文档库 最新最全的文档下载
当前位置:文档库 › 11.0化学银制程

11.0化学银制程

11.0化学银制程
11.0化学银制程

有机化学鉴别方法的总结

有机化学鉴别方法的总结 1烷烃与烯烃,炔烃的鉴别方法是酸性高锰酸钾溶液或溴的ccl4溶液(烃的含氧衍生物均可以使高锰酸钾褪色,只是快慢不同) 2烷烃和芳香烃就不好说了,但芳香烃里,甲苯,二甲苯可以和酸性高锰酸钾溶液反应,苯就不行 3另外,醇的话,显中性 4酚:常温下酚可以被氧气氧化呈粉红色,而且苯酚还可以和氯化铁反应显紫色 5可利用溴水区分醛糖与酮糖 6醚在避光的情况下与氯或溴反应,可生成氯代醚或溴代醚。醚在光助催化下与空气中的氧作用,生成过氧化合物。 7醌类化合物是中药中一类具有醌式结构的化学成分,主要分为苯醌,萘醌,菲醌和蒽醌四种类型,具体颜色不同反应类型较多 一.各类化合物的鉴别方法 1.烯烃、二烯、炔烃: (1)溴的四氯化碳溶液,红色腿去 (2)高锰酸钾溶液,紫色腿去。 2.含有炔氢的炔烃: (1)硝酸银,生成炔化银白色沉淀 (2)氯化亚铜的氨溶液,生成炔化亚铜红色沉淀。 3.小环烃:三、四元脂环烃可使溴的四氯化碳溶液腿色 4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。 5.醇: (1)与金属钠反应放出氢气(鉴别6个碳原子以下的醇); (2)用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。 6.酚或烯醇类化合物: (1)用三氯化铁溶液产生颜色(苯酚产生兰紫色)。 (2)苯酚与溴水生成三溴苯酚白色沉淀。 7.羰基化合物: (1)鉴别所有的醛酮:2,4-二硝基苯肼,产生黄色或橙红色沉淀; (2)区别醛与酮用托伦试剂,醛能生成银镜,而酮不能; (3)区别芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不能; (4)鉴别甲基酮和具有结构的醇,用碘的氢氧化钠溶液,生成黄色的碘仿沉淀。 8.甲酸:用托伦试剂,甲酸能生成银镜,而其他酸不能。 9.胺:区别伯、仲、叔胺有两种方法 (1)用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应。 (2)用NaNO2+HCl: 脂肪胺:伯胺放出氮气,仲胺生成黄色油状物,叔胺不反应。

纯铂化学分析方法

纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬、铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体原子发射光谱法 实验报告 年月

纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬、铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体原子发射光谱法 李秋莹、何姣、方海燕、孙祺、王应进 前言 随着化工、化学、医药、催化等行业和材料学科的快速发展,市场对纯铂及其电子产品的需求快速增长,贵研铂业股份有限公司正发展成为铂原材料及其深加工产品的重要生产基地。我公司用于生产合金材料、催化剂、铂网、抗癌药的纯铂在不断增长。铂中杂质元素含量的高低直接影响其材料、产品的电学性能、力学性能、加工工艺和使用寿命。因此,催化、医药、材料研究和生产经营都需要更快、更准确的掌握其杂质元素含量的信息,这就对铂中杂质元素分析提出了快速、准确的要求。 目前国内外在铂纯度检测的标准方法有粉末法[]。该方法主要分析对象为粉末试样,对海绵样品的处理相对简单,不易污染,但对金属块屑状样品的处理就相对复杂繁琐了。全过程至少需要个工作日。此外,该方法粉末标准样品的配制,不但要消耗大量昂贵的高纯贵金属作为基体,而且还需花费大量的人力、物力和时间。 资料调研表明,为解决粉末法的不足,采用溶液进样、-(电感耦合等离子体原子发射光谱法)或-(电感耦合等离子体质谱法)测定纯铂中微量杂质元素已成为近年来的一种发展趋势[]。我们研究的纯铂分析方法,在不使用铂基体匹配的条件下,完全满足产品标准规定元素测定要求。 用基体配制合成样进行检出限及干扰实验,用样品进行了准确度及精密度考察,样品加标回收率为%~%,相对标准偏差()为%%。 、实验部分 仪器及工作条件 美国公司型电感耦合等离子体原子发射光谱仪。工作条件列于表。 表. 仪器工作条件

镀金药水配方

镀金药水配方 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

化学镀金药水方案一:() 主盐亚硫酸金钠NaAu(SO 3) 2 2g/L 配位剂亚硫酸钠 Na 2SO 3 15/L 硫代硫酸钠 Sa 2S 2 O 3 L 络合剂硼砂 10g/L PH值 温度 75℃ 工艺流程:酸洗——微蚀——预浸——活化——化学镀镍——置换镀金 镀液稳定性测试:镀液加热至75℃维持6h 后,常温下放置 1 月。注意定时观察镀槽壁或底部是否有沉淀析出,若有析出,则表明镀液稳定性不达标。 方案二:() 亚硫酸盐镀金工艺规范: 金(以氯酸金或雷酸金形式加入)主盐 8-15g/L 无水亚硫酸钠(化学纯)络合剂 120-150g/L 磷酸氢二钾(化学纯)导电盐和PH缓冲剂 30-50g/L 柠檬酸钾(化学纯)辅助络合剂 80-100g/L 氯化钾(化学纯) 100-120g/L EDTA-2Na(化学纯)掩蔽剂 20-30g/L 光亮剂稳定剂 温度 40-50℃ PH值 1.1金盐 金是镀液的主盐,在溶解纯金后以氯酸金或雷酸金形式加入镀液。在镀液 中以亚硫酸金络离子[A(SO 3)3-]和柠檬酸金络离子[A(C 6 H 5 O 7 )]3-存在。金含量 高,允许阴极电流密度较高,沉速快;金含量低,允许阴极电流密度低,沉速慢。正常情况下的沉积速度为。 亚硫酸钠 亚硫酸钠是金的主要络合剂。1mol金需要2mol以上的亚硫酸钠才能完全络合。其作用是改善镀液的分散能力,提高镀液的导电性。稳定PH在以上,可保证亚硫酸金络离子不发生解离而缩短溶液的寿命。 柠檬酸钾

有机化学总结全部

一烃的衍生物性质对比 1.脂肪醇、芳香醇、酚的比较 2.苯、甲苯、苯酚的分子结构及典型性质比较 3.醛、羰酸、酯(油脂)的综合比较

4.烃的羟基衍生物性质比较 5.烃的羰基衍生物性质比较 6.酯化反应与中和反应的比较 7.烃的衍生物的比较

二、有机反应的主要类型

三、烃及其重要衍生物之间的相互转化关系

要点精讲 一、有机化合物的分类 1.按碳的骨架分类 2.按官能团分类 (1)官能团:决定化合物特殊性质的原子或原子团 又:链状烃和脂环烃统称为脂肪烃。 二、有机化合物的结构特点 1.有机化合物中碳原子的成键特点 (1)碳原子的结构特点 碳原子最外层有4个电子,能与其他原子形成4个共价键。 (2)碳原子间的结合方式 碳原子不仅可以与氢原子形成共价键,而且碳原子之间也能形成单键、双键或三键。多个碳原子可以形成 长短不一的碳链和碳环,碳链和碳环也可以相互结合,所以有机物种类纷繁,数量庞大。 2.有机化合物的同分异构现象 (1)概念 化合物具有相同的分子式,但具有不同结构的现象叫同分异构现象。具有同分异构现象的化合物互为同分异构体。 (2)同分异构体的类别 ①碳链异构:由于分子中烷基所取代的位置不同产生的同分异构现象,如正丁烷和异丁烷; ②位置异构:由于官能团在碳链上所处的位置不同产生的同分异构现象,如1--丁烯和2--丁烯; ③官能团异构:有机物分子式相同,但官能团不同产生的异构现象,如乙酸和甲酸甲酯; ④给信息的其他同分异构体:顺反异构,对映异构。 3.同分异构体的书写方法 (1)同分异构体的书写规律 ①烷烃 烷烃只存在碳链异构,书写时应注意要全面而不重复,具体规则如下:成直链,一条线;摘一碳,挂中间,往边移,不到端;摘二碳,成乙基;二甲基,同、邻、间。 ②具有官能团的有机物 一般书写的顺序:碳链异构→位置异构→官能团异构。

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

化学机械抛光工艺(CMP)全解

化学机械抛光液(CMP)氧化铝抛光液具体添加剂 摘要:本文首先定义并介绍CMP工艺的基本工作原理,然后,通过介绍CMP系统,从工艺设备角度定性分析了解CMP的工作过程,通过介绍分析CMP工艺参数,对CMP作定量了解。在文献精度中,介绍了一个SiO2的CMP平均磨除速率模型,其中考虑了磨粒尺寸,浓度,分布,研磨液流速,抛光势地形,材料性能。经过实验,得到的实验结果与模型比较吻合。MRR 模型可用于CMP模拟,CMP过程参数最佳化以及下一代CMP设备的研发。最后,通过对VLSI 制造技术的课程回顾,归纳了课程收获,总结了课程感悟。 关键词:CMP、研磨液、平均磨除速率、设备 Abstract:This article first defined and introduces the basic working principle of the CMP process, and then, by introducing the CMP system, from the perspective of process equipment qualitative analysis to understand the working process of the CMP, and by introducing the CMP process parameters, make quantitative understanding on CMP.In literature precision, introduce a CMP model of SiO2, which takes into account the particle size, concentration, distribution of grinding fluid velocity, polishing potential terrain, material performance.After test, the experiment result compared with the model.MRR model can be used in the CMP simulation, CMP process parameter optimization as well as the next generation of CMP equipment research and development.Through the review of VLSI manufacturing technology course, finally sums up the course, summed up the course. Key word: CMP、slumry、MRRs、device 1.前言 随着半导体工业飞速发展,电子器件尺寸缩小,要求晶片表面平整度达到纳米级。传统的平坦化技术,仅仅能够实现局部平坦化,但是当最小特征尺寸达到

镀金废料提金技术及工艺

镀金废料提金技术及工艺 镀金废料与含金固体废料的最大差别是镀金废科的金一股处于镀件的表面,许多镀金废件在回收完表面层后,其基本材料可以重复使用。因此,从这类固体废料同收金的工艺与固体废料的金回收工艺有较大差异。常用方法有利用熔融铅熔解贵金属的铅熔退金法、利用镀层与基体受热膨胀系数不同的人膨胀退镀莹、利用试剂溶解的化学退镀法和电解退镀法等。 (1)化学退镀法 化学退镀法的实质是利用化学试剂在尽可能不影响基体材料的情况下,将废镀什表面的金层溶解下来,再用电解或还原的方法将溶液中的金变成单质状态。常用的化学退镀法有碘-碘化钾溶液退镀法、硝酸退镀法、氰化物间硝基苯磺酸钠退镀法和王水镀法等。 ①碘-碘化钾溶液退碘法 卤素离子与卤素单质形成的混合物溶液对金具有溶解作用,这是本法的理论技术。HCl-C12溶液、I-KI溶液和Br2-KBr溶液都能溶解金。不过Br2-KBr 溶液的危害较大,操作不易控制,因此用卤素离子与卤素单质形成的混合溶液对贵金属造液一般采用氯和碘体系,其中碘体系使用量为方便。其溶金反应如下:2Au+I 2→2AuI AuI+KI→KAuI2 产物KAuI2能被多种还原剂如铁屑、锌扮、二氧化硫、草酸、甲酸及水合肼等还原也可用活性炭、阳离子树脂交换等方法从KAuI2溶液中提取金。为便

于浸出的溶剂再生通过比较,认为采用亚硫酸钠还原的工艺较为合理,此还原后的溶液可在酸性条件下用氧化剂氯酸钠使碘离子氧化生成单质碘,使溶剂碘获得再生: 2I-+CIO3+6H→I2+CI-+3H2O 氧化再生碘的反应还可防止因排放废碘液而造成的还原费用增加和生态环境的污染。本工艺方法简单,操作方便。细心操作还可使被镀基体再生。 碘-碘化钾溶液退镀金的最佳条件如下: 浸出液成分:碘50—80 g/L,碘化钾200-250 g/L。溶退时间:视镀层厚度而定.每次约为3-7min,应进行3-8次。 贵液提取:用亚硫酸钠还原,还原后溶液再生条件:硫酸用量为还原后溶液的15%(体积分散)。氯酸钠用量约20g/L。 在碘-碘化钾回收金的工艺中,贵液用亚硫酸钠还原提取金的后液应水解除去部分杂质,才能氧化再生碘,产出的结晶碘酸共容纯化后可返回使用。 ②硝酸退镀法 在电子元件生成中,产生很多管壳、管座、引线等镀金废件,镀件基体常为可阀(Ni28%、Co18%Fe54%)或紫铜体,可用硝酸退金法使金镀层从基体上脱落,基体还可送去回收铜、镍、钴。 ③氰化物问硝基苯磺酸钠退金 a、退镀液的配制 取NaCN75g,间硝基苯磺酸钠75g,溶于1L水中使之完全溶解. b、操作方法

铜精矿化学分析方法金和银量的测定火试金和原子吸收光谱法国家

《铜精矿化学分析方法金和银量的测定 火试金和原子吸收光谱法》 国家标准编制说明 一、任务来源及要求 根据中国有色金属工业协会文件《关于下达2009年第一批有色金属国家、行业标准制(修)订项目计划的通知》(中色协综字[2009]165号)的要求,由大冶有色金属股份有限公司负责制定国家标准《硫化铜、铅和锌精矿试样中吸湿水分测定重量法》,计划编号为20091098-T-610,项目完成时间为2011年。 二、标准制定原则 1、本标准是ISO 10378-2005(E)国际标准的等同转换。 2、本标准格式按照GB/T 1.1-2009的标准要求进行制定。 3、本标准的制定有利于促进国内外硫化铜精矿市场公平贸易,并与 硫化铜精矿国际标准接轨,具有可操作性。 三、标准主要内容 1、本标准规定了硫化铜精矿试样中金和银量的测定方法―火试金和原子吸收光谱法。测定范围:Au:0.5g/t~300 g/t ;Ag:25 g/t~1500 g/t。 2、本标准样品的制备按ISO9599的要求制备试样或用预干试料(见附录A)。 3、本标准方法提要:将试料与氧化铅等配料混合,在还原条件下,于坩锅中熔融,铅捕集试料中的贵金属形成铅扣。灰吹使铅扣中的贱金属与贵金属分离,从而形成含有少量其它金属的金银合金粒。以硝

酸处理金银合粒,从合粒中分离出金,称重。如果金粒质量小于0.05mg,则用王水溶解金粒,用火焰原子吸收光谱法(FAAS)测定金量。用原子吸收光谱法(FAAS)测定分金后溶液中银量。为最大限度回收金和银,将所有残渣再处理。第二次合粒用酸溶解,然后用FAAS 方法测定金和银,并进行空白的校正。 4、为使分析试料代表性好,采用多点多次取样的方式从试样中称取10g~20g试料。 5、预熔化:为保证铅扣质量在30~45g之间,进行预熔化试验,依据试样的还原能力,决定配料中硝酸钠或硝酸钾等氧化剂的用量。 6、加银分金:为保证合粒分金完全,银与金的比例应超过2.5:1。合粒中银、金比率就达不到要求,或者是当金含量超过30%时不易分离。如果用原子吸收或ICP测定银,银应该在分金前测定。所以金银必须分开测定。金应该按照此附录分金的步骤进行,银应该按照7.9中溶解方法测定。 如果用重量法测定银,应该在分金前对贵金属合粒称重。按照附录D进行分金,按照7.8中步骤分离,按照附录G冲洗金粒,在收集分离后的溶液中测定杂质含量。 注1:如果已知道银与金比率不到2.5:1,则在初熔化前加入适量银以保证银、金比率4:1。 注2:如果金的质量小于50μg,合粒不需要分离就能溶解,金银含量按7.9步骤测定。此种情况下,不需要分金。 如果试料中银的质量小于7500μg,那么银应该按照7.9中方法

化学镀实验指导书1

实验化学镀镍磷合金 一、实验目的: 1、掌握化学镀Ni-P合金的基本原理。 2、掌握化学镀Ni-P合金的工艺过程、步骤。 3、了解化学镀、电镀、刷镀的区别。 二、化学镀原理概述 1、化学镀是利用合适的还原剂使溶液中的金属离子有选择地 在经催化的表面上还原析出金属镀层的一种化学处理方法。常见的有:化学镀镍、镀铜、金、银等等。其化学反应如下: 催化 M2++2e(还原剂提供)——→M0 表面 其中溶液中的金属离子是依靠得到所需的电子而还原成相应的金属。如化学镀镍溶液中采用次亚磷酸盐作还原剂,它的氧化还原过程如下: (H2PO2)-+2e——→(H2PO3)- +2H+ +2e (氧化) Ni2++2e——→Ni0 两式相加,总的氧化还原反应为: Ni2++(H2PO2)-+H2O——→Ni0+(H2PO3)- +2H+ 三、化学镀工艺及步骤 1、酸性化学镀镍磷合金镀液的成分及作用: ⑴主盐硫酸镍 NiSO4是化学镀Ni-P合金溶液中的主盐,它主要提供Ni2+,研究表明,随NiSO4浓度增加,镀层沉积速度增加,但NiSO4浓度不能太大超过30g/L时,镀层沉积速度不但不增加,甚至反而下降。 ⑵还原剂次亚磷酸钠

镀液中次亚磷酸钠浓度增加,镀层沉积速度提高,但沉积速度并不 是无限度增加,当次亚磷酸钠浓度大于40g/L时,引起镀液分解。溶解好 的次亚磷酸钠溶液一般在化学镀前加入到镀液中。 ⑶络合剂 在酸性化学镀液中为了防止产生白色亚磷酸镍沉淀,常常加入络合 剂,它可增加镀液的稳定性,控制沉积速度和改善镀层外观。常用络合剂 有:氨基乙酸、乳酸、丁二酸、苹果酸、硼酸、柠檬酸等等。 络合剂与镍离子结合成络离子,使镍离子不易与亚磷酸根离子生成亚 磷酸镍沉淀。络合剂还可提高镀液的工作PH值。如不加络合剂要使镀液 能有足够的亚磷酸镍的沉积点, 必须使其PH值降到3以下,可是在这种 PH值下操作,不可能沉积出镀层. ⑷、稳定剂 提高酸性化学镀镍液的稳定性,可以加入极微量的抑制剂,如硫代 硫酸钠、醋酸铅,由于抑制剂均属催化毒剂,使用时要极为小心。不能加 入过量,否则将引起镀液中毒,反应速度极慢。 ⑸、光亮剂 可增加镀层表面的光亮度。 2、化学镀液的配制 化学镀液成分: 硫酸镍 20g/l 次亚磷酸钠 30g/l 乳酸 15ml/l 乙酸钠 15g/l 稳定剂 10ml/l 光亮剂 20ml/l 在容器中用热蒸馏水溶解醋酸钠,在另一个容器中用热蒸馏水溶解 硫酸镍,溶解后在不断搅拌下注入醋酸钠溶液中,乳酸溶液要预先用 NaOH溶液中和至PH值约为4.6左右,然后才能与其它成分混合。 进行化学镀时,先将溶解好并经过滤的次亚磷酸钠溶液加入槽 内,搅拌均匀后加入蒸馏水至所需体积,最后调PH值上限。 3、工件的预处理

化学机械研磨後清洗技术简介

第六卷第一期 化學機械研磨後清洗技術簡介 蔡明蒔 國家奈米元件實驗室 前言 自1997年開始,半導體製程邁進0.5微米元件線幅以下,幾乎所有半導體製造廠開始採用化學機械研磨技術(Chemical Mechanical Polishing, CMP)。此乃由於愈來愈嚴苛的曝光景深要求,對於曝光區內晶圓表面之起伏輪廓必須借助研磨方式才能獲得全域性平坦化(Global planarity)。故在多層導線結構製程之IMD介電層平坦化及鎢金屬栓塞(W plugs)之製作,以CMP取代傳統以乾式蝕刻回蝕法,不但可確保晶圓表面之平整度且製程簡化,大幅提昇製程良率。除了應用在後段導線之製作,CMP亦應用於前段元件隔離之oxide回蝕製程,即淺溝槽隔離(Shallow Trench Isolation, STI),大幅增加晶圓上元件之可用面積。當元件線幅小於0.18微米,傳統鋁銅合金導線之RC延遲將大過於元件開關速度,此時較低電阻之銅導線則勢必被採用。由於銅之電漿乾蝕不易,應用Cu-CMP金屬嵌入式導線之大馬士革製程(Metal Inlaid Damascene Process)則為形成導線製作之主要方式。 CMP製程雖為先進半導體製程之關鍵技術,但在無塵室中卻屬高污染性之製程(dirty process)。由於製程中必須引入研磨泥漿(slurry)於晶圓表面進行研磨,泥漿中包含約5-10%,30-100奈米之微細研磨粉體(abrasive),種類包括SiO2、Al2O3、CeO2、ZrO2等。此外還必須加入化學助劑,有pH緩衝劑如KOH、NH4OH、HNO3或有機酸等;氧化劑如雙氧水、硝酸鐵、碘酸鉀等;亦必須加入界面活性劑(Surfactants)幫助粉體在水溶液中之懸浮穩定性。故晶圓經過研磨之後,晶圓表面勢必殘留大量之研磨粉體(>10k/wafers)、金屬離子(>1012 atoms/cm2)及其他不純物之污染。若無有效之清洗製程去除此外來之污染物及因研磨產生之表面損傷,則將影響後續薄膜沈積、微影等製程良率,故過研磨後CMP清洗製程為成功應用CMP於半導體製程之關鍵技術。 清洗機制、原理及方法 1. 微塵吸附原理及清洗方法 在設計一清洗系統可以去除吸附在晶圓上微塵之前,必須先檢視有那些作用力促使塵粒吸附於晶圓表面上。主要之作用力包含有分子吸附力(molecular adhesion)、靜電作用力(electrostatic interactions)、液體介質橋接(liquid bridges)、電雙層排斥力及化學共價鍵結(chemical bonding)

PCB生产工艺资料-化学镀金

其他焊墊表面處理(OSP,化學鎳金,) 14.1前言 錫鉛長期以來扮演著保護銅面,維持焊性的角色,從熔錫板到噴錫板,數十年光陰至此,碰到幾個無法克服的難題,非得用替代製程不可: A.Pitch太細造成架橋(bridging) B.焊接面平坦要求日嚴 C.COB(chip on board)板大量設計使用 D.環境污染本章就兩種最常用製程OSP及化學鎳金介紹之 14.2OSP OSP是Organic Solderability Preservatives的簡稱,中譯為有機保焊膜,又稱護銅劑,英文亦稱之Preflux,本章就以護銅劑稱之. 14.2.1 種類及流程介紹 A.BTA(苯駢三氯唑):BENZOTRIAZOLE BTA是白色帶淡黃無嗅之晶狀細粉,在酸鹼中都很安定,且不易發生氧化還原反應,能與

金屬形成安定化合物。ENTHON將之溶於甲醇與水溶液中出售,作銅面抗氧化劑(TARNISH AND OXIDE RESIST),商品名為CU-55及CU-56,經CU-56處理之銅面可產生保護膜,防止裸銅迅速氧化。 操作流程如表。 B.AI(烷基咪唑)ALKYLIMIDAZOLE PREFLUX是早期以ALKYLIMIDAZOLE作為護銅劑而開始,由日本四國化學公司首先開發之商品,於1985年申請專利,用於蝕刻阻劑(ETCHING RESIST),但由於色呈透明檢測不易,未大量使用。其後推出GLICOAT等,係由其衍生而來。 GLICOAT-SMD(E3)具以下特性: -與助焊劑相容,維持良好焊錫性 -可耐高熱銲錫流程 -防止銅面氧化

操作流程如表。 C.ABI(烷基苯咪唑)ALKYLBENZIMIDZOLE 由日本三和公司開發,品名為CUCOAT A,為一種耐濕型護銅劑。能與銅原子產生錯合物(COMPLEX COMPOUND),防止銅面氧化,與各類錫膏皆相容,對焊錫性有正面效果。 操作流程如表。 D.目前市售相關產品有以下幾種代表廠家: 醋酸調整系統: GLICOAT-SMD(E3)OR(F1)

化学镀金工艺

化学镀金工艺 化学镀金在电子电镀中占有重要地位,特别是半导体制造和印制线路板的制造中,很早就采用了化学镀金工艺,但是早期的化学镀金由于不是真正意义上的催化还原镀层,只是置换性化学镀层,因此镀层的厚度是不能满足工艺要求的,以至于许多时候不得不采用电镀的方法来获得厚镀层。随着电子产品向小型化和微型化发展,许多产品已经不可能再用电镀的方法来进行加工制造,这时,开发可以自催化‘的化学镀金工艺就成为一个重要的技术课题。 (1)氰化物化学镀金 为了获得稳定的化学镀金液,目前常用的化学镀金采用的是氰化物络盐。一种可以有较高沉积速度的化学镀金工艺如下。 甲液: 乙液: 使用前将甲液和乙液以l0:1的比例混合,充分搅拌后加温到75℃,即可以工作。注意镀覆过程中也要不断搅拌。这一种化学镀金的速度可观,30min可以达到4μm。 但是这一工艺中采用了铅作为去极化剂来提高镀速,这在现代电子制造中是不允许的,研究表明,钛离子也同样具有提高镀速的

去极化作用,因此,对于有HORS要求的电子产品,化学镀金要用无铅工艺: 如果进一步提高镀液温度,还可以获得更高的沉积速度,但是这时镀液的稳定性也会急剧下降。为了能够在提高镀速的同时增加镀液的稳定性,需要在化学镀金液中加入一些稳定剂,在硼氢化物为还原剂的镀液中常用的稳定剂有EDTA、乙醇胺;还有一些含硫化物或羧基有机物的添加剂,也可以在提高温度的同时阻滞镀速的增长。 (2)无氰化学镀金 在化学镀金工艺中,除了铅是电子产品中严格禁止使用的金属外,氰化物也是对环境有污染的剧毒化学物,因此,采用无氰化学镀金将是流行的趋势。 ①亚硫酸盐。亚硫酸盐镀金是三价金镀金工艺,还原剂有次亚磷酸钠、甲醛、肼、硼烷等。由于采用亚硫酸盐工艺时,次亚磷酸钠和甲醛都是自还原催化过程,是这种工艺的一个优点。

“测定有机物分子结构的常用分析方法”题型几例

龙源期刊网 https://www.wendangku.net/doc/1e7355354.html, “测定有机物分子结构的常用分析方法”题型几例 作者:蒋赵军 来源:《化学教学》2009年第08期 文章编号:1005-6629(2009)08-0094-03中图分类号:G424.74文献标识码:B 通过对苏教版《有机化学基础》专题1“有机化合物分子结构”教学后,结合新课标要求和各地近年来所命试题,将有关有机物分子结构测定方法的试题归纳为以下几种题型,介绍如下。 题型一: 1H核磁共振类 1H核磁共振法的原理:氢原子核具有磁性,如用电磁波照射氢原子核,它能通过共振吸收电 磁波能量,发生跃迁,用核磁共振仪可以记录到有关信号。处于不同化学环境中的氢原子因产生 共振时吸收的频率不同,在谱图上出现的位置也不同,且吸收峰的面积与氢原子数成正比。因此,从核磁共振氢谱图(1H-NMR)上可以推知该有机物分子有几种不同类型的氢原子及它们的数 目。分子式为C2H6O的有机物有下述两种图谱: [例1]在有机物分子中,处于不同环境的氢原子在核磁共振谱中给出的峰值(信号)也不同,根据峰值(信号)可以确定有机物分子中氢原子的种类和数目。例如二乙醚的结构简式为CH3—CH2—O—CH2—CH3。其核磁共振谱中给出的峰值(信号)有两个如图2所示: (1)下列物质中,其核磁共振氢谱中给出的峰值(信号)只有一个的是______。 A.CH3CH3 B.CH3COOH C.CH3COOCH3 D.CH3COCH3 (2)化合物A和B的分子式都是C2H4Br2,A的核磁共振氢谱如图3所示,A的结构简式为 ______,请预测B的核磁共振氢谱上有______个峰(信号)。 (3)请简要说明根据核磁共振氢谱的结果来确定C2H6O分子结构的方法是 ______________。 解析:本题考查了根据1H核磁共振谱确定有机化合物的分子结构。(1)AD; (2)BrCH2CH2Br; 2 (3)若图谱中给出了3个吸收峰(信号),则说明C2H6O的结构是CH3CH2OH;若图谱中给出了1个吸收峰(信号),则说明C2H6O的结构是CH3OCH3

聚醚醚酮化学镀镍磷合金镀层及其性能研究报告

聚醚醚酮化学镀镍磷合金镀层及其性能研究随着轻量化的发展,具有高比强度的特种工程塑料聚醚醚酮(PEEK)在国防、航空航天、电子等高科技领域具有广阔的应用。但是,由于PEEK及其复合材料的导电性极差,对电磁波基本没有屏蔽作用,这严重的限制了它作为电磁屏蔽材料的应用。常用的电磁屏蔽材料是具有良好导电性的金属材料,但是由于金属的比重大,不利于轻量化发展。化学镀镍磷是一种常用的聚合物表面金属化技术,它使材料既保持聚合物低比重的特性又拥有金属的良好导电性,是改善聚合物电磁屏蔽性能最有效的方法之一。 本论文为了提高碳纤维增强PEEK的电磁屏蔽性能,使用化学镀方法在碳纤维增强PEEK基体上沉积上一层镍磷合金镀层,通过研究镀液成分配比(主盐、还原剂)及工艺参数(镀液温度、镀液PH、施镀时间)对镀层沉积速率的影响确定了PEEK化学镀镍磷的最佳配比和工艺参数,并对镀层的组织结构、成分、表面形貌进行了分析。为了提高镍磷镀层表面质量,以一种含铜离子化合物为光亮剂,研究分析了光亮剂浓度对镀层组织结构、成分、表面形貌、耐蚀性和电磁屏蔽性能的影响;为了延长镍磷镀层的使用寿命,对镍磷合金镀层进行钝化处理,系统研究了钝化处理对镍磷合金镀层耐蚀性和抗氧化性的影响,通过对比氧化前后钝化与未钝化镍磷镀层的电磁屏蔽性能,分析研究了钝化处理对镍磷合金镀层在自然环境和氧化性环境下电磁屏蔽性能的影响。 1. PEEK化学镀镍磷合金最佳成分配比和工艺参数为:主盐浓度25g/L、还原剂浓度30g/L、PH=6.1、温度80°C、施镀时间1.5h。通过XRD、SEM和EDS分析表明,镍磷镀层与基体有良好的结合,具有良好表面质量,此时镀层是P含量为15.41wt.%的混晶组织。

化学机械研磨废液处理

化学机械研磨废液处理 化学机械研磨(CMP)制程已经广泛使用于半导体业晶圆的制造程序,对于晶圆表面全面性平坦化是有效的制程。虽然CMP制程是现代半导体业晶圆制造重要的技术,但是CMP 制程在无尘室中是一个高污染的制程。因此,CMP废水包含來自于研磨液、晶圆本身以及CMP 后续清洗程序所产生的各种无机及有机污染物质,大部份的无机物质系以氧化物存在,主要的非溶解性无机物來自研磨液的砥粒,包含SiO2、Al2O3及CeO2,还有一些在研磨时从晶圆本身掉下來的无机物质(例如:金属、金属氧化物及低介电材料等)。溶解性的无机物质包含溶解性硅酸盐与氧化剂。 CMP废水中的有机物包含界面活性剂、金属错合剂以及其他物质。为了移除在晶圆表面的上述物质,需要使用大量超纯水于CMP后续清洗程序。据统计,以一个拥有20 个CMP制程机具的公司而言,每天将产生700 m3的CMP废水。根据文献的报导,在1999年及2000年估计分别有4.088×108 m3及超过5.223×108 m3的超纯水用于CMP制程,此用水占了整个半导体用水的40%左右。如此庞大的CMP制程用水必定产生大量的CMP废水,此废水量大且碱度、总固体物及浊度高,因此必须妥善加以处理。 目前所有的科技产业中,其中又以半导体组件产业为最受瞩目,其主要基本概念系经由高精密度的集成电路(Integrated Circuit, IC)完成的电子电路组件与硅半导体所组合而成。简而言之,半导体产业可区分前、中及后端制程,前端制程为晶圆加工制造,中段制程为晶圆与电子电路组件制造以及后端的晶圆封装。在前及中段制程中,化学机械研磨(Chemical Mechanical Polishing, CMP)扮演成功与否的关键技术。在强势的竞争环境下,企业主为了维持在业界的优势及塑造企业社会形象,近年投入大量的资本及人力,不断地提升整个制程技术高精密化、轻量化、功能性及更微小化并积极研发低污染性产品,以降低对环境生态的冲击。 半导体业、图像处理以及生物科技产业所制造的污染物质,是具有其独特性,例如制程中常使用有机酸碱液、污染物质微小化等,用原有的处理技术及处理设备,是无法将污染物质去除。势必投入新的处理设备、提升处理技术等,才能将整个区内所有不同性质的废污水处理达到放流水标准。尤其是半导体产业的制程,所制造出来的化学机械研磨废液,其废液含有粒径极小、具高浊度、有机酸碱液以及后清洗程序中的超纯水。

镀金

镀金 1.概述 金是一种黄色的贵金属,有极好的延展性及可塑性,易抛光。金的化学稳定性高,不溶于一般酸,只溶于王水、氰化钾和氰化钠溶液。镀金层耐腐蚀性强、导电良好、能耐高温和容易焊接。在普通镀金溶液中,加人少量锑、钴等金属离子,可以获得硬度大于130HV的硬金镀层。如含金(质量分数)为5%的合金镀层,硬度可以达到200HV以上,金铜合金镀层的硬度可达300HV以上,具有一定的耐磨性。金镀层抗变色性能好,还可作为银的防变色镀层。 由于金合金镀层色调丰富,光泽持久,所以常用于首饰、艺术品的电镀。另外,镀金层还被广泛用于通信设备、宇航工业、工业设备和精密仪器仪表等设备制造中1。 [] 常用的镀金溶液主要有三种类型,即氰化物镀金溶液、柠檬酸盐酸性镀金溶液和亚硫酸盐碱性镀金溶液。在某些普通镀金溶液中,添加少量锑、镍、钴等金属离子,可以得到硬金镀层,使其硬度提高1—2倍。为了节约金的用量和增加色调,提高光泽、硬度和耐磨性能等,满足工业生产中的某些特殊要求,还可以在镀金溶液中添加一定量的银、铜、镍、钴等金属化合物,得到金合金镀层。 2.镀金的发展史 电镀黄金的历史非常悠久,早在17世纪就有了雷酸液镀金的方法,真正的电镀黄金是1800年Brugnatalli 的工作。1838年,英国伯明翰的G.Elkington 和H.Elkington兄弟发明了高温碱性氰化物镀金,并 取得了专利。它后来被广泛用于装饰品、餐具和钟表的装饰性镀薄金,成了以后一个世纪中电镀黄金的主要技术。其作用的基本原理到了1913年才为Fray 所阐明,到1966年Raub才把亚金氰络盐的行为解释清楚。在电镀金历史上第一次革命性的变革是酸性镀金液被开发出来。早在1847年时,Derulz曾冒险在酸性氯化金溶液中添加氢氰酸,发现可以在短时间内获得良好的镀层。后来Erhardt发现在弱有机酸(如柠檬酸)存在时,氰化亚金钾在pH= 3时仍十分稳定,于是酸性镀金工艺就诞生了。现在人们已经知道,氰化亚金钾在pH=3时是有可能形成氢氰酸的,但氢氰酸在酸性时会同弱有机酸形成较强的氢键而被束缚在溶液内。而不会以剧毒气体的形式逸出来,这就是为何酸性镀金可以安全进行的

化学机械研磨(CMP)

晶片黏貼研磨拋光系統( CMP ) 儀器介紹 一.目的 化學機械研磨是一個移除製程,它藉著結合化學反應和機械研磨達到其目的。並且我們使用它在半導的薄膜體製程中,利用它來剝除薄膜使得表面更加平滑和更加平坦。它也被用在半導體的金屬化製程中,用來移除在其表面大量的金屬薄膜以在介電質薄膜中形成連線的栓塞或是金屬線。並且當晶圓從單晶矽晶棒被切下來後,就有很多的製程步驟被用來準備平坦的、光亮的以及無缺陷的晶圓畏面以滿足積體電路的製程所需,而化學機械研磨製程通常被用在晶圓生產的最後一道步驟,它可以使晶圓平坦化,並且可以從表面完全消除晶圓鋸切步驟所引起的表面缺陷。當矽單晶棒被鋸成薄片,在鋸開的過程中在晶圓的兩面會留有鋸痕,必須除去,晶圓然後放在一拋光板上,用蠟和真空固定住,拋光板再放在拋光機上將晶圓一面磨成像鏡子一樣,才可以開始進入製作積體電路與元件的製程。 二.實驗原理 化學機械研磨的原理是將晶圓置在承載體與一表面承載拋光墊的旋轉工作台之間,同時浸在含有懸浮磨粒、氧化劑、活化劑的酸性或鹼性溶液,晶圓相對於拋光墊運動,在化學蝕刻與磨削兩個材料移除機制交互作用下達成平坦化,其結構如下圖所示。

CMP研磨機制的概略圖 通常,一個化學機械研磨的設備架構,由幾個主要部分組成,一是負責研磨晶圓表面的研磨平台,另一部分是負責抓住待磨晶圓的握柄。其中,握柄是利用抽真空的方式,吸咐待磨晶圓的背面,然後向下壓在鋪有一層研磨墊的研磨台上,進行平坦化過程。當CMP進行的時候,研磨平台將會與握柄順著同一方向旋轉,同時,提供研磨過程中化學反應的研磨液將由一條管線,輸送到系統中,不斷滴在研磨墊上,幫助研磨。 CMP-Lapping 磨粒是以懸浮方式添加到硬的盤面,這些磨粒不會被壓入或固定在盤面,而是朝向各方向自由自在地滾動,因此這些磨粒會對試片進行敲擊作用。Lapping的運動模式:

有机化学中用来研究反应机理的方法

有机反应机制的研究方法 有机化学中用来解释反应机理的传统方法主要集中在Kinetics 和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。 研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。 传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。 1.改变反应物结构以转变或捕获预想的中间体 有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。 Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁

桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。 2.捕获实验和竞争实验 鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典型的双分子反应,所以要求捕获剂具有高的浓度。另外,还可以将捕获剂与反应物共价结合,以便更容易地捕获活泼中间体。 与捕获反应所不同的另一种反应是竞争反应。在一般的动力学实

Ni-Sn-P合金化学镀的工艺参数研究

Ni-Sn-P合金化学镀的工艺参数研究 卞清泉 1 李学洪 1 张强华2 (1.江苏省特种设备安全监督检验研究院淮安分院,江苏淮安223001;2.淮阴工学院生命 科学与化学工程学院) 摘要:普通碳钢进行Ni-Sn-P合金化学镀,分别考察了施镀温度、主盐与还原剂浓度比(Ni/P)、主盐浓度、pH值等工艺参数对镀层厚度、硬度、孔隙率、耐腐蚀性的影响,得出最佳镀液配方和工艺:主盐硫酸镍25g/L,SnCl4 8.34g/L,还原剂次亚磷酸钠37.5g/L,选用复合配体酒石酸钾钠7.5g/L,柠檬酸三钠17.5g/L,乳酸32.5g/L,加速剂丁二酸16g/L。镀液温度为85℃,pH为4.6。 关键词:Ni-Sn-P合金;化学镀;工艺参数 Study on Technological Parameters of Electroless Ni-Sn-P Alloy Plating BIAN Qingquan1 LI Xuehong1 ZHANG Qiang-hua 2 (1.Jiangsu Special Equipment Inspection Institute of Huaian Branch, Huaian 223001; 2. Huaiyin Institute of Technology) Abstract:The effects of the temperature, concentration of Main Salts and Reductant, pH value of the plating bath on the Plating Thickness, Hardness and corrosion resistance of electroless Ni-Sn-P alloy coating were studied so as to improve the quality of the electroless Ni-Sn-P alloy coating. The optimized bath composition and plating parameters were established. As a result, the optimized plating was suggested:NiSO4 25g/L, SnCl4 8.34g/L, Sodium Hypophosphite 37.5g/L,potassium sodium tartrate 7.5g/L, Sodium Citrate 17.5g/L, lactic acid 32.5g/L, succinic acid 16g/L, T=85℃, pH=4.6 Key words:Ni-Sn-P alloy;Electroless plating;Technological Parameters 化学镀是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化-还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。化学镀溶液的组成一般包括金属盐、还原剂、络合剂、pH缓冲剂、稳定剂、润湿剂和光亮剂等。当镀件进入化学镀溶液时,镀件表面被镀层金属覆盖以后,镀层本身对上述氧化-还原反应的催化作用,保证了金属离子的

相关文档
相关文档 最新文档