文档库 最新最全的文档下载
当前位置:文档库 › 高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例
高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例

一、椭圆

1.椭圆的定义:

第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做

第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率.

2.椭圆的标准方程及其几何性质(如下表所示)

标准方程

图形

顶点

对称轴

焦点

焦距 离心率

例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段

例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )

(A)

1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125

162

2≠=+y y x

例3. 若F (c ,0)是椭圆22

221x y a b

+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F

点的距离等于

2

M m

+的点的坐标是( ) (A)(c ,2b a ±) 2

()(,)b B c a

-± (C)(0,±b ) (D)不存在

例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2

2y b

=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5

∠PF 2F 1,则椭圆的离心率为( )

(A)32 (B)63 (C)22 (D)23

例5. P 点在椭圆

120

452

2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 .

例6. 写出满足下列条件的椭圆的标准方程:

(1)长轴与短轴的和为18,焦距为6; .

(2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3

1

; ____. (4)离心率为2

3

,经过点(2,0);

二、双曲线

1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的

第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率

标准方程

图形

顶点

对称轴

焦点

焦距 离心率

例8 .命题甲:动点P 到两定点A 、B 的距离之差的绝对值等于2a (a >0);命题乙: 点P 的轨迹是双曲线。则命题甲是命题乙的( )

(A) 充要条件 (B ) 必要不充分条件 (C) 充分不必要条件 (D) 不充分也不必要条件

例9 到定点的距离与到定直线的距离之比等于log 23的点的轨迹是( ) (A)圆 (B)椭圆 (C)双曲线 (D)抛物线

例10. 过点(2,-2)且与双曲线12

22

=-y x 有相同渐近线的双曲线的方程是( ) (A)12422=-y x (B)12422=-x y (C)14222=-y x (D)1422

2=-x y

例11. 双曲线2

21(1)x y n n

-=>的两焦点为12,,F F P 在双曲线上,且满足1222PF PF n +=+,则12

F PF 的面

积为( )

()1A 1

()2

B ()2

C ()4D

例12 设ABC ?的顶点)0,4(-A ,)0,4(B ,且C B A sin 1

sin sin =-,则第三个顶点C 的轨迹方程是________.

例13. 根据下列条件,求双曲线方程:

⑴与双曲线

22

1

916

x y

-=有共同渐近线,且过点(-3,3

2);

⑵与双曲线

22

1

164

x y

-=有公共焦点,且过点(32,2).

例14. 设双曲线

2

21

2

y

x-=上两点A、B,AB中点M(1,2)求直线AB方程;

注:用两种方法求解(韦达定理法、点差法)

三、.抛物线

1.抛物线的定义:

平面内到点的轨迹叫做抛物线(点F不在l上).定点F叫做抛物线的焦点, 定直线l叫做

2.抛物线的标准方程及其几何性质(如下表所示)

标准方程

22(0)

y px p

=>22(0)

y px p

=->22(0)

x py p

=>22(0)

x py p

=->

图形

对称轴

焦点

顶点

准线

离心率

例15. 顶点在原点,焦点是(0,2)

-的抛物线方程是( )

例16 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) (A)1716 (B)1516 (C)7

8

(D)0

例17. 过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( )

(A )4条 (B)3条 (C)2条 (D)1条

例18. 过抛物线2y ax =(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段P F 与F Q 的长分别为p 、q ,则11

p q

+等于( )

(A )2a (B)

12a (C)4a (D)4a

例19 若点A 的坐标为(3,2),F 为抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使|P A |+|PF |取最小值,P 点的坐标为( )

(A)(3,3) (B)(2,2) (C)(2

1

,1) (D)(0,0)

例20 动圆M 过点F(0,2)且与直线y =-2相切,则圆心M 的轨迹方程是 .

例21 过抛物线y 2=2px 的焦点的一条直线和抛物线交于两点,设这两点的纵坐标为y 1、y 2,则y 1y 2=_________.

例22 以抛物线x y 2

3=-的焦点为圆心,通径长为半径的圆的方程是_____________.

例23. 过点(-1,0)的直线l 与抛物线y 2=6x 有公共点,则直线l 的斜率的范围是 .

例24 设0p >是一常数,过点(2,0)p Q 的直线与抛物线2

2y px =交于相异两点A 、B ,以线段A B 为直经作圆H (H 为圆心)。

(Ⅰ)试证:抛物线顶点在圆H 的圆周上; (Ⅱ)求圆H 的面积最小时直线A B 的方程.

圆锥曲线定义的辨析

在本章中,椭圆、双曲线、抛物线的定义是基础,学生要在理解圆锥曲线定义的基础上掌握它们定义的辨析题型.

1.已知ABC ?的顶点A(0,-2),B(0,2),且C A B sin 3)sin (sin 4=-,则顶点C 的轨迹是

2.已知以点C 为圆心,半径为R (R>6)的圆内有一个定点A ,且AC=6,如果圆P 过点A 且与圆C 内切,求圆心P 的轨迹

3.已知点)0,2(N ,圆36)2(:22=++y x M ,点A 是圆M 上一个动点,线段AN 的垂直平分线交AM 于点P ,则点P 的轨迹方程是

4.平面内,若动点M 到定点F (0,-3)的距离比到定直线y=2的距离大1,则动点M 的轨迹是

四、求点的轨迹问题

如何求曲线(点的轨迹)方程,它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法(相关点法)外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。

因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。

求轨迹方程的一般步骤:建、设、现(限)、代、化.

例25. 已知两点M (-2,0),N (2,0),点P 满足PM PN ? =12,则点P 的轨迹方程为( )

2

2()116

x A y += 22()16B x y += 22()8C y x -=

22()8D x y +=

例26. ⊙O 1与⊙O 2的半径分别为1和2,|O 1O 2|=4,动圆与⊙O 1内切而与⊙O 2外切,则动圆圆心轨迹是( ) (A)椭圆 (B)抛物线 (C)双曲线 (D)双曲线的一支

例27. 动点P 在抛物线y 2

=-6x 上运动,定点A (0,1),线段PA 中点的轨迹方程是( )

(A )(2y +1)2=-12x (B )(2y +1)2=12x (C )(2y -1)2=-12x (D )(2y -1)2

=12x

例28. 过点A (2,0)与圆1622=+y x 相内切的圆的圆心P 的轨迹是( ) (A )椭圆 (B )双曲线 (C )抛物线 (D )圆

例29. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(则动点的轨迹方程是( )

(A)

1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125

162

2≠=+y y x

例30. 椭圆1342

2=+y x 中斜率为3

4的平行弦中点的轨迹方程为 .

例31. 已知动圆P 与定圆C: (x +2)2

+y 2

=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是______________.

五、简单的直线与圆锥曲线相交问题

1.已知抛物线C:)0(22>=p px y 与直线b x y l +=:相交于B A 、两点,线段AB 中点的横坐标为5,且抛物线C 的焦点到直线l 的距离为2,试求b p 、的值

2.已知直线b x y +=与抛物线y x 22=交于A,B 两点,且OB OA ⊥(O 为坐标原点),求b 的值

3.若椭圆122=+by ax 于直线1=+y x 交于A,B 两点,M 为AB 的中点,直线OM (O 为原点)的斜率为2

2

,且OB OA ⊥,求b a ,的值

4.设双曲线C 的方程为14

22

=-y x ,直线l 的方程是)2(1-=-x k y ,当k 为何值时,直线l 与双

曲线C

(1)有两个公共点 (2)有一个公共点 (3)没有公共点

5、设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于B A ,两点,点Q 为线段AB 的中点,若FQ 132=,则直线l 的斜率等于

6、已知AB 为抛物线)0(22

>=p px y 的过焦点的弦,若m AB =,则线段AB 的中点的横坐标为 ,

若直线AB 的倾斜角为α,则=AB

7、点P (8,1)平分双曲线442

2

=-y x 的一条弦,这条弦所在的直线方程是

8、设椭圆22

22b y a x +(a>b>0)与直线x+y=1交于PQ 两点,且OQ OP ⊥,其中O 为坐标原点,求证:

21

122=+b

a

六、圆锥曲线综合问题

直线与圆锥曲线的位置关系

⑴直线与圆锥曲线的位置关系和判定

直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.

直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交、相切、相离的充分必要条件分别是0?>、0?=、0?<.

⑵直线与圆锥曲线相交所得的弦长

直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长

222

121212121

1(1)()41AB x x x x x x y y ??=+-=++-=+

-??2k k k

注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算.

当直线斜率不存在是,则12AB y y =-.

注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。

2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法.

3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。

例32. AB 为过椭圆22

22b

y a x +=1中心的弦,F (c ,0)为椭圆的右焦点,则△AFB 的面积最大值是( )

(A)b 2

(B)ab (C)ac (D)bc

例33 若直线y =kx +2与双曲线62

2

=-y x 的右支交于不同的两点,则k 的取值范围是( )

()A 315(-

,)315 ()B 0(,)315 ()C 315(-,)0 ()D 3

15

(-,)1-

例34. 若双曲线x 2-y 2=1右支上一点P (a , b )到直线y =x 的距离为2,则a +b 的值是( ).

1()2A - 1()2B 1()2C -或1

2

(D )2或-2

例35 抛物线y =x 2上的点到直线2x - y =4的距离最近的点的坐标是( )

例36 抛物线y 2=4x 截直线2y x k =+所得弦长为35,则k 的值是( ) (A )2 (B)-2 (C)4 (D)-4

例37 如果直线)1(-=x k y 与双曲线422=-y x 没有交点,则k 的取值范围是 .

例38 已知抛物线2

2x y =上两点),(),,(2211y x B y x A 关于直线m x y +=对称,且2

1

21-

=x x ,那么m 的值为 .

例39 双曲线3x 2-y 2=1上是否存在关于直线y=2x 对称的两点A 、B?若存在,试求出A 、B 两点的坐标;若不存在,说明理由.

七、圆锥曲线中的一些定点、定值问题

江苏高考中近几年常考的一类题型为圆锥曲线题,常常涉及到过定点与定值问题,属于解析几何的范畴。解

析几何是用代数的手段解决几何问题,在教学中我发现了许多圆锥曲线中过定点或比值为定值问题,想讲清楚这类问题不难,教者只要讲清这类问题的原理为等式恒成立,方法为待定系数法即可。后来发现如果只讲方法与原理,不少学生的掌握仅限于模仿,处于知其然不知其所以然的境况;而在几何中过定点问题可以依据的几何方法找到直观的解释。如果教者能潜心研究,发现其几何解释,这样不仅很好地解释过定点或定值问题,而且能让学生易于接受结果,学生学习积极性的会有更好提高、对解几的运算更能接受。 下面通过几个例子能说明问题:

例1:已知t ∈R ,圆 C :x 2+y 2-2tx -2t 2y +4t -4=0. (1)若圆C 圆心在直线x -y +2=0上,求圆C 的方程;

(2)圆C 是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由. 【解析】

例2:已知椭圆E :)0(122

22>>=+b a b

y a x 过点P (1,23),离心率21=e ,右顶点为A ,右焦点为F ,(1)求椭圆E

(2)若过F 的直线l (不与x 轴垂直)交椭圆E 于C B ,两点,延长CA BA ,,分别交右准线于N M ,两点,求证:

.FM FN ⊥

例3.已知椭圆C :14

2

2=+y x 的上下顶点分别为A,B,点P 在椭圆上,且异于点B A 、,直线BP AP 、与直线l :2

-=y 分别交于点N M 、,

(1)设直线BP AP 、的斜率分别为21,k k ,求证:21k k ?为定值 (2)求线段MN 的长的最小值

(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论。

练习1.设椭圆)0(122

22>>=+b a b

y a x 与直线1=+y x 交于Q P ,两点,且OQ OP ⊥,其中O 为坐标原点,

求证:2112

2=+b a

2、椭圆)0(12222>>=+b a b y a x 的离心率为2

2

,右顶点为A ,直线BC 过原点O ,且点B 在x 轴上方,直线AB 与

AC 分别交直线l :1+=a x 于点E 、F. (

)

y

x

B

o

F

y N

x

B o

P

F

M

(2)若点B 为动点,设直线AB 与AC 的斜率分别为21k k 、,试探究21k k ?是否为定值?

3.已知椭圆C :)0(12222>>=+b a b y a x 经过点)2

3

,22(,以两焦点与短轴的一个端点为顶点的三角形是等腰直角三

角形。

(1)求椭圆C 的方程

(2)过点S )3

1,0(-的动直线L 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由.

八、巧用定义求椭圆中四类最值问题

圆锥曲线的定义既是推导圆锥曲线标准方程的依据,又是用来解决一些问题的重要方法,一般情况下,当问题涉及焦点或准线,且用其它方法不易求解时,可考虑运用定义求解,下面以椭圆为例归纳四类最值问题。

1、的最值

若A 为椭圆内一定点(异于焦点),P 是C 上的一个动点,F 是C 的一个焦点,e 是C 的离心率,求

的最小值。

例1. 已知椭圆内有一点A(2,1),F是椭圆C的左焦点,P为椭圆C上的动点,求

的最小值。

分析:注意到式中的数值“”恰为,则可由椭圆的第二定义知等于椭圆上的点P到左准线的距离。这种方法在本期《椭圆中减少运算量的主要方法》一文中已经介绍过,这里不再重复,答案为

2、的最值

若A为椭圆C内一定点(异于焦点),P为C上的一个动点,F是C的一个焦点,求的最值。

例2. 已知椭圆内有一点A(2,1),F为椭圆的左焦点,P是椭圆上动点,求的最大值与最小值。

解:如图1,设椭圆的右焦点为,可知其坐标为(3,0)

图1

由椭圆的第一定义得:

可知,当P为的延长线与椭圆的交点时,最大,最大值为,当P为的延长线与椭圆的交点时,最小,最小值为。

故的最大值为,最小值为。

3、的最值

若A为椭圆C外一定点,为C的一条准线,P为C上的一个动点,P到的距离为d,求的最小值。

例3. 已知椭圆外一点A(5,6),为椭圆的左准线,P为椭圆上动点,点P到的距离为d,求的最小值。

解:如图2,设F为椭圆的左焦点,可知其坐标为

图2

根据椭圆的第二定义有:,即

可知当P、F、A三点共线且P在线段AF上时,最小,最小值。

4、椭圆上定长动弦中点到准线距离的最值

定长为的线段AB 的两个端点分别在椭圆上移动,求AB 的中点M

到椭圆右准线的最短距离。

设F 为椭圆的右焦点,如图3,作于A”,BB”⊥于B”,MM”⊥于M”

图3

当且仅当AB 过焦点F 时等号成立。

故M 到椭圆右准线的最短距离为。

评注:是椭圆的通径长,是椭圆焦点弦长的最小值,是AB 能过焦点的充要条件。

例4:定长为9的线段AB 的两个端点分别在椭圆C:

116

252

2=+y x 上移动,则AB 的中点M 到椭圆右准线l 的最短距离为

例5:AB 是抛物线2

x y =的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为

1.椭圆)0(12222>>=+b a b y a x 的离心率为2

3,则双曲线12222=-b y a x 的离心率为

2.以椭圆)0(122

22>>=+b a b

y a x 的左焦点为圆心,c 为半径的圆与椭圆的左准线交于不同的两点,则该椭圆的离心率

的取值范围是

3.设F 是椭圆)0(122

22>>=+b a b

y a x 右焦点,A 是右准线与x 轴的交点,若在椭圆上存在一点P ,使线段PA 的垂直平

分线恰好经过点F ,则椭圆离心率的取值范围是

4.若双曲线的渐近线方程为x y 2

1

±=,求它的离心率

5.已知双曲线)0,0(12222>>=-b a b

y a x 的右焦点为F ,若过点F 且倾斜角为

60的直线与双曲线的右支有且只有一个交

点,则此双曲线的离心率的取值范围为

6.若双曲线的一条准线被两条渐近线截得的线段长恰好等于双曲线的实半轴长,则双曲线的离心率为

7.已知椭圆)0(122

22>>=+b a b

y a x ,斜率为a b 的直线交椭圆于A 、B 两点,若AB 的中点为M ,且MA 的中点恰好是

椭圆的右焦点F ,试求椭圆的离心率?

8.过双曲线的一个焦点F 作垂直于实轴的弦MN ,点A 为双曲线距F 较远的顶点,且

90=∠MAN ,则双曲线的离心率等于

三角形,求双曲线离心率e 的取值范围

10.已知椭圆)0(122

22>>=+b a b

y a x ,A 为左顶点,B 为短轴的一个端点,F 为右焦点,且BF AB ⊥, 则这个椭圆的离

心率为

11.P 是椭圆)0(122

22>>=+b a b

y a x 上位于第二象限的一点,1F 是椭圆的左焦点,且x PF ⊥1轴,B A ,分别是椭圆的

右顶点和上顶点,若)(//是坐标原点O OP AB ,求椭圆的离心率

12.已知椭圆)0(122

22>>=+b a b

y a x 的左、右焦点分别为)0,(),0,(21c F c F -,若椭圆上存在点P (异于长轴端点)使

1221sin sin F PF a F PF c ∠=∠, 求椭圆的离心率的取值范围

13.直线l 是双曲线)0,0(122

22>>=-b a b

y a x 的右准线,若以原点为圆心且过双曲线的焦点的圆被直线l 分成弧长比为

2:1的两端圆弧,则该双曲线的离心率是

十、圆锥曲线中最值问题

1.已知椭圆13

122

2=+y x 的左右焦点分别为21,F F ,点P 在椭圆上,求21PF PF ?的最大值和最

小值

2.过椭圆14

8:2

2=+y x C 上一点),( y x P 向圆4:22=+y x O 引两条切线B A PB PA 、、,为切点,

直线AB 分别与x 轴,y 轴交于N M 、两点. (1)若0=?PB PA ,求点P 的坐标; (2)求直线AB 的方程(用 y x ,表示)

3.P 为抛物线y x 42-=上的动点,F 为焦点 (1)若)3,1(-A ,求PA PF +的最小值

(2)若)1,3(-B ,记P 到x 轴距离为d ,求d PB +得最小值

4.设直线:l 的取值范围

有两个公共点,求实数与)若(的取值范围求实数有且只有一个公共点,与若抛物线K C l k C l x

y C kx y 2)1(16:,42=-=

5.求抛物线的坐标点的距离的最小值,并求上的点到直线P y x x y 0542=+-=

6.已知直线,1:,0634:21-==+-x l y x l 抛物线x y 42=上一点P 到直线21l l 和的距离分别为

21,d d ,求21d d +得最小值

高中数学选修2--1圆锥曲线 基本知识点与典型题举例答案

一、椭圆 例1. D 例2. B

例3. C 先考虑M+m =2a ,然后用验证法.

例4. B ∵1212||||||||22sin15sin 751sin15sin 75sin15cos15PF PF PF PF c a +====???+??+?,∴21623

2sin 60c e a ===

?. 例5 (3,±4) 或(-3, ±4)

例6. (1)

1162522=+y x 或1251622=+y x ; (2) 1362

2=+y x ; (3)1922=+y x 或181922=+y x ; (4) 1422=+y x 或116

422=+y x .

二、双曲线: 例8. B 例9. C 例10. D

例11. A 假设12PF PF >,由双曲线定义122PF PF n -=且1222PF PF n +=+, 解得122,2PF n n PF n n

=++=+-而1221F F n =+由勾股定理得12

12112

PF F S PF PF =?= [点评]考查双曲线定义和方程思想.

例12

)2(112

42

2-<=-x y x 例13.⑴设双曲线方程为

22916x y λ-=(λ≠0),∴ 22

(3)(23)916

λ--=∴ 14λ=, ∴ 双曲线方程为221944

x y -=;⑵设双曲线方程为221164x y k k -=-+16040k k ->?? ?+>??∴ 22

(32)21164k k -=-+,解之得k =4,∴ 双曲线方程为

22

1128

x y -= 评注:与双曲线22221x y a b -=共渐近线的双曲线方程为22

22x y a b λ-=(λ≠0),当λ>0时,焦点在x 轴上;当λ<0

时,焦点在y 轴上。与双曲线22221x y a b -=共焦点的双曲线为22

2

21x y a k b k

-=+-(a 2+k >0,b 2-k >0)。比较上述两种解法可知,引入适当的参数可以提高解题质量,特别是充分利用含参数方程的几何意义,可以更准确地理解解析几何的基

本思想.

例14 解题思路分析:

法一:显然AB 斜率存在设AB :y -2=k (x -1) 由22212

y kx k y x =+-??

?-

=??得:(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0

当△>0时,设A (x 1,y 1),B (x 2,y 2) 则122(2)22x x k k k

+-=

=- ∴ k =1,满足△>0∴ 直线AB :y =x +1 法二:设A (x 1,y 1),B (x 2,y 2)则2

21122221212

y x y x ?-=????-=??两式相减得:(x 1-x 2)(x 1+x 2)=21(y 1-y 2)(y 1+y 2)

∵ x 1≠x 2∴ 12122()y y x x x x y y -+=

-+∴ 2112AB k ?== ∴ AB :y =x +1代入22

12y x -=得:△>0

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学选修4-4知识点清单

高中数学选修4-4 坐标系与参数方程知识点总结 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系. (2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P 2.

设点P(x,y)是平面直角坐标系中的任意一点,在变换φ 点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示 2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ). (1)极坐标化直角坐标 =ρcosθ, =ρsinθW. (2)直角坐标化极坐标 2=x2+y2, θ=y x(x≠0). 三简单曲线的极坐标方程 1.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 2.圆的极坐标方程 (1)特殊情形如下表:

高中数学知识点题库 125数列

1.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的() A、必要不充分条件 B、充分不必要条件 C、充要条件 D、既不充分也不必要条件 答案:B 解析:由a n+1>|a n|(n=1,2,)知{a n}所有项均为正项, 且a1<a2<…<a n<a n+1, 即{a n}为递增数列 反之,{a n}为递增数列, 不一定有a n+1>|a n|(n=1,2,), 如-2,-1,0,1,2 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。2.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A、-165 B、-33 C、-30 D、-21 答案:C 解析:a4=a2+a2=-12, ∴a8=a4+a4=-24, ∴a10=a8+a2=-30 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。3.若数列{a n}前8项的值各异,且a n+8=a n对任意的n∈N*都成立,则下列数列中,能取遍数列{a n}前8项值的数列是() A、{a2k+1} B、{a3k+1} C、{a4k+1} D、{a6k+1} 答案:B 解析:由已知得数列以8为周期, 当k分别取1,2,3,4,5,6,7,8时, a3k+1分别与数列中的第4项,第7项,第2项,第5项,第8项,第3项,第6项,第1项相等, 故{a3k+1}能取遍前8项 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。4.对于数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列”.如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7.由此定义可知,“凸值数列”为1,3,3,9,9的所有数列{a n}个数为() A、3 B、9 C、12 D、27 答案:D 解析:数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列” 数列{a n}的,“凸值数列”为1,3,3,9,9 ∴知数列{a n}中的a3和a5分别可取的值为1,2,3;1,2,3,4,5,6,7,8,9, 根据乘法原理得知满足条件的个数为:27 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。5.在数列a1,a2,…,a n…的每相邻两项中插入3个数,使它们与原数构成一个新数列,

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学选修-5知识点(最全版)

高中数学选修4-5知识点 1.不等式的基本性质 1.实数大小的比较 (1)数轴上的点与实数之间具有一一对应关系. (2)设a 、b 是两个实数,它们在数轴上所对应的点分别是A 、B .当点A 在点B 的左边时,a b . (3)两个实数的大小与这两个实数差的符号的关系(不等式的意义) ???a >b ?a -b >0 a = b ?a -b =0a ,<,≥,≤共5个. (2)相等关系和不等关系 任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的. (3)不等式的定义:用不等号连接起来的式子叫做不等式. (4)不等关系的表示:用不等式或不等式组表示不等关系. 3.不等式的基本性质 (1)对称性:a >b ?b b ,b >c ?a >c ; (3)可加性:a >b ,c ∈R ?a +c >b +c ; (4)加法法则:a >b ,c >d ?a +c >b +d ; (5)可乘性:a >b ,c >0?ac >bc ;a >b ,c <0?ac b >0,c >d >0?ac >bd ; (7)乘方法则:a >b >0,n ∈N 且n ≥2?a n >b n ; (8)开方法则:a >b >0,n ∈N 且n ≥2?n a >n b . (9)倒数法则,即a >b >0?1a <1b . 2.基本不等式 1.重要不等式 定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式 (1)定理2:如果a ,b >0,那么a b +≥ a +b 2≥ab),当且仅当a =b 时,等号成立. (2)定理2的应用:对两个正实数x ,y , ①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,

高中数学知识点题库 058直线与平面所成的角

1.如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B =60°,∠A O B=90°,且 O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小. 答案:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0). ∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3). 设异面直线所成的角为α,则cos α= A O B A A O B A 1111 ?=71 .故异面直线A 1B 与A O 1所成的角的大小 为arccos 71 . 解析:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分 利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算. 题干评注:直线与平面所成的角 问题评注:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。 2.如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小. 答案:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(- 23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23 a ,0, 0),AB =(0,a , 0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ. ∵1AC =(-23 a ,2a ,2a),AM =(0,2a ,2a), ∴1AC ·AM =0+42a +2a 2 =492 a . 而|1AC |=2 2 22443a a a ++=3a ,

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学知识点题库 096通项

1.数列1,3,7,15,…的通项公式a n等于 答案:2n-1 解析:a2-a1=21,a3-a2=22,a4-a3=23,…依次类推可得a n-a n-1=2n-1 ∴a2-a1+a3-a2+a4-a3…+a n-a n-1=a n-a1=21+22+23+…+2n-1=2n-2 ∴a n-a1=2n-2,a n=2n-1 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 2.已知数列前4项为4,6,8,10,则其一个通项公式为 答案:a n=2(n+1) 解析:该数列的前4项分别可写成:2×(1+1),2×(2+1),2×(3+1),2×(4+1), 所以数列的通项公式为a n=2(n+1) 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 3.已知两个等差数列a n:5,8,11,…;b n:3,7,11,…,各100 项,则由他们共同项所构成的数列的通项公式为 答案:12k-1(k=1,2…25) 解析:设共同项构成的数列为C n,依题意可知a n=2+3n b m =-1+4m m=1,2,..75 a n= b m=2+3n=-1+4m ∴4m=3(n+1) ∵(3,4)=1,∴3|m ∴m=3k (k=1,2, (25) 4m=4?3k=3(n+1) ∴n=4k-1 (k=1,2, (25) C n=2+3?(4k-1)=12k-1 (k=1,2, (25) 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 4.已知{a n}是首项为19,公差为-4的等差数列,S n为{a n}的前n项和. (Ⅰ)求通项a n及S n; (Ⅱ)设{b n-a n}是首项为1,公比为2的等比数列,求数列{b n}的通项公式及其前n项和T n.答案:(Ⅰ)-2n2+21n(Ⅱ)-2n2+21n+2n-1 解析:(Ⅰ)先根据等差数列的通项公式和求和公式求得a n和S n. (Ⅱ)根据等比数列的通项公式求得{b n-a n}的通项公式,根据(1)中的a n求得b n,可知数列{b n}是由等差数列和等比数列构成,进而根据等差数列和等比数列的求和公式求得T n. 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 5.已知等差数列{a n}的通项为a n=90-2n,则这个数列共有正数项() A、44项 B、45项 C、90项 D、无穷多项 答案:A 解析:由题意知等差数列{a n}的通项为a n=90-2n大于零,可以得到数列的正项个数,

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

高中数学选修4系列1-4-5知识点总结(全套)

1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高中数学选修1 2知识点总结

知识点总结 1-2知识点总结选修统计案例第一章

.线性回归方程1 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系?③线性回归方程:(最小二乘法) ay?bx?n??ynxxy??ii?1?i?b?其中,n2??2nxx?i?1?i? bx?a?y??. 注意:线性回归直线经过定点)y(x,n?)?yx)(y(x?ii.相关系数(判定两个变量线性相关性):21i??r nn??22)y?x)?y((x ii1?i1i?负相关; <0时,变量注: ⑴>0时,变量正相关;y,xyx,rr接近,两个变量的线性相关性越强;② ⑵①越接近于1||r||r时,两个变量之间几乎不存在线性相关关系。0于条件概率3.ABAB发生的概对于任何两个事件和发生的条件下,,在已知BAAAPBPB)|, ) 其公式为|(. 率称为发生时发生的条件概率记为(ABP)(=AP)( 4相互独立事件 AB PABPAPB) ,则,如果_((())(1)一般地,对于两个事件=,AB 相互独立.、称 AAAnPAAA PAPA)(…(2)如果_,),…,=相互独立,则有)(…(n2111 22PA). (n----BBAABAAB也相互独立.(3)如果与,与相互独立,则,与,

:5.独立性检验(分类变量关系)列联表(1)2×2为两个变量,每一个变量设BA,变变量都可以取两个值,;?A,A:AA112量;?BB:B,B112通过观察得到右表所示数据: 列联表.×2并将形如此表的表格称为2 (2)独立性检验B,×2列联表中的数据判断两个变量A根据2 列联表的独立性检验.是否独立的问题叫2×2 的计算公式统计量χ 2(3)2bc n ad)-(2=χ

高中数学知识归纳典型试题

数学必修4知识归纳 一、任意角(逆时针旋转→正角,顺时针旋转→负角) 1、与α终边相同的角的集合:{|2,}k k Z ββαπ=+∈ 2、弧度制 (1) α= l r ,l =r α? (2)180 =o π rad 1=o ()180 π rad 1rad =180()π o 57.3≈o (3)扇形面积S =211 22 lr r α= 二、任意角的三角函数 1、定义 2、三角函数的值在各象限的符号 三、同角三角函数的基本关系式: 1、2 2sin cos 1αα+=; sin tan cos α αα = ; tan cot 1αα?= 2、特殊角的三角函数值: 四、诱导公式(口诀:纵变横不变,符号看象限) 五、三角恒等变换 思想方法:①切化弦、平方降幂的思想; ②化为同角、同名的思想; ③拆角的思想:如()()β αβαααβ=+-=--,2()()ααβαβ=++-等 1、两角和与差的正弦、余弦、正切公式及倍角、降幂公式: ()sin sin cos cos sin αβαβαβ±=±αβ =??? →令sin 22sin cos ααα= ()cos cos cos sin sin αβαβαβ±=m αβ =??? →令22cos 2cos sin ααα=- 2cos 22cos 1αα=- ?降幂公式:21+cos2cos 2 αα= , 2cos 212sin αα=- 21cos2sin 2 α α-= ()tan tan tan 1tan tan αβαβαβ±±= m αβ =???→令22tan tan 21tan ααα =-  2、辅助角公式(合一思想):关键是“提斜边” sin cos )a x b x x ?+=+ (? 是斜边) 3、正余弦“三兄妹”: sin cos x x +、sin cos x x -、sin cos x x —— 知一求二 内在联系:2 (sin cos )12sin cos 1sin 2x x x x x ±=±=± 六、三角函数的图象与性质 正弦函数、余弦函数、正切函数的图象与性质的比较(见书) 1、会用“五点法”画出函数 sin()y A x B ω?=++的图象:步骤:设X x ω?=+,令X =30, ,, ,22 2 π π ππ→求相应的x 值及对应的y 值→描点作图 试一试:请用“五点法”画出函数2sin(2) y x π =-在一个周期内闭区间的图象 列表:

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高中数学知识点总结与题库

第六章 数列 二、重难点击 本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。 知识网络 四、数列通项n a 与前n 项和n S 的关系 1.∑== ++++=n i i n n a a a a a S 1 321Λ 2.?? ?≥-==-2 1 1 1 n S S n S a n n n 课前热身 3.数列{}n a 的通项公式为 n n a n 2832 -=,则数列各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2 ,则实数λ的取值范围是),3(+∞- 5.数列{}n a 的前n 项和142 +-=n n S n ,,则?? ?≥-=-=2 5 212 n n n a n

题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,… ⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为 ),110(9 7-?),110(972-)110(973-,,Λ)110(97 -n ⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。可得数列的通项公式为 2 )1(1n n n a -++= 点拨:本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项。 题型二 应用?? ?≥-==-) 2() 1(1 1 n S S n S a n n n 求数列通项 例2.已知数列{}n a 的前n 项和n S ,分别求其通项公式. ⑴23-=n n S 解析:⑴当123,11 11=-===S a n 时, 当)23 ()23(,21 1---=-=≥--n n n n n S S a n 时 132-?=n 又11=a 不适合上式,故???≥?==-) 2(3 2)1(11n n a n n 三、利用递推关系求数列的通项 【例3】根据下列各个数列{}n a 的首项和递推关系,求其通项公式 ⑴141 ,2 1211 -+ == +n a a a n n 解析:⑴因为141 21-+=+n a a n n ,所以 )1 21 121(2114121+--=-=-+n n n a a n n 所以)31 11(2112-=-a a )51 31(2123-=-a a 43111 ()257 a a -=-

相关文档 最新文档