)的并是一个开集.

证明根据定理2.1.1

(1)X中的每一个元素x都有一个球形邻域,这个球形邻域当然包含在X中,所以X 满足开集的条件;空集中不包含任何一个点,也自然地可以认为它满足开集的条件.

(2)设U和V是X中的两个开集.如果x∈U∩V,则存在x的一个球形邻域B(x,)包含于U,也存在x的一个球形邻域B(x,)包含于V.根据定理2.1.1(2),x有一个球形邻域B(x,ε)同时包含于B(x,)和B(x,),因此

B(x,ε)B(x,)∩B(x,)U∩V

由于U∩V中的每一点都有一个球形邻域包含于U∩V,因此U∩V是一个开集.(3)设*Α是一个由X中的开集构成的子集族.如果,则存在∈*A使得x∈由于是一个开集,所以x有一个球形邻域包含于,显然这个球形邻域也包含于.这证明是X中的一个开集.

此外,根据定理2.1.1(3)可见,每一个球形邻域都是开集.

球形邻域与开集有何联系?

为了讨论问题的方便,我们将球形邻域的概念稍稍作一点推广.

定义2.1.4 设x是度量空间X中的一个点,U是X的一个子集.如果存在一个开集V 满足条件:x∈V U,则称U是点x的一个邻域.

下面这个定理为邻域的定义提供了一个等价的说法,并且表明从球形邻域推广为邻域是自然的事情.

定理2.1.3 设x是度量空间X中的一个点.则X的子集U是x的一个邻域的充分必要条件是x有某一个球形邻域包含于U.

证明如果U是点x的一个邻域,根据邻域的定义存在开集V使得

x∈V U,又根据开集的定义,x有一个球形邻域包含于V,从而这个球形邻域也就包含于U.这证明U满足定理的条件.

反之,如果U满足定理中的条件,由于球形邻域都是开集,因此U是x的邻域.

现在我们把数学分析中的连续函数的概念推广为度量空间之间的连续映射.

定义2.1.5 设X和Y是两个度量空间,f:X→Y,以及∈X如果对于f()的任何一个球形邻域B(f(),ε),存在的某一个球形邻域B(,δ),使得f(B(,δ))

B(f(),ε),则称映射在点处是连续的.

如果映射f在X的每一个点x∈X处连续,则称f是一个连续映射.

以上的这个定义是数学分析中函数连续性定义的纯粹形式推广.因为如果设ρ和分别是度量空间X和Y中的度量,则f在点处连续,可以说成:对于任意给定的实数ε>0,存在实数δ>0使得对于任何x∈X只要ρ(x,)<δ(即x∈B(,δ)便有(f(x),f())<ε.(即f(x)∈B(f(),ε)).

下面的这个定理是把度量空间和度量空间之间的连续映射的概念推广为拓扑空间和拓扑空间之间的连续映射的出发点.

定理2.1.4 设X和Y是两个度量空间,f:X→Y以及∈X.则下述条件(1)和(2)分别等价于条件(1)*和(2)*:

(1)f在点处是连续的;

(1)*f()的每一个邻域的原象是的一个邻域;

(2)f是连续的;

(2)*Y中的每一个开集的原象是X中的一个开集.

证明条件(1)蕴涵(1)*:设(1)成立.令U为f()的一个邻域.根据定理2.1.3,f()有一个球形邻域B(f(),ε)包含于U.由于f在点处是连续的,所以有一个球形邻域

B(,δ)使得f(B(,δ))B(f(),ε).然而,(B(f(),

ε)(U),所以

B(,δ)(U),这证明(U)是的一个邻域.

条件(1)*蕴涵(1).设条件(1)*成立.任意给定f()的一个邻域B(f(),ε),

则(B(f(),ε)是的一个邻域.根据定理2.1.3,有一个球形邻域B(,δ)包含于

(B(f(),ε).

因此f(B(,δ))B(f(),ε).这证明f在点处连续.

条件(2)蕴涵(2)*.设条件(2)成立.令V为Y中的一个开集,

U=(V).对于每一个x∈U,我们有f(x)∈V.由于V是一个开集,所以V是f(x)的一个邻域.由于f在每一点处都连续,故根据(1)*,U是x的一个邻域.于是有包含x 的某一个开集Ux使得Ux U.易见U=∪x∈UUx.由于每一个Ux都是开集,根据定理2.1.2,U是一个开集.

条件(2)*蕴涵(2).设(2)*成立,对于任意x∈X,设U是f(x)的一个邻域,即存在包含f(x)的一个开集V U.从而x∈(V)(U).根据条件(2)*,

(V)是一个开集,所以(U)是x的一个邻域,对于x而言,条件(1)*成立,于是f 在点x处连续.由于点x是任意选取的,所以f是一个连续映射.

从这个定理可以看出:度量空间之间的一个映射是否是连续的,或者在某一点处是否是连续的,本质上只与度量空间中的开集有关(注意,邻域是通过开集定义的).这就导致我们甩开度量这个概念,参照度量空间中开集的基本性质(定理2.1.2)建立拓扑空间和拓扑空间之间的连续映射的概念

作业:

P47 1.2.3.4.

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

概率论

1.1.1 确定性现象 在自然界和人类社会生活中,人们观察到的现象大体可以分为两种类型:确定性现象与随机现象. 确定性现象是在一定条件下必然发生(或出现)某个结果的现象,这一类现象也称为必然现象. 例如,①向上抛一块石头必然会落下;②在标准大气压下,水在100oC时一定沸腾;③异性电荷相互吸引,同性电荷相互排斥;?? 确定性现象蕴含的客观规律,我们称为确定性规律,它是人类早期科学研究的主要课题.同学们中小学所接触的自然科学知识几乎都是这些规律的知识. 如,前例①中我们知道那是万有引力定律在作用;前例②中我们知道了水的沸点是与大气压成正比的规律;前例③中如果我们进一步的知道点电量及它们之间的距离,就可以算出它们之间的作用力??这些确定性规律只要我们掌握了,如果给出了具体的初始条件,那么我们就可以明确甚至是精确地知道会发生什么结果. 对于确定性规律,大致地可以得出如下的特点: (1)如果给定某种初始条件,则发生的结果唯一; (2)一旦知道了它的规律,则结果的可以预知的. 换句话说,确定性现象在相同条件下进行多次重复观察或实验,它发生的结果仍然保持不变. 1.1.2 随机现象 随机现象,是在确定的条件下观察一次,只发生(或出现)一个结果,但在相同的条件下进行多次重复观察时,却可以发生多种不同结果的现象. 例如,①在相同的条件下抛同一枚硬币,可能出现正面也可能是反面;②在相同的条件下抛掷同一枚骰子,可能出现1点,也可能出现2点,等等;③某城市某个月内交通事故发生的次数可能为0,可能为1,等等;④对某只灯泡做寿命实验,其寿命的可能值为无数多个;?? 随机现象是事前无法预知结果的,因为在相同条件下,可以出现这个结果,也可以出现那个结果,如在相同的条件下抛掷同一枚骰子,我们无法事先预知六面中哪一面会朝上. 1.1.3 统计规律性(1)--抛硬币实验 因此,人们不禁地要问,随机现象是不是毫无规律可循呢?表面上看,随机现象的发生完全是“偶然的”,或“原因不明的”,没有什么规律可循.但事实上并非如此,人们经过长期的反复实践,逐渐发现所谓的无规律可言,只是针对一次或几次观察而言,当在相同条件下进行大量观察时,随机现象会呈现某种规律.典型的例子就是历史上抛掷硬币的实验: 从试验结果可以看出,在大量的重复实验中,硬币出现正面与反面的机会几乎是相等的,而不是杂乱无章法. 1.1.4 统计规律性(2)--其他实验 我们知道,随机现象在相同条件下进行大量观察时呈现出某种规律性.下面再列举几个例子. 1.根据各个国家各时期的人口统计资料,新生婴儿中男婴和女婴的比例大约总是1:1. 2.人的高度虽然各不相同,但通过大量的统计,如果在一定范围内把人的高度按所占的比例画出“直方图”,就可以连成一条和铜钟的纵剖面一样的曲线. 1.1.5 统计规律性(3)--规律描述 从上面的例子我们确实看到,在相同条件下大量重复观察时,随机现象呈现出某种规律,称这种规律为统计规律.概率论和数理统计就是研究随机现象统计规律性的一门学科. 既然概率统计研究的是随机现象的统计规律性,那么我们有必要具体了解那是什么样的规律.通过上面的例子,可以总结出统计规律的特点: (1)随机性每个结果是否出现是随机会而定的,是客观存在的,人为是无法对它进行控制与支配的; (2)频率的稳定性在大量重复的观察中,各个结果出现的频率是稳定的. 一方面,随机性(也称偶然性,不确定性)是客观存在的,它使得人们无法预知会出现哪个结果,也不会更不可能因为发现了频率的稳定性之后就消失.另一方面,频率的稳定性客观上证实了随机现象的各个结果之间存在着某种内在的必然联系,这种必然联系决定了每个结果出现的可能性大小. 通俗地讲,统计规律性就是:每个结果的发生(或出现)都是随机的,但是每个结果发生的内在比例是固定的.

泛函分析题1.2完备化答案

泛函分析题1_2完备化p13 1.2.1 (空间S) 令S为一切实(或复)数列 x = ( ξ1, ξ2, ..., ξn, ... ) 组成的集合,在S中定义距离为 ρ(x, y) = ∑k ≥ 1 (1/2k) · | ξk -ηk |/(1 + | ξk -ηk | ), 其中x = ( ξ1, ξ2, ..., ξk, ... ),y = ( η1, η2, ..., ηk, ... ).求证S为一个完备的距离空间.证明:(1) 首先证明ρ是S上的距离. ρ的非负性和对称性是显然的; 因为实函数f (t) = t /(1 + t ) = 1 - 1/(1 + t )在[0, +∞)严格单调增, 故对任意a, b∈ ,有 | a |/(1 + | a |) + | b |/(1 + | b |) ≥ | a | /(1 + | a | + | b |) + | b |/(1 + | a | + | b |) = ( | a | + | b | )/(1 + | a | + | b |) ≥ ( | a + b | )/(1 + | a + b |), 由此可立即得知ρ在S上满足三角不等式. 所以,ρ是S上的距离,从而(S, ρ)为距离空间. (2) 设{x n}是S中的一个Cauchy列,记x n = ( ξ1(n), ξ2(n), ..., ξk(n), ... ). 则?k∈ +,(1/2k) · | ξk(n)-ξk(m)|/(1 + | ξk(n)-ξk(m)| ) ≤ρ(x n, x m) → 0 (m, n→∞)., 因此| ξk(n)-ξk(m)| → 0 (m, n→∞). 故{ξk(n)}n ≥ 1是 (或 )中的Cauchy列,因此也是收敛列. 设ξk(n)→ξk ( n→∞),并设x = ( ξ1, ξ2, ..., ξk, ... ),则x∈S. 下面证明ρ(x n, x)→ 0 ( n→∞). ?ε > 0,存在K∈ +,使得∑k > K (1/2k) < ε /2. 又存在N∈ +,使得?n∈ +,当n > N时,?k≤K都有| ξk(n)-ξk | < ε /2. 此时,ρ(x n, x) = ∑k ≥ 1 (1/2k) · | ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) = ∑k ≤K (1/2k)·| ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) + ∑k > K (1/2k)·| ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) ≤∑k ≤K (1/2k)·| ξk(n)-ξk | + ∑k > K (1/2k) < (ε /2) ·∑k ≤K (1/2k) + ε /2 < ε /2 + ε /2 = ε. 所以,x n→x ( n→∞). 因此S中的Cauchy列都是收敛列,故S为完备距离空间. 1.2.2 在一个度量空间(X, ρ)上,求证:基本列是收敛列,当且仅当其中存在一串收敛子列. 证明:必要性是显然的,只证明充分性. 设{x n}是X中的一个Cauchy列,且{x n}有一个收敛子列{x n(k)},记x n(k) →x. ?ε > 0,存在N∈ +,使得?m, n≥N都有ρ(x n, x m) < ε /2.

线性空间和欧式空间

第六章 线性空间和欧式空间 §1 线性空间及其同构 一 线性空间的定义 设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算, 叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。 加法满足下面四条规则: 1)αββα+=+;交换律 2))()(γβαγβα++=++;结合律 3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元 素0称为V 的零元素); 存在零元 4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素). 存在负元 数量乘法满足下面两条规则: 5)αα=1; 存在1元 6)αα)()(kl l k =. 数的结合律 数量乘法与加法满足下面两条规则: 7)αααl k l k +=+)(; 数的分配律 8)βαβαk k k +=+)(. 元的分配律 在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。 例1. 元素属于数域K 的n m ?矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成 数域K 上的一个线性空间,记为,()m n M K 。 例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实 数域上的线性空间。 例3. n 维向量空间n K 是线性空间。

13 度量空间的可分性与完备性

1.3度量空间的可分性与完备性 在实数空间R中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R还具有完备性,即R中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间. 1.3.1 度量空间的可分性 定义1.3.1设X是度量空间,,A B X ?,如果B中任意点x B ∈的任何邻域(,) O xδ内都含有A的点,则称A在B中稠密.若A B ?,通常称A是B的稠密子集. 注1:A在B中稠密并不意味着有A B ?.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数. 定理1.3.1设(,) X d是度量空间,下列命题等价: (1) A在B中稠密; (2) x B ?∈,{} n x A ??,使得lim(,)0 n n d x x →∞ =; (3) B A ?(其中A A A ' =,A为A的闭包,A'为A的导集(聚点集)); (4) 任取0 δ>,有(,) x A B O xδ ∈ ?.即由以A中每一点为中心δ为半径的开球组成的集合覆盖B. 证明按照稠密、闭包及聚点等相关定义易得. 定理1.3.2稠密集的传递性设X是度量空间,,, A B C X ?,若A在B中稠密,B在C 中稠密,则A在C中稠密. 证明由定理1.1知B A ?,C B ?,而B是包含B的最小闭集,所以B B A ??,于是有C A ?,即A在C中稠密.□ 注2:利用维尔特拉斯定理可证得{定理(Weierstrass多项式逼近定理) 闭区间[,] a b上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.} (1)多项式函数集[,] P a b在连续函数空间[,] C a b中稠密. 参考其它资料可知:

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

第二章 赋范线性空间-黎永锦

第2章 赋范线性空间 虽然不允许我们看透自然界本质的秘密, 从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设 足以解释许多现象. Eurler L . (欧拉) (1707-1783,瑞士数学家) Schmidt E .在1908 年讨论由复数列组成的空间}||: ){(1 2∞<∑∞ =i i i z z 时引入记号 ||||z 来表示2 11 )(∑∞ =i i i z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响. 2.1赋范空间的基本概念 线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为 Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数, 第三组给出了空间的完备性. 定义 2.1.1 设K 是实数域R 或复数域C ,X 是数域K 上的线性空间,若||||?是X 到R 的映射,且满足下列条件: (1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

泛函分析度量空间知识和不动点的应用

泛函分析度量空间知识和不动点的应用 第七章度量空间和赋范线性空间知识总结 一、度量空间的例子 定义:设X 为一个集合,一个映射d :X ×X →R 。若对于任何x,y,z 属于X ,有 (I )(正定性)d(x,y )≥0,且d(x,y)=0当且仅当 x = y ; (Ⅱ)(对称性)d(x,y)=d(y,x ); (Ⅲ)(三角不等式)d(x,z )≤d(x,y)+d(y,z ) 则称d 为集合X 的一个度量(或距离)。称偶对(X ,d )为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。根据定义引入度量空间有离散的度量空间、序列空间、有界函数空间、可测函数空间、C 【a ,b 】空间、2l 空间,这6个空间是根据度量空间的定义可证它们是度量空间,在后面几节中给出它们相关的性质。 二、度量空间中的极限,抽密集,可分空间: 证明极限有二种方法: 1、定义法:设{}n x 是(X ,d )中点列,如果存在x ∈X ,是lim (,)n x d x x →∞ =0,则称点列{} n x 是(X ,d )中的收敛点列,x 是点列{}n x 的极限。 2、M 是闭集是充要条件是M 中任何收敛点列的极限都在M 中。即若n x M ∈,n=1、,2……, n x x →,则x M ∈。 给出n 维欧氏空间、C[a,b]序列空间、可测函数空间中点列收敛的具体意义,由这些系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致,所以我们引入度量空间中的稠密子集和可分空间的概念,根据定义可得出n 维欧氏空间n R 是可分空间,坐标为有理数的全体是n R 的可数稠密集,离散度量空间X 可分的充要条件为X 是可数集。l ∞ 是不可分空间。 三、连续映射 证明度量空间的连续映射有四种方法: 1、定义法:设X=(X ,d ),Y=(Y ,d )是两个度量空间,T 是X 到Y 中的映射,0 x X ∈,如果对于任意给定的正数ε,存在正数δ 0,使对X 中一切满足d (x ,0x )δ 的x ,有 (,)d Tx Tx ε ,则称T 在0x 连续。 2、对0Tx 的每个ε-领域U ,必有0x 得某个δ—邻域V 使TV ?U ,其中TV 表示V 在映射T 作用下的像。 3、定理1:设T 是度量空间(X ,d )到度量空间(Y ,d )中的映射,那么T 在0 x X ∈连

概率论综述

概率论综述

第一章 事件与概率 §1. 随机现象与统计规律性 一.随机现象 概率论(probability theory )是研究随机现象的数量规律的数学分支。本节概述他的研究对象及殊地位。 在一定条件下,必然会发生的事件称为必然事件。反之,那种在一定条件下,必然不会发生的事件称为不可能事件,这些统称为决定性现象。 另一类现象,在基本条件不变的情况下,一系列试验或观察会得到不同的结果,即就个别实验或观察而言,它会时而出现这种结果,时而出现结果,呈现出一种偶然性。这种现象称之为随机现象(random phenomenon ),对于随机现象通常关心的是试验或观察中某个结果是否出现,这些结果称之为随机事件,简称事件(event)。 二.频率稳定性 对于随机事件A,若在N 次实验中出现了n 次,则称 N n A F N =)( 为随机事件A 在N 次实验中出现的频率. 有种种事实表明,随机现象有其偶然的一面,也有其必然的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件出现的频率常在某个固定的常数附近摆动,这种规律性我们称之为统计规律性。 对于一个随机事件A ,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称之为随机事件A 的概率(probability ).因此概率度量了随机事件发生的可能性大小。 三.频率与概率 首先,概率具有非负性 0)(≥A F N 其次,对于必然发生的事件,在N 此试验中应出现N 次。若以Ω记必然事件,则应有 1)(=ΩN F 还有,若A 及B 是两个两个不会同时发生的随机事件,以A+B 表示A 或B 至少出现其一这一事件,则应有

度量空间的可分性与完备性

1.3 度量空间的可分性与完备性 在实数空间R 中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R 还具有完备性,即R 中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间. 1.3.1 度量空间的可分性 定义1.3.1 设X 是度量空间,,A B X ?,如果B 中任意点x B ∈的任何邻域(,)O x δ内都含有A 的点,则称A 在B 中稠密.若A B ?,通常称A 是B 的稠密子集. 注1:A 在B 中稠密并不意味着有A B ?.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数. 定理1.3.1 设(,)X d 是度量空间,下列命题等价: (1) A 在B 中稠密; (2) x B ?∈,{}n x A ??,使得lim (,)0n n d x x →∞ =; (3) B A ?(其中A A A '=U ,A 为A 的闭包,A '为A 的导集(聚点集)); (4) 任取0δ>,有(,)x A B O x δ∈?U .即由以A 中每一点为中心δ为半径的开球组成的集合 覆盖B . 证明 按照稠密、闭包及聚点等相关定义易得. 定理1.3.2 稠密集的传递性 设X 是度量空间,,,A B C X ?,若A 在B 中稠密,B 在C 中稠密,则A 在C 中稠密. 证明 由定理1.1知B A ?,C B ?,而B 是包含B 的最小闭集,所以B B A ??,于是有C A ?,即A 在C 中稠密.□ 注2:利用维尔特拉斯定理可证得{定理(Weierstrass 多项式逼近定理) 闭区间[,]a b 上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.} (1)多项式函数集[,]P a b 在连续函数空间[,]C a b 中稠密. 参考其它资料可知: (2)连续函数空间[,]C a b 在有界可测函数集[,]B a b 中稠密. (3)有界可测函数集[,]B a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 利用稠密集的传递性定理1.3.2可得: (4)连续函数空间[,]C a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 因此有[,][,][,][,]p P a b C a b B a b L a b ???. 定义1.3.2 设X 是度量空间,A X ?,如果存在点列{}n x A ?,且{}n x 在A 中稠密,则称A 是可分点集(或称可析点集).当X 本身是可分点集时,称X 是可分的度量空间.

泛函分析中的度量空间

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 1、度量空间 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 例:实数带有由绝对值给出的距离函数d(x, y) = |y?x|,和更一般的欧几里得n维空间带有欧几里得距离是完备度量空间 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔

伯特空间。 例:任何赋范向量空间通过定义d(x, y) = ||y?x|| 也是度量空间。 (如果这样一个空间是完备的,我们称之为巴拿赫空间)。例:曼哈顿范数引发曼哈顿距离,这里在任何两点或向量之间的距离是在对应的坐标之间距离的总和。 3、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 4、巴拿赫空间 巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

泛函分析习题1

线性与非线性泛函分析◇ - 1 - 习题1 1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和 (2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间. 2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足 ,x y f ?∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间. 3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ?∈有 (,)(,)(,)(,)d x z d y w d x y d z w -≤+. 4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于 123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k k k k k x y d x y x y ∞ =-=+-∑ .证明 X d (,)为度量空间. 5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =, (010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间. 6.(苏艳丁亚男)设X d (,)为度量空间, A X ?且A ≠φ.证明A 是开集当且仅当A 为开球的并. 7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集. 8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列. 9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ?上定义度量 112212121 ((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈?,1p ≥为正数.证明 X Y ?是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间. 10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,证明1n n G ∞ = 也是X 中的稠密子集. 11.(王胜训闫小艳)设n A ?R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ?且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集. (2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

完备空间

完备空间 完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。 例子 ?有理数空间不是完备的,因为的有限位小数表示是一个柯西序列,但是其极限不在有理数空间内。 ?实数空间是完备的 ?开区间(0,1)不是完备的。序列(1/2, 1/3, 1/4, 1/5, ...)是柯西序列但其不收敛到任何(0, 1)中的点。 ?令S为任一集合,S N为S中的所有序列,定义S N上序列(x n)和(y n)的距离为1/N,其中若的最小索引存在则N为该索引否则N为0。按此方式定义的度量空间是完备的。该空间同胚于离散空间S的可数个副本的积。 [编辑]直观理解 直观上讲,一个空间完备就是指“没有孔”且“不缺皮”,两者都是某种“不缺点”。没有孔是指内部不缺点,不缺皮是指边界上不缺点。从这一点上讲,一个空间完备同一个集合的闭包是类似的。这一类似还体现在以下定理中:完备空间的闭子集是完备的。 [编辑]相关定理 ?任一紧致度量空间都是完备的。实际上,一个度量空间是紧致的当且仅当该空间是完备且完全有界的。 ?完备空间的任一子空间是完备的当且仅当它是一个闭子集。 ?若X为一集合,M是一个完备度量空间,则所有从X映射到M的有界函数f的集合B(X, M)是一个完备度量空间,其中集合B(X, M)中的距离定义为:

?若X为一拓扑空间,M是一个完备度量空间,则所有从X映射到M的连续有界函数f的集合C b(X,M)是B(X, M)(按上一条目的定义)中的闭子集,因而也是完备的。 ?贝尔纲定理:任一完备度量空间为一贝尔空间。就是说,该空间的可数个无处稠密子集的并集无内点。 [编辑]完备化 [编辑]定义 对任一度量空间M,我们可以构造相应的完备度量空间M'(或者表示为),使得原度量空间成为新的完备度量空间的稠密子空间。M'具备以下普适性质:若N为任一完备度量空间,f为任一从M到N的一致连续函数,则存在唯一的从M'到N的一致连续函数f'使得该函数为f的扩展。新构造的完备度量空间M'在等距同构意义下由该性质所唯一决定,称为M的完备化空间。 以上定义是基于M是M'的稠密子空间的概念。我们还可以将完备化空间定义为包含M的最小完备度量空间。可以证明,这样定义的完备化空间存在,唯一(在等距同构意义下),且与上述定义等价。 对于交换环及于其上的模,同样可以定义相对于一个理想的完备性及完备化。详见条目完备化 (环论)。 [编辑]构造 类似于从有理数域出发定义无理数的方法,我们可以通过柯西序列给原空间添加元素使其完备。 对M中的任意两个柯西序列x=(x n) 和y=(y n),我们可以定义它们间的距离: d(x,y) = lim n d(x n,y n)(实数域完备所以该极限存在)。按此方式定义的度量还只是伪度量,这是因为不同的柯西序列均可收敛到0。但我们可以象很多情况中所做的一样(比如从L p到),将新的度量空间定义为所有柯西序列的集合上的等价类的集合,其中等价类是基于距离为0的关系(易于验证该关系是等价 关系)。这样,令ξx= {y是M上的柯西序列:},M'={ξx:x ∈ M},原空间M就以xξx的映射方式嵌入到新的完备度量空间M'中。易于验证,M 等距同构于M'的稠密子空间。 康托法构造实数是该完备化方法的一个特例:实数域是有理数域作为以通常的差的绝对值为距离的度量空间的完备化空间。

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

相关文档