文档库 最新最全的文档下载
当前位置:文档库 › 能量密度

能量密度

能量密度
能量密度

(完整word版)高能量三元正极材料的开发及产业化.doc

高能量三元正极材料的开发及产业化 一、镍钴锰三元正极材料市场需求分析 锂离子电池作为一种对环境友好的替代能源,近年来受到了人们的重点关 注,在 21 世纪初始持续实现了接近30%的年复合增长率。纯电动、混合动力汽 车需求的剧增,更加极大地促进了动力型锂离子电池的发展,特斯拉、日产、宝 马以及国内的比亚迪、江淮等车企,都已经实现了电动汽车的量产化,并不断加大研发投入,对电动汽车、锂离子电池及其关键材料产业链进行重点开发。正极材料是锂离子电池的核心关键材料,目前已在市场上广泛使用的有钴酸锂、锰酸锂、系列镍钴锰三元复合材料(镍:钴:锰 =1:1:1,5:2:3,6:2:2 等)和磷酸铁锂,其中适用于动力型锂离子电池的正极材料主要有磷酸铁锂和镍钴锰三元复合材料。进一步提高能量密度和安全性能是正极材料发展的必然趋势,由于高电压充电或深度放电时电极材料对有机电解质的强氧化作用、材料自身结构的崩塌或破坏、高镍类材料带来的产气问题,以及压实密度已接近理论真密度的极限,现有材料在兼顾高能量密度和高安全性能上的局限亟需突破。 从全球范围来看,锂离子电池企业主要集中在日本、中国和韩国,相应的锂离子电池正极材料的研发及生产也主要集中在以上国家。国外锂离子电池正极材 料行业已逐渐形成了寡头竞争的局面,如日本的户田和日亚化学工业等企业,韩国的 Umicore 和 L&F 等企业。国内仍有较多的企业在参与市场竞争,主要有当升科技、湖南瑞翔、湖南杉杉、余姚金和、中信国安、天津巴莫、深圳天骄等企业。近年来,作为正极材料之一的镍钴锰三元材料,应用前景极为广阔,发展更 是突飞猛进, 2014 下半年以来至今,受电动汽车用锂离子电池体系重心由磷酸 铁锂到三元材料转变的刺激,使三元材料的市场需求呈井喷之势。但由于三元材料行业技术集成度高、下游客户对产品质量要求严格等原因,一些不具备核心竞争力的企业将会逐步退出,行业内的优势企业将占据越来越多的市场份额。产能集中、技术集中,高能量密度、高安全性能已经成为行业对三元类材料企业和产品要求的重要趋势。 由于镍钴锰三元材料 Li(Ni x Co y Mn 1-x-y )O2 存在明显的三元协同效应,利用Ni 、Co、 Mn 三种元素各自的优势可提高Li(Ni x Co y Mn 1-x-y )O2材料的综合性能。因此,该材料的组分优化可进一步放大各组分元素的优势,除了传统的

有机笼状高能量密度材料(HEDM)的分子设计和配方设计初探

有机笼状高能量密度材料(HEDM)的分子设计和配方设计初探运用理论和计算化学方法,主要是量子力学(QM)、分子力学(MM)和分子动力学(MD)等方法,对两类重要有机笼状化合物金刚烷和六氮杂金刚烷(HAA)的多系列高能衍生物以及著名的高能量密度化合物(HEDC)六硝基六氮杂异伍兹烷(CL-20)的结构和性能,进行了较为系统的计算、模拟和研究。从气相分子、固态晶体至复合材料(高聚物黏结炸药PBX),完成了寻求高能量密度材料(HEDM)的全过程研究。全文大体包括三部分内容:第一部分是HEDC的“分子设计”。基于量子化学计算首次建议和运用判别HEDC的定量标准(密度ρ >1.9g·cm-3,爆速D>9.0km·s-1和爆压 p>40.0GPa),并兼顾其稳定性(热解引发键离解能 BDE>120kJ·mol-1)要求,从上述多系列有机笼状化合物中推荐了7种HEDC。 首先,以量子化学第一性原理DFT-B3LY/6-31G*水平的全优化构型,求得系 列多硝基金刚烷(PNA)的红外光谱(IR)和298800K温度范围的热力学性质(Cp,m°、Sm°和Hm°);设计等键反应求得其气相生成热(HOF);按0.001e·Bohr-3电子密度曲面所包含的体积求得晶体理论密度(ρ);按Kamlet-Jacobs方程估算它们的爆速(D)和爆压(p)。运用UHF-PM3方法求得该系列化合物的各可能引发键的均裂活化能 (Ea),预测其热解引发机理和稳定性相对大小;在B3LYP/6-31G*水平求得引发键C–NO2键离解能(EC–N);发现热解引发键的键级(BC–NO2)、EC–N、Ea以及– NO2上净电荷(QNO2)对判别稳定性或感度的等价线性关系。按照我们建议的HEDC的定量标准和稳定性要求,发现1,2,3,4,5,6,7,8-八硝基金刚烷、1,2,3,4,5,6,7,8,9-九硝基金刚烷和1,2,3,4,5,6,7,8,9,10-十硝基金刚烷三种化合物是值得推荐的潜在HEDC,从而否定了国外前人由基团加 和法得出的十一硝基金刚烷是PNA系列最佳HEDC目标物的结论。此外,还对金刚烷的硝酸酯基系列化合物作类似的理论研究,根据判别HEDC的能量与稳定性相结合的定量标准,发现1,2,4,6,8,9,10-七硝酸酯基金刚烷可作为HEDC目标物。 其次,在B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G*水平下,对

锂离子电池和金属锂离子电池的能量密度计算

锂离子电池和金属锂离子电池的能量密度计算 吴娇杨,刘品,胡勇胜,李泓 (中国科学院物理研究所,北京,100190) 摘要:锂电池是理论能量密度最高的化学储能体系,估算各类锂电池电芯和单体能达到的能量密 度,对于确定锂电池的发展方向和研发目标,具有积极的意义。本文根据主要正负极材料的比容 量、电压,同时考虑非活性物质集流体、导电添加剂、粘结剂、隔膜、电解液、封装材料占比,计算了不同材料体系组成的锂离子电池和采用金属锂负极、嵌入类化合物正极的金属锂离子电池 电芯的预期能量密度,并计算了18650型小型圆柱电池单体的能量密度,为电池发展路线的选择 和能量密度所能达到的数值提供参考依据。同时指出,电池能量密度只是电池应用考虑的一个重 要指标,面向实际应用,需要兼顾其它技术指标的实现。 关键词:锂离子电池;金属锂离子电池;能量密度;18650电池;电芯 中图分类号:O O646.21文献标志码:A 文章编号: Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries WU Jiaoyang,Liu pin, HU Yongsheng, LI Hong (Institute of Physics, Chinese Academy of Science, Beijing 100190, China) Abstract:Lithiumbatteries have the highest theoretical energy densities among all electrochemical energy storage devices. Prediction of the energy density of the different lithium ion batteries (LIB) and metallic lithium ion batteries (MLIB) is valuable for understanding the limitation of the batteries and determine the directions of R&D. In this research paper, the energy densities of LIB and MLIB have been calculated. Ourcalculation includes the active electrode materials and inactive materials inside the cell.For practical applications, energy density is essential but not the only factor to be considered, other requirements on the performances have to be satisfied ina balanced way. Key words:lithiumion batteries; metal lithium ion batteries; energy densitycalculation;18650 cell; batteries core 收稿日期:;修改稿日期:。 基金项目:国家自然科学基金杰出青年基金项目(51325206),国家重点基础研究发展计划(973)项目(2012CB932900)。第一作者:吴娇杨(1988-),女, 博士研究生,研究方向锂离子电池电解质E-mail:wujiaoyang8@https://www.wendangku.net/doc/155146902.html,;通讯联系人:李泓, 研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@https://www.wendangku.net/doc/155146902.html,。

PHEV用高能量密度电池的设计

Design of high energy density MCMB/Li[Ni1/3Mn1/3Co1/3]O2 cells for PHEV purposes Honghe Zheng1,*, Gao Liu*, Xiangyun Song, Paul Ridgway and Vince Battaglia*, z Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA Introduction Energy density is one of the important criteria for lithium-ion batteries to meet the aggressive requirements for PHEV applications. According to the recently announced PHEV goals by the USABC, a system energy density of 207 Wh/L is required (with an assumption that only 70% is available for all electric driving) to meet the 40-mile, all-electric-driving target. Reducing inactive material content and increasing electrode thickness are important ways to increase the energy density of a lithium-ion battery. We have reported the energy density improvement of the Li[Ni1/3Mn1/3Co1/3]O2 (L333) cathode using minimum amounts of inactive materials[1]. That study investigated the effects of electrode thickness on the electrochemical behavior of graphite anodes and Li[Ni1/3Mn1/3Co1/3]O2-cathodes. In this presentation we show that on the electrode scale combining the optimized MCMB anode and Li[Ni1/3Mn1/3Co1/3]O2 cathode surpasses the PHEV 40-mile energy density goal by 50%. Experiment MCMB was supplied by Osaka Gas, Japan and Li[Ni1/3Mn1/3Co1/3]O2 was supplied by Seimi, USA. A slurry consisting of different amounts of active material, PVdF, and acetlylene black was prepared by mixing in 1-methyl-2-pyrrolidone (1MP). Coated films on copper foil for MCMB and on aluminum foil for Li[Ni1/3Mn1/3Co1/3]O2 were prepared by the motorized doctor blade method. All of the films with different active material loadings were compressed to 35% porosity using a calendering machine. Coin cells were assembled in an argon-filled glove box. The separator employed was Celgard 2400. 1M LiPF6/EC+DEC(1:2) was used as the electrolyte. Electrochemical measurements were performed by using a Maccor battery cycler. Results and discussion Fig.1 shows the effect of electrode thickness on the rate performance for both the MCMB-based anode and the Li[Ni1/3Mn1/3Co1/3]O2-based cathode. From this figure, it is seen that rate performances of the anode and the cathode as a function of the electrode thickness are quite different. The capacity of at which the anode hits the rate 1On leave from Henan Normal University, P.R.China * Electrochemical active member z E-mail: VSBattaglia@https://www.wendangku.net/doc/155146902.html, mass transfer limit varies dramatically with thicknees and C-rate, where as the capacity of the cathode shows a steady decline as a function of rate before hitting a mass transfer Fig.2 was obtained by plotting the capacity versus current density of an electrode corresponding to the point just before the bend in the curve of the rate- capability curves of Figure 1. (The performances of three graphites and L333 are displayed.) This figure indicates that. for discharge rates below ca. 3 C, the rate performance of the three graphite anodes is worse than that of the Li[Ni1/3Mn1/3Co1/3]O2 cathode. In other words, the anode limits the rate performance of the cell for discharges longer than 20 minutes. The data also suggest that cells with discharge rates greater than 3C can not be made with L333 cathodes. For urban driving, 20 mph is considered the average driving speed. Therefore, the 40-mile battery system should be optimized for a 2 hr discharge, i.e. C/2 rate. Based on the data of figure 2, the cycleable capacity of 2 1/31/31/32 full cells. Cathode contains a: 8% PVdF; b: 2% PVdF. Fig. 3 shows the power cycling of two MCMB/Li[Ni1/3Mn1/3Co1/3]O2coin cells we designed for PHEV purposes. These cells are cycled with a P/4 Charge to 4.3V, and a P/2 Discharge to 70% depth of discharge (DOD), with a 1-hour constant voltage hold at the top of charge. The two cells contain cathodes with different binder contents, 2% and 8%. The cell with the cathode that contains 2% binder has an initial useable energy density of 350 Wh/l (volume includes the working area from Al to Cu current collector). The cell with the cathode that contains 8% binder has an initial useable energy density of 310 Wh/l. The electrode -based energy density of the both systems exceeds the PHEV system requirements with excellent cycling behavior. Meeting the system requirement will require additional engineering effort. The cells are still cycling in our laboratory. Reference 1.Honghe Zheng, Gao Liu, Vince Battaglia et. al, ECS Trans. 11:1-7. 2008 Li[Ni1/3Mn1/3Co1/3]O2 cathode (b) of different thicknesses.

高能量密度动力学研究

高能量密度动力学研究的内容和意义 SCW 摘要 高能量密度状态是指物质由于受到外界能量输人或自身能量转换,使其内能增大而造成的高压力、高密度和高温度状态。能量的体积密度的量纲等同于压力的量纲,由此可知内能增加量为1MJ/cm3时,物质内部的压力约为1TPa量级。通常认为在高能量密度状态下,固体物质的可压缩性已有显著影响,气态物质应达到接近极限压缩的程度,即相当于0.1TPa或0.1MJ/cm3的内能密度。例如密度为0.01/cm3的物质被加热到100eV,其压力约0.1TPa量级,对氢气(氘、氚)而言比能量约为10MJ/g。 高能炸药PBX-9404的化学反应能密度约为0.0096 MJ/cm3,爆压36GPa。核材料铀-235全部裂变释放的能量密度相当于1.386 106 MJ/cm3,裂变反应区中压力达到5000TPa。比较这些数据可知,我们定义的高能量密度状态的下界,比炸药爆轰直接状态高出一个量级,相当于核裂变反应开始的状态(如炸药爆轰再经过内爆聚能达到的状态),属于应用非核聚能手段仍可达到的范围。高能量密度物理就是使用这些手段(包括爆轰、电磁力和激光烧蚀),把待研究的物质压缩到所需要的状态,并研究相应的极高速度、压力和温度条件下物质的性质和变化过程。这是一个核武器物理、天体物理、流体动力学和凝聚态物理的交叉领域,也是一个孕育着新发现和新认识的重要前沿学科。 利用脉冲功率技术(电容器组、爆炸磁压缩装置和电子加速器等)提供的数十至数百兆安(MA)轴向冲击大电流,产生强大的箍缩电磁力,可把几厘米直径的金属或等离子体圆柱套筒高速压缩到上千万大气压力或上百万度温度的状态,并可维持微秒或纳秒量级的时间。这种电磁内爆实验可用来研究材料高压物态方程等极端条件下的物质性质、核武器内爆动力学和组件缺陷的影响、流体动力学界面不稳定性等物理问题,并能产生大量的软X射线用于核武器效应模拟研究。美、俄两国有关实验室用的电磁驱动内爆技术,已能造成每立方厘米物质的内能相当于上百克炸药能量的高能量密度状态。Atlas装置进行的高能量密度流体动力学实验,可实现压力量级为TPa的冲击压缩和等熵压缩,进行相关范围的物态方程研究;可进行圆柱形复合套筒内爆动力学、微喷射和微射流、特殊材料力学性能及层裂损伤、流体动力学内爆不稳定性和界面不稳定性、湍流混合、复杂构形三维流动(切向流,界面摩擦)等核武器物理主要问题的研究;还可用来探

照度、照明功率密度计算法

照度(Eav)、照明功率密度(LPD)简易计算法 中国建筑设计研究院胥正详T8,T5,荧光灯管技术参数见表1。 表1 荧光灯管技术参数

2.镇流器 气体放电灯的镇流器主要分两大类,电感镇流器和电子镇流器,电感式镇流器包括普通型和节能型。荧光灯用的交流镇流器包括可控式电子镇流器和应急照明用交流/直流电子镇流器。 直管荧光灯镇流器的选用:依GB50034-2004《建筑照明设计标准》规定:“直管荧光灯应配电子镇流器或节能型电感镇流器”。不应选用普通电感镇流器。 应采取有效措施限制小于25W(包括T8、T5灯管和紧凑型荧光灯)镇流器的谐波含量。25W 以下灯管的谐波限制非常宽松,在建筑物内大量应用,将导致严重的波形畸变,中性线电流过大以及功率因数降低的不良后果。 节能型电感镇流器的应用:通过优化铁芯材料和改进工艺等措施,降低自身功耗,一般可降低20%~50%,灯具总的功率之和可降5%~10%。 灯具补偿:由于电感镇流器自然功率因数低,要考虑单灯末端补偿措施。包括单灯补偿或线路集中补偿等方式。 荧光灯镇流器性能对比表2 3.照度计算: 照明设计时,应逐个房间或场所按使用条件确定照度标准,选择光源、灯具、镇流器类型、

规格、计算平均照度,使之符合规定的照度标准值,并使计算照度偏差不超过±10%的规定。最常用,也是最基本的利用系统法计算平均照度计算公式如下: Eav = N·φ·U·K (1) A N = Eav·A (2) φ·U·K 式中: Eav —工作面上的平均照度(Lx); φ—光源光通量(Lm); N —光源数量; U —利用系数,其值见厂商样本资料,一般取0.4~0.6;也可参照民用建筑不同功能房间和常用灯具对应的值(利用系数),见表3; K —灯具的维护系数,其值见《建筑照明设计标准》GB50034-2004,表4.1.6; A —房间面积(m2)。 表3 民用建筑不同功能房间和常用灯具对应的值(利用系数)

能量密度和功率密度

电池常用术语:能量密度和功率密度 (2010-06-21 10:52:38) 分类:储能 标签: 电池 在谈及电池的时候,能量密度和功率密度是两个经常提到的量 能量密度(Wh/kg)指的是的单位重量的电池所储存的能量是多少,1Wh等于3600焦耳(J)的能量。 功率密度(W/kg)指的是单位重量的电池在放电时可以以何种速率进行能量输出。 能量密度是由电池的材料特性决定的,普通铅酸电池的能量密度约为40Wh/kg,常用的电动两轮车用铅酸电池包为48V,10Ah, 储能480Wh,所以可以简单估计这种电池包的重量至少在12kg以上。 铅酸电池的能量密度是比较低的,所以无法用作电动汽车的动力源,因为如果使用铅酸电池驱动家用汽车行驶200km以上,需要将近1吨的电池,这个重量太大了,无法达到实用,当然铅有毒也是一个方面原因,铅酸电池的循环性能也比较差,但是我们可以看到,仅丛能量密度上就可以判断出铅酸电池不能作为纯电动汽车的动力源 目前比较热的锂离子电池的能量密度约在100~150Wh/kg左右,这个值比铅酸电池高出2~3倍,且锂离子电池的循环性要远远高于铅酸电池,所以目前锂离子电池是开发电动汽车的首选电池。 功率密度也是由材料的特性决定的,并且功率密度和能量密度没有直接关系,并不是说能量密度越高功率密度就越高,用专业的术语来说,功率密度其实描述的是电池的倍率性能,即电池可以以多大的电流放电,功率密度对于电池开发以及电动车开发而言非常重要,如果功率密度高,则电动车在加速的时候就会非常快,普通的铅酸电池的功率密度一般只有几十~数百瓦特/千克,这是一个非常低的值,表明铅酸电池的高倍率放电性能较差,而锂离子电池目前的功率密度可以达到数千瓦特/千克。 值得指出的是,能量密度和功率密度都是一个会变化的量,电池在使用多次以后能量密度会降低(电池容量衰减),功率密度也会下降,并且这两个量也是随着环境的变化而变化的,比如在极为寒冷或炎热的季节中它们都会发生一定程度的变化(一般是减少)。 目前还没有任何一种电池的能量密度可以达到实用化的驱动电动汽车具有几百公里的续航里程。提高电池的能量密度也是目前电池研发中的重中之重,在安全性得到解决的前提下,如果电池的能量密度可以达到300~400Wh/kg的话,就具备了和传统燃油机车较量续航里程的资本,但是电池还有一个知名的问题就是寿命,电池的能量密度会随着电池的使用而衰减,

计算功率谱密度

功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 一、直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 二、间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx); 三、改进的直接法: 对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

照度、照明功率密度计算法

照度(Eav)、照明功率密度(LPD简易计算法 中国建筑设计研究院胥正详T8,T5,荧光灯管技术参数见表1。 表1

2.镇流器 气体放电灯的镇流器主要分两大类,电感镇流器和电子镇流器,电感式镇流器包括普通型和节能型。荧光灯用的交流镇流器包括可控式电子镇流器和应急照明用交流/直流电子镇流器。 直管荧光灯镇流器的选用:依GB50034-2004《建筑照明设计标准》规定:“直管荧光灯应配电子镇流器或节能型电感镇流器”。不应选用普通电感镇流器。 应采取有效措施限制小于25W(包括T8、T5灯管和紧凑型荧光灯)镇流器的谐波含量。25W 以下灯管的谐波限制非常宽松,在建筑物内大量应用,将导致严重的波形畸变,中性线电流过大以及功率因数降低的不良后果。 节能型电感镇流器的应用:通过优化铁芯材料和改进工艺等措施,降低自身功耗,一般可降 低20%~50%灯具总的功率之和可降5%~10% 灯具补偿:由于电感镇流器自然功率因数低,要考虑单灯末端补偿措施。包括单灯补偿或线路集中补偿等方式。荧光灯镇流器性能对比表2 3 照明设计时,应逐个房间或场所按使用条件确定照度标准,选择光源、灯具、镇流器类型、 规格、计算平均照度,使之符合规定的照度标准值,并使计算照度偏差不超过土10%勺规定 最常用,也是最基本的利用系统法计算平均照度计算公式如下: N ? ? ? U ?K Eav = ⑴

A Eav-A N = ⑵ ? ? U -K 式中: Eav —工作面上的平均照度(Lx); ? —光源光通量(Lm); N —光源数量; U —利用系数,其值见厂商样本资料,一般取0.4~0.6 ;也可参照民用建筑不同功能房 间和常用灯具对应的值(利用系数),见表3; K —灯具的维护系数,其值见《建筑照明设计标准》GB50034-2004表4.1.6 ; A —房间面积(m)° 表3 民用建筑不同功能房间和常用灯具对应的值(利用系数) 公式(1)是当布置了灯具后,计算房间的照度。但开始时往往是需要确定房间中究竟需要多少个灯具,可以采用公

_能量密度充电倍率测试方法_动力电池、燃料电池相关技术指标测试方法_试行_

动力电池、燃料电池相关技术指标测试方法(试行) 1、 动力电池能量密度(PED)测试方法 1.1测试对象 测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。 1.2 测试步骤 室温(25℃±2℃)环境下,按照如下步骤测试: 1)按照企业规定的且不小于I 3(A)的电流放电至企业规定的放电终止条件,静置不小于30min; 2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min; 3)重复步骤1),计量放电能量E(以Wh计); 4)重复步骤2)~3)2次,取3次放电能量E的平均值E average 。 5)用衡器测量测试对象的质量M(以kg计,称重时至少包括GB/T 31467.3-2015 附录A.1规定的组成部分); 6)计算测试对象放电能量密度PED(以Wh/kg计),计算公式如下: /average PED E M 2、动力电池(含超级电容器)最大充电倍率(CR)测试方法 2.1测试对象

测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。 2.2 测试步骤 室温(25℃±2℃)环境下,按照如下步骤测试: 1)按照企业规定的且不小于I 3(A)的电流放电至企业规定的放电终止条件,静置不小于30min; 2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min; 3)重复步骤1),计量放电容量Q 0(以Ah计); 4)按照企业规定的最快充电方式(该充电方式应不高于GB/T 31484-2015的6.1.1.3使用的充电方式)充电至80%SOC (SOC值为电池管理系统上报数值),静置30min,计量充电时间t(以s计); 5)按照步骤1)相同的电流放电至20%SOC(SOC值为电池管理系统上报数值),静置30min,计量放电容量Q 1(以Ah计),如果Q 1低于0.55 Q 0,则终止试验; 6)重复步骤4)~5)10次,如果测试过程中测试对象温度超过企业规定的最高工作温度,则终止试验; 7)取步骤6)10次充电时间t的平均值t average ,并计算测试对象最大充电倍率CR(以C计),计算公式如下: 2160/average CR t 3、燃料电池系统(发动机)额定输出功率测试方法

锂离子电池能量密度大揭秘

锂离子电池能量密度大揭秘 根据木桶理论,水位的高低决定于木桶最短处,锂离子电池的能量密度下限取决于正极材料。 是什么决定了新能源汽车的续航里程?新能源汽车的续航主要取决于可用电量和整车能耗。 续航能力↑=可用电量↑÷能耗↓ 在相同能耗不变,电池包体积和重量不变都受到严格限制的情况下,新能源汽车的单次最大行驶里程主要取决于电池的能量密度。 能量密度有哪些小秘密呢? 什么是能量密度? 能量密度(Energy density)是指在单位一定的空间或质量物质中储存能量的大小。电池的能量密度也就是电池平均单位体积或质量所释放出的电能。电池的能量密度一般分重量能量密度和体积能量密度两个维度。 电池重量能量密度=电池容量×放电平台/重量,基本单位为Wh/kg(瓦时/千克)。 电池体积能量密度=电池容量×放电平台/体积,基本单位为Wh/L(瓦时/升)。 电池的能量密度越大,单位体积、或重量内存储的电量越多。 什么是单体能量密度? 电池的能量密度常常指向两个不同的概念,一个是单体电芯的能量密度,一个是电池系统的能量密度。 电芯是一个电池系统的最小单元。M 个电芯组成一个模组,N 个模组组成一个电池包,这是车用动力电池的基本结构。 单体电芯能量密度,顾名思义是单个电芯级别的能量密度。 根据《中国制造2025》明确了动力电池的发展规划:2020年,电池能量密度达到300Wh/kg;2025年,电池能量密度达到400Wh/kg;2030年,电池能量密度达到500Wh/kg。这里指的就是单个电芯级别的能量密度。 什么是系统能量密度?

系统能量密度是指单体组合完成后的整个电池系统的电量比整个电池系统的重量或体积。因为电池系统内部包含电池管理系统,热管理系统,高低压回路等占据了电池系统的部分重量和内部空间,因此电池系统的能量密度都比单体能量密度低。 系统能量密度=电池系统电量/电池系统重量OR电池系统体积 什么限制了电池的能量密度? 究竟是什么限制了锂电池的能量密度?电池背后的化学体系是主要原因难逃其咎。 一般而言,锂电池的四个部分非常关键:正极,负极,电解质,膈膜。正负极是发生化学反应的地方,相当于任督二脉,重要地位可见一斑。 我们都知道以三元锂为正极的电池包系统能量密度要高于以磷酸铁锂为正极的电池包系统。这是为什么呢? 现有的锂离子电池负极材料多以石墨为主,石墨的理论克容量372mAh/g。正极材料磷酸铁锂理论克容量只有160mAh/g,而三元材料镍钴锰(NCM)约为200mAh/g。 根据木桶理论,水位的高低决定于木桶最短处,锂离子电池的能量密度下限取决于正极材料。 磷酸铁锂的电压平台是3.2V,三元的这一指标则是3.7V,两相比较,能量密度高下立分:16%的差额。 当然,除了化学体系,生产工艺水平如压实密度、箔材厚度等,也会影响能量密度。一般来说,压实密度越大,在有限空间内,电池的容量就越高,所以主材的压实密度也被看做电池能量密度的参考指标之一。 如果你能坚持每行读下来一直读到这里。恭喜,你对电池的理解已经上了一个层次。 如何提高能量密度呢? 新材料体系的采用、锂电池结构的精调、制造能力的提升是研发工程师“长袖善舞”的三块舞台。下面,我们会从单体和系统两个维度进行讲解。——单体能量密度,主要依靠化学体系的突破 01、增大电池尺寸 电池厂家可以通过增大原来电池尺寸来达到电量扩容的效果。我们最熟悉的例子莫过于:率先使用松下18650电池的知名电动车企特斯拉将换装新款21700电池。

电池系统的能量密度

电池系统的能量密度 前段时间,有个老外同事聊起这个话题,问了几个问题,如下:1L汽油和1L锂电池让汽车可以跑多少的距离? 这个问题其实很有趣啊,锂电池系统就像一个油箱一样的,本身用的是电,但是占用的体积,可以使用这种方法来估量。 汽油vs电池能量密度的数据,在Wiki上使用是这样的: MJ与Kwh的换算是1 MJ = 0.277778 kwh; 1 kwh = 3.6 MJ,因此可以得到约为:汽油的质量能量密度为12330Wh/kg,体积能量密度为9000Wh/L,当然由于内燃机效率的问题,其本身就有很大的损失,其效率传递是完全不同的,按

照下图的看法发动机内部的能量损失为68%,只有32%得到利用了;电池的话,以损失10%,剩余90%计。 为了进一步梳理,我将电气化车辆数据进行整理,然后进行了对比,如下: 这样兑换下来,折算相对质量能量密度和体积质量密度分别为:

1.4000 Wh/kg 对手最高的是120Wh/kg,质量就没话说了,当然也要计算 油箱什么的重量,算加成系数50%。2000 vs 120 ,9倍的差距。 2.3000 Wh/L 对手最高的是205Wh/L,只算电池当然是不公平的,因为整 个电气化系统对引擎的话,体积是要小不小的,算个总体的话,再加个系数50%。 1500 vs 205,差距为7倍。 从上表可以看出来很多的东西: 1.现阶段直接对标,纯电动对燃油车,肯定是很困难的 2.目前主流OEM转向插电式,是折损了每千瓦的英里数的从 3.5跌倒了2. 3左右 3.做新能源汽车,是需要其他的技术,如轻量化来辅助的,光是靠电气化那 点效率和体积的改进,抵不住电池本身的限制 注:EPA测试的时候用高速工况、US06和城市工况叠加处理,比NEDC更能反应实际的情况的,我现在取的数据基本都是EPA评价的,厂家给的水分有点大。

功率密度的计算1

循环式电加热器的设计和选择注意事项 循环式电加热器的设计和选择注意事项 为了使循环式电加热器能安全原形和确保其使用寿命,对于循环式电加热器的正确设计和选择都是很重要的下面就这问题谈一谈其注意事项: 1、功率密度的设计 功率密度的设计一直被认为是电加热器设计的最重要的参数,但是我这里想谈一谈另一重要的技术参数,这也是很多客户忽略的地方,此参数就是流量,我们和客户交谈中经常要问到的一个问题就是请客户提供介质的最大流量和最小流量,因为此两个参数对我们设计人员来说是很重要的,我们将根据最大流量设计加热器的设计负荷(即功率的大小,也就是说确保在最大流量下,也能达到客户所需要的出口温度),最小流量是我们设计加热器功率密度的主要参数来源,也就是说,在最低流量下,也能确保加热器表面不结焦或碳化,确保加热器的使用寿命。 另一方面,我们考虑的必须使加热器在加热过程中始终并尽可能保持在冷的状态,说得通俗一些:我们可以把加热器看作为一个发热体,为使加热器能处在“冷却” 状态,我们最理想的是用大量的或足够水去冲它,也就是说要有足够的介质流量去带走加热器所发出来的热量。我们可以见下图,介质流量的降低,将会导致加热器表面的温度按指数函数的曲线急剧上升,从反过来我们可以理解,如果加热器中的流量提高,加热器的功率密度的主要参数来源,也就是说,在最底流量下,也能确保加热器表不结焦或碳化,确保加热器的使用寿命。 另一方面,我们考虑的必须使加热器在加热过程中始终并尽可能保持在“冷”的状态,说的通俗一些,我们可以把加热器看作为一个发热体,为使加热器能处在“冷却” 状态我们最理想是的用大量的或足够水去冲它,也就是说要有足够的介质流量去带走加热器所发出的热量。我们可以见下图,介质流量的降低,将会导致加热器表面的温度按指数函数的曲线急剧上升,从反过来我们可以理解,如果加热器中的流量的提高,加热器的功率密度的选择可以成倍的增加。 图示为某海洋平台的原油加热系统,出口处管壁温度,功率密度和流量的关系图

ADF教程:如何计算临界点电子密度、密度梯度、能量密度、多种能量密度变化率,以及AIM电荷等

ADF教程:如何计算临界点电子密度、密度梯度、能量密度、多种能量密度变化率,以及AIM电荷等 ADF中包含AIM功能,可以给出电子密度的拓扑结构(电子密度、密度梯度、能量密度、多种能量密度变化率,以及AIM电荷等)。 参数设置 结果查看

在SCM Logo > Output: Rho T O P O L O G Y O F T H E E L E C T R O N D E N S I T Y (Rho) Module written by Juan I. Rodriguez-Hernandez, ESFM-Instituto Politecnico Nacional-Mexico. Any questions/comments to: juan@esfm.ipn.mx and/or SCM technical support. This subroutine was vectorized, its efficientcy is reported in Juan I. Rodriguez et. al., J. Comput. Chem. 34, 681(2013). Additional CP properties added by L. Joubert and V. Tognetti, University of Rouen, France. THIS IS THE GEOMETRY IN THE CP SEARCH (ANGSTROM): Atom X Y Z 180.0000000.000000 -0.689505 21 -0.7838370.000000 -1.243761 310.7838370.000000 -1.243761 TOTAL NUMBER OF CRITICAL POINTS: 5 NUMBER OF (3,-1) CRITICAL POINTS: 2 NUMBER OF (3,+1) CRITICAL POINTS: 0 NUMBER OF (3,+3) CRITICAL POINTS: 0 NUMBER OF (3,-3) CRITICAL POINTS: 3 Poincare-Hopf satisfied -------------------------------------------------------- CP # 1 (RANK,SIGNATURE): (3,-3) CP COORDINATES: 0.0000000.000000 -0.689505

相关文档
相关文档 最新文档