文档库 最新最全的文档下载
当前位置:文档库 › 变速箱齿轮噪声机理及应对措施研究

变速箱齿轮噪声机理及应对措施研究

变速箱齿轮噪声机理及应对措施研究
变速箱齿轮噪声机理及应对措施研究

10.16638/https://www.wendangku.net/doc/3615887123.html,ki.1671-7988.2015.11.009

变速箱齿轮噪声机理及应对措施研究

徐丽梅1,石月奎2

(1.天津矢崎汽车配件有限公司,天津300457;2.中国汽车技术研究中心,天津300300)

摘要:为解决某试验样车在怠速和匀速行驶工况下变速箱噪声问题,分析了变速箱噪声的特点,通过频谱分析和阶次分析的理论,找到了敲击声和啸叫声的频率特点和范围,并根据传递路径的方法确定了敲击声的传递路径为变速箱悬置的主动侧支架,啸叫声为长啮合齿轮的主动齿引起的。通过改进变速箱悬置主动侧支架的频率响应降低了敲击声的传递;通过改进离合器刚度和阻尼参数及优化长啮合齿的齿形,降低了变速箱的啸叫声。

关键词:变速箱噪声;啸叫声;敲击声

中图分类号:U469 文献标识码:A 文章编号:1671-7988(2015)11-25-04

Study on Gear Rattle&Whine of Manual Transmission and Countermeasures

Xu Limei 1, Shi Yuekui 2

( 1. Tianjin YAZAKI Auto Parts Co., Ltd., Tianjin 300457;

2. China Automotive Technology & Research Center, Tianjin 300300 )

Abstract: To solve gearbox noise problems of a test vehicle under idle and cruise condition, analyzes the characteristics of gearbox noise, through the spectrum analysis and order analysis theory to find the frequency characteristics and range of rattle and whine noise, and according to the transfer path method determined the rattle noise transfer path is from the gearbox active side mount bracket, whine noise is caused by gear active tooth. By improving the frequency response of gearbox active side mount bracket, decreasing the transmission of the rattle noise; by modified clutch stiffness and damping parameters and optimized tooth profile of the active tooth, reducing the gearbox whine noise.

Keywords: gearbox noise; rattle noise; whine noise

CLC NO.: U469 Document Code: A Article ID: 1671-7988(2015)11-25-04

引言

随着汽车工业技术的发展,汽车已经不再仅仅满足结实耐用的一般需求,在舒适性特别是车内噪声方面已经有了显著的改善,怠速工况的车内噪声从几年前的45-46 dB(A)已经降低到现在42dB(A)左右,甚至有些已经达到了40 dB(A),要达到这个级别的声压级,悬置、进排气等系统对车内噪声的影响已经很小,而动力总成带来的噪声特别是怠速工况下变速箱的噪声对车内噪声的影响已经成为了主要影响因素。

对于匹配手动变速箱的动力总成来说,发动机在工作过程中活塞往复运动,将燃烧压力转换为旋转动力,曲轴每转动两圈,即活塞往复运动两次才有一次点火,燃烧在气缸中发生一次,这样就产生的扭矩波动,随着发动机追求更好的动力性,缸内平均有效压力也在不断增大,这种扭矩波动也越来越大。这一扭矩波动经过离合器传送到变速箱,尽管有离合器的减振,但是手动变速箱没有高粘性阻尼的内在液力变矩器[1],所以无法消除变速箱的噪声。

本文中所研究的MPV车型在怠速工况和匀速80km/h工况,驾驶员位置均能较明显的听到来自变速箱的噪声,通过优化离合器刚度和阻尼、优化传递路径等方法,显著降低了

作者简介:徐丽梅,就职于天津矢崎汽车配件有限公司。

徐丽梅 等:变速箱齿轮噪声机理及应对措施研究 26

2015年第11期 变速箱噪声对车内特别是驾驶员位置影响。

1、变速箱齿轮噪声产生的原因

根据产生原理的不同,变速箱齿轮噪声可以分别啸叫声(Gear Whine)和敲击声(Gear Rattle )。

变速箱啸叫声一般是由传递力的那对齿轮副或者多对齿轮副间的传动误差导致,由于齿轮的相互撞击,传递力的齿轮会产生形变,再加上齿轮存在加工误差和齿轮副间存在配合间隙,使得在齿轮副传递力的过程中不断地产生撞击,从而形成了啸叫声;其频率范围一般为中高频,且具有阶次性,同样还会存在谐波,即存在一阶、二阶等成分;主阶次的声压级一般较总声压级小10dB(A)以上,但是由于其频带很窄且随着转速增加频率也增加,因而听起来类似口哨声,所以很容易被人察觉并产生不适感[2] [3]。

变速箱的敲击噪声通常是由不传递力的齿轮副导致的,表现为金属和金属之间的敲击声;由于齿轮副不传递力所以其在旋转方向上没有约束,很容易受到发动机在运行过程中扭矩波动的影响产生敲击;根据敲击门槛值理论 [4] ,齿轮敲击噪声受驱动力矩、阻滞力矩和惯性力矩三者影响,当阻滞力矩小于惯性力矩时,一般会产生敲击;其频率一般为宽频带,通常会在某一转速区间产生,一般会出现在低速区间,没有阶次性特点,听起来类似“咔嗒”声或者“哗啦”声。

2、传递路径分析及验证

2.1 变速箱噪声传递路径分析

变速箱齿轮噪声一般通过空气和结构两种传播方式传递到车内,如图1。通过车身、车门等的孔洞和缝隙、车门密封条及地板等壁板直接传入到车内,是空气声传播;通过换挡拉索、悬置支架、悬架等与车身的连接部件,引起车身壁振动从而传递到车内,是结构声传播。

图1 变速箱噪声传播途径

对于空气声来说,通常采用的措施提高整车的隔性能,如提高车身的密封性能、提高车门密封条的接触面积和采用隔吸声性能更好的声学包材料(特别是地板和防火墙等位置)等方法。

对于结构声来说,通常采用传递路径的分析法。对于变速箱噪声来说,变速箱作为激励源,并通过悬置、拉索等多个路径传递到车内,每一个激励分量和车内的响应都有一条传递路径相关联[5]。变速箱则通过某一条路径的激励而产生的车内噪声响应可以表达为:

)()(w w i i i X H Y ×= (1)

其中,)(w i H 为该路径的传递函数;)(w i X 为某一激励力的力谱。

如果有这样的n 条传递路径,那么车内噪声的声压级可表达为:

?=×=

N

i i

i

structure X H Y 1

)

()(w w

(2)

2.2 传递路径查找及验证

本文所要研究的车型的动力总成为纵置的布置形式,变速箱为带有中间轴的5速变速箱(5个前进档和1个倒档),

其结构简图见图2。

图2 变速箱结构简图

各级齿数比见下表,

表1 变速箱各档齿比

档位 一档 二档 三档 四档 五档 一级齿数比 37/15 34/25

29/31 —

25/46 二级齿数比

32/21

32/21

怠速工况时,驾驶员位置能够明显的听到“哗啦哗啦”的声音和类似吹口哨的声音,当踩下离合器踏板后此声音消失,初步判断是由于变速箱内部齿轮或同步环等金属件产生的;通过声音回放可以断定“哗啦哗啦”声音

的频率为815Hz 左右(图3中1所圈部分)。

图3 驾驶员右耳位置怠速工况频谱

由于频率较高首先怀疑是空气声传播,对该车型进行了

超声波泄露检查,发现中通位置的泄漏较严重,且车身钣金直接裸露,于是对此部位进行了声学处理,处理前后的对比见图4。

图4 中通位置声学处理前后对比

处理后进行了主观评价,发现“哗啦”没有明显的变化,于是决定从结构传递路径查找根源,又排查了换挡拉索和变速箱悬置支架。通过测试变速箱悬置的隔振测试发现,变速箱悬置车身侧在840 Hz 区间的振动要明显大于发动机左悬

汽车实用技术 27 2015年第11期

置,变速箱悬置车身侧支架的振幅为 2.6 m/s 2,发动机左悬置振幅为0.3 m/s 2,其振动对比见图5。

图5 悬置振动对比

(红色实线:变速箱悬置;绿色虚线:发动机左悬置)

为了进一步确定800Hz 左右的声音是由变速箱悬置这条路径传递到车内的,对变速箱的变速箱侧支架和车身侧支架进行了FRF (频率响应函数Frequency Response Function )的测试,传感器布置方式和测试悬置隔振时相同,见图6左侧图。

图6 变速箱悬置FRF 测试

通过对比变速箱悬置的主被动侧支架频率响应结果,发现同样激励下变速箱侧支架对800Hz 的响应更大(图7中红色实线),为了降低变速箱侧悬置支架的频响特性,在支架上附加了约1000g 的质量块(见图6中的右侧图),再次对支架进行了频响函数的敲击测试,测试结果见图7种绿色虚线,通过和原状态的响应对比,可以发现附加质量后在800多Hz 频率段的响应明显降低,且在整个频率段(0-1600Hz )没有峰值存在,效果比较明显。

图7 变速箱侧悬置支架频率响应曲线对比

红色实线:原状态;绿色虚线:附加质量后)

为了验证效果,测试了附加质量后怠速工况车内噪声,与最初状态对比发现,在815Hz 频率附近的峰值有较明显的下降,降低了近10dB (A ),同时主观感觉“哗啦”的声音也基本感觉不到,说明对变速箱悬置主动的支架进行附加质量后可以有效降低变速箱敲击声从悬置支架这条路径传递到车内的能量。

图8

怠速车内噪声频谱对比

(红色:原状态;绿色虚线:附加质量后)

3、离合器及齿轮优化验证

怠速主观评价时除了能听到“哗啦”声外,还存在一种类似口哨的声音,经过声音回放可以确定其频率为261Hz 左

右(图3中2号圈位置),同时该试验车在匀速80km/h 行驶时,驾驶员右耳位置能听到更加明显的口哨声,其频率为855Hz ,其频谱如图9所示。

图9 匀速80km/h 工况驾驶员右耳噪声频谱

在怠速工况和五档80km/h 匀速行驶时发动机转速分别为750rpm 和2430rpm ,则发动机激励的基频为:

Hz n f 5.1260/75060/idle 怠速===

Hz n f 5.4060/243060/e 80km/h ===变速器长啮合齿轮

副的齿比为32:21,那么长啮合主动齿在怠速工况和80km/h 的匀速工况激励频率分别为:

Hz n f f 5.262215.12怠速1=*=*=

Hz n f f 5.850215.4080km/h 2=*=*=其中n 为长啮合

齿轮副主动齿数;f 1和f 2分别为怠速和匀速80km/h 时主动齿的激励频率。

通过对比f 1和图3中

2号圈位置的频率、f 2和图9所圈位置的频率基本吻合,可

以断定两种工况听到的口哨声均是由长啮合齿轮副中的主动齿导致的。针对此问题

,首先对原车所配离合器的刚度(约为40Nm/o )进行了调整,降低10%的刚度,同时增加约10%的阻尼,调整前后离合器的照片(弹

簧由5圈减少到4圈),见图10。

图10 离合器对比

(左图:原车离合器;右图:刚度阻尼调整后)

图11 怠速工况噪声彩图对比

(上图:原状态;下图:离合器和齿形优化)

徐丽梅等:变速箱齿轮噪声机理及应对措施研究28 2015年第11期

同时,对长啮合的齿轮进行了齿轮的修形,尽可能的使齿面在传递力的过程中齿面压力均匀,降低其传递误差。实施这两个措施后,怠速工况的测试结果,见图10,从colormap 图的对比可以明显的看到,在260Hz频带的颜色明显变浅,同时主观感觉口哨声基本消失。

图12 匀速80km/h工况噪声频谱对比

(绿色:原状态;蓝色:离合器和齿形优化)

从图12的匀速80km/h测试结果对比可以明显的看到,800Hz频率段的噪声峰值降低了超过10dB(A),口哨声已经消失,车内噪声值也从原状态的67.96 dB(A)降低到了65.68 dB(A),主观感觉已无明显的变速箱啸叫声,效果较好。

通过降低离合器刚度增加阻尼的方法可以降低发动机传递到变速箱的扭矩波动,降低怠速工况下的变速箱噪声;通过优化长啮合齿轮的齿形,可以改善齿轮在啮合过程中的接触面,降低齿轮的传递误差,从而降低齿轮的啸叫声。

4、结论

通过对变速箱噪声产生机理的分析,对车内噪声的影响主要通过结构传递和空气传递;

怠速工况下的变速箱敲击声更容易通过结构传递到车内,需要特别关注换挡拉索和变速箱悬置支架等路径;

通过声音回放的方式可以较容易的判断异响出现的频率,并根据阶次跟踪的理论可以较快速的判断产生啸叫声的齿轮副;

降低优化离合器刚度、增大阻尼可以降低发动机传递到变速箱的扭矩波动;

优化齿轮的齿形,保证齿轮在受力的过程中接触面受力均匀,降低传递误差可以有效地改善齿轮的啸叫声。

参考文献

[1] M.Y Wang,R.Manoj,W.Zhao,汽车手动变速箱的齿轮敲击模拟

和分析[J],传动技术,2002,16(4),27-32.

[2] Ashish Kanase,Yogiraj Mane, Amey Kulkarni, Manual Gearbox Gear

Whine Noise Prediction and Importance of Parametric nsitivity in NVH[J],SAE 2013-26-0091.

[3] 江会仙,汽车手动变速箱啸叫的原因分析与改进[D].南京:南京航

空航天大学.2014.

[4] 李润方,王建军. 齿轮系统动力学[M].北京:科学出版社,1997.

[5] 庞剑,刚,何华,汽车噪声与振动—理论与应用[M],北京:北

京理工大学出版社,2006.

(上接第19页)前悬架满载偏频计算结果满足使用要求。

3.4 试验验证

经系统的计算校核,整车前悬架偏频符合整车初步设计要求,扭杆弹簧结构与尺寸也符合整车总布置要求。根据最终定型结果,将扭杆弹簧的整体数据发往供方厂家进行模具件制作开发,开发后装车验证,经过多轮的产品试验车在定远试验场进行20万公里可靠性试验,以及扭杆弹簧本身的台架试验报告,试验结果证明扭杆弹簧的设计符合整车的开发要求。

4、总结

本文整体结合实际车型的开发,利用CA TIA软件进行逆向建模与分析,初步定型,然后对扭杆弹簧进行了设计分析与计算,同时又对最后的设计结果进行了台架和可靠性验证,验证结果表明可以满足实际使用条件。

参考文献

[1] 汽车工程手册一设计篇.人民交通出版社.2001.

[2] 余志生.汽车理论(第四版).北京:北京工业出版社,2007.

[3] 刘惟信.汽车设计.北京:清华大学出版社(第一版),2001.

[4] 王祖禹,江辉等.扭杆弹簧和扭杆弹簧悬架的设计.汽车技术,1999.

[5] 陈家瑞.汽车构造[M]北京:人民交通出版社,1999.

齿轮传动噪声产生原因及控制

齿轮传动噪声产生原因及控制 摘要:结合多年的实际工作经验,分析齿轮传动噪音的产生的原因,同时,就如何控制和减少噪音,提出了一些比较实用的方法,仅供相关人士参考。 关键词:齿轮传动、噪音、消除、共振、渐开线 齿轮传动的噪音是很早以前人们就关注的问题。但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。噪音不但影响周围环境,而且影响机床设备的加工精度。由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。因此,如何解决变速箱齿轮传动的噪音尤为重要。下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。 1 噪音产生的原因 1.1 转速的影响 齿轮传动若转速较高,则齿轮的振动频率增高,啮台冲击更加频繁,高频波更高。据有关资料介绍,转速在1400转/分钟时产生的振动频率达5000H。产生的声波达88dB形成噪音软。一般光学设备变速箱输出轴的转速都较高。高达2000~2800转/分钟。因此,光学设备要解决噪音问题是需要研究的。 1.2 载荷的影响 我们将齿轮传动作为一个振动弹簧体系,齿轮本身作为质量的振动系统。那么该系统由于受到变化不同的冲击载荷,产生齿轮圆周方向扭转振动,形成圆周方向的振动力。加上齿轮本身刚性较差就会产生周期振幅出现噪音。这种噪音平稳而不尖叫。 1.3 齿形误差的影响 齿形误差对齿轮的振动和噪音有敏感的影响。齿轮的齿形曲线偏离标准渐开线形状,它的公法线长度误差也就增大。同时齿形误差的偏离量使齿顶与齿根互相干扰,出现齿顼棱边啮合,从而产生振动和噪音。 1.4 共振现象的影响 齿轮的共振现象是产生噪音的重要原因之一。所谓共振现象就是一个齿轮由于刚性较差齿轮本身的固有振动频率与啮合齿轮产生相同的振动频率,这时就会产生共振现象。由于共振现象的存在,齿轮的振动频率提高,产生高一级的振动噪音。要解决共振现象的噪音问题,只有提高齿轮的刚性。 1.5 啮合齿面的表面粗糙度影响 齿轮啮合面粗糙度会激起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,频率越高,产生的噪音越大。 1.6 润滑的影响 对啮合齿轮齿面润滑良好可以减少齿轮的振动力,它与润滑的方法有关。据有关资料介绍,齿轮箱中企图增加润滑油的数量,提高润滑油面的高度或用润滑粘度较高的润滑油来减少齿轮箱的振动和噪音其收效甚少。若采用齿轮啮合面上充分注入润滑的方法进行强制性润

汽车变速器的振动与噪声测试方法探讨

面?分类?数据库三成功登录的用户点击不同的分类即可跳转到不同的列表界面三 (3)新闻查看功能,录用户通过点击新闻列表界面的列表项三程序页面名称为newstext.xml三登录用户通过点击新闻列表的列表项即可跳转到详细信息查看界面,在该界面显示所选中的新闻的详细信息三 (4)图片查看,功能为实现详细新闻显示界面图片的查看三 登录用户在查看新闻的详细信息时,若该新闻有图片则可以点击图片可以调用系统的图片查看软件,进行图片的查看三(5)附件下载:详细新闻显示界面附件的下载三 5系统界面设计 系统用户界面是指用于和用户交流的外观二部件和程序等等三系统界面的设计,既要从外观上进行创意以到达吸引眼球的目的,还要结合图形和版面设计的相关原理,从而使得系统的设计变成了一门独特的艺术三通常应遵循以下几个基本原则: 5.1用户向导 设计用户界面首先要明确到底谁是使用者,要站在用户的观点和立场上来考虑设计软件三要作到这一点,必须要和用户来沟通,了解他们的需求二目标二期望和偏好等三设计者要清楚,用户之间差别很大,他们的能力各有不同三 5.2简单原则 简洁和易于操作是界面设计的最重要的原则三毕竟,软件建设出来是用于用户来查阅信息和使用服务三不需要在界面上设置过多的操作,堆集上很多复杂和花哨的图片三该原则一般的要求,是操作设计尽量简单,并且有明确的操作提示;软件所有的内容和服务都在显眼处向用户予以说明等三 5.3和谐与一致性 通过对系统中的各种元素使用一定的规格,使得设计良好的界面看起来应该是和谐的三或者说其应该看起来像一个整体三一致的结构设计,可以让浏览者对软件的形象有深刻的记忆;一致的导航设计,可以让浏览者迅速而又有效的进入在软件中自己所需要的部分;一致的操作设计,可以让浏览者快速学会在整个软件的各种功能操作三破坏这一原则,会误导浏览者,并且让整个软件显的杂乱无章,给人留下不良的印象三当然,一致性的设计并不意味着刻板和一成不变,在不同栏目下使用不同的风格,或者随着时间的推移不断的改版升级,会给浏览者带来新鲜的感觉三 6总结 智能建筑信息发布管理系统依据上述总体设计原则进行设计,在终端上实现智能建筑物信息管理中新闻二通知等沟通事务以及部分无纸化办公三大大提高了智能化服务的效率,避免了因沟通延误而造成的用户损失三 收稿日期:2015-2-19 作者简介:李明君(1981-),男,黑龙江牡丹江人,讲师,本科,研究方向为智能建筑三 汽车变速器的振动与噪声测试方法探讨张博强(郑州宇通客车股份有限公司,河南郑州450016) 【摘要】在我国经济发展中,汽车制造产业占据至关重要的地位。而消费者最为关心的是汽车性能的好坏和质量的优劣。作为一辆汽车的重要组成部分之一,汽车变速器的好坏尤为关键,它对汽车减震和汽车噪音的减小作用十分明显。本文从分析汽车变速器的震动与噪声的主要因素开始,并深入探讨减少这些因素对汽车性能影响的主要办法。 【关键词】汽车;变速器;振动;噪声 【中图分类号】U643【文献标识码】A【文章编号】1006-4222(2015)06-0235-02 由于汽车变速器对汽车减震和降低噪声的效果十分明显,所以对汽车变速器的深入研究十分重要三然而由于汽车变速器结构的复杂性,以及变速器与汽车各部分之间的配合效果与兼容性问题,对变速器性能的研究并不是一个简单的问题,想要提出一种行而有效的解决办法也不是一件容易的事情三以下是影响汽车变速器的振动和噪声主要因素,并对汽车变速器的振动与噪声测试方法进行了探究三 1影响汽车变速器的振动和噪声主要因素汽车的变速器结构较为复杂,它主要由齿轮二轴承以及箱体等组成三研究汽车变速器的振动与噪声问题,首先就要对变速器的这三个重要部位进行研究三由于在汽车运动过程中,变速器持续工作,就会因为不同的原因产生各种各样的振动和噪声三同时,由于变速器在装配过程中的各种偏差,受到的压力也不一样,因此变速器的振动和噪声的原因十分复杂,接下来本文将从轴承二齿轮和箱体三个方面来分析影响汽车变速器的振动和噪声的主要因素三 1.1汽车变速器轴承故障 汽车变速器轴承的优劣对汽车振动的影响十分明显,而振动的剧烈又会造成巨大的噪声,同时还可能引起汽车硬件的损坏三因此汽车变速器轴承的质量问题是汽车技术研究者和汽车制造商深入研究的一个问题,对汽车变速器轴承故障的检测也尤为重要三目前国内外许多汽车技术研究者都采用了专门的仪器来检测汽车变速器轴承故障三然而这些仪器对使用环境的要求十分苛刻,同时价格昂贵,并不适用于大多数情况,只能在实验室进行汽车试验等少数情况下使用三当汽车的变速器的轴承发生故障时,轴承旋转就会给汽车带来较大的振动,从而产生很大的噪声,同时,由于轴承的故障会压迫到齿轮的旋转,齿轮会因此产生严重的磨损,甚至会断齿三因此,有效地诊断出汽车变速器的轴承故障对汽车的减振和降噪十分重要三

齿轮噪音分析

在现代齿轮加工中,齿轮噪声控制已成为一个重要的质量控制环节,齿轮噪声控制水平不仅代表一个齿轮制造厂的质量水平,而且直接受到有关环保法规的制约。剃齿是一种广泛采用的齿轮精加工方法,特别在轿车齿轮加工中,90%以上的齿轮精加工均采用剃齿。这不仅因为剃齿具有较高的加工效率和较低的加工成本,可大幅度提高齿轮精度和表面粗糙度,而且剃齿能实现齿形修形及采取热处理变形补偿措施,从而降低齿轮传动噪声,提高齿轮承载能力和安全系数,延长齿轮工作寿命。 一、齿轮传动噪声的影响因素及控制方法 齿轮噪声更准确地应称为齿轮传动噪声,其声源为齿轮啮合传动中的相互撞击。齿轮传动中的撞击主要由齿轮啮合刚性的周期性变化以及齿轮传动误差和安装误差引起。 齿轮啮合刚性的周期性变化对传动噪声的影响啮合刚性的变化是指齿轮传动中因同时啮合齿数不同而引起的啮合轮齿承受载荷的变化,并由此引起轮齿变形量的变化。在直齿轮传动中,啮合线上的同时啮合齿数在1~2对之间变化,而其传动的扭矩近似恒定。因此,当一对轮齿啮合时,全部载荷均作用于该对轮齿,其变形量较大;当两对轮齿啮合时,载荷由两对轮齿共同承担,每对轮齿的负荷减半,此时轮齿变形量较小。这一结果使齿轮的实际啮合点并非总是处于啮合线的理论啮合位置,由此产生的传动误差使输出轴的运动滞后于输入轴

的运动。主、被动齿轮在啮合线外进入啮合时,其速度的瞬时差异造成在被动齿轮齿顶处产生撞击。在不同载荷下齿轮传动产生的噪声程度不同,其原因在于不同载荷下轮齿产生的变形量不同,造成的撞击程度不同。斜齿轮的啮合刚性取决于啮合轮齿的接触线总长度,故同时啮合齿数的变化对啮合刚性影响不大。 齿轮传动误差和安装误差对传动噪声的影响齿轮传动装置空载运行时,传动噪声的影响因素主要为齿轮的加工误差和安装误差,包括齿形误差、齿距误差、齿圈跳动、安装后齿轮的轴线度、平行度及中心距误差等。当然,这些误差对传动装置在负载下运行的传动噪声也有影响。a. 齿形误差会引起与啮合频率相同的传动误差及噪声,是引起啮合频率上噪声分量的主要原因。中凹齿形是不能接受的,加工中应尽量避免。b. 齿距误差为随机误差,产生的噪声频率与啮合频率不同,不会提高啮合频率上的噪声幅度,但会加宽齿轮噪声音频的带宽。c. 轴线在节平面上投影的不平行、齿向误差以及轴在传动负载下的变形会使轮齿在齿宽方向上的接触长度缩短,造成啮合刚性下降,由此产生的传动误差及齿轮传动啮合刚性的周期性变化是产生噪声的另一原因,其对斜齿轮传动影响更大。 控制齿轮噪声的有效途径——齿轮修缘齿轮传动中的撞击是产生噪声的主要原因,因此,消除或减小齿轮传动中的撞击是降低噪声的有效途径。采用齿轮修缘能有效减小齿轮传动中的撞击,从而控制齿轮

汽车噪声振动产生的机理

汽车噪声振动产生的机理: 产生汽车噪声的主要因素是空气动力、机械传动、电磁三部分。从结构上可分为发动机(即燃烧噪声),底盘噪声(即传动系噪声、各部件的连接配合引起的噪声),电器设备噪声(冷却风扇噪声、汽车发电机噪声),车身噪声(如车身结构、造型及附件的安装不合理引起的噪声)。其中发动机噪声占汽车噪声的二分之一以上,包括进气噪声和本体噪声(如发动机振动,配气轴的转动,进、排气门开关等引起的噪声)。因此发动机的减振、降噪成为汽车噪声控制的关。 此外,汽车轮胎在高速行驶时,也会引起较大的噪声。这是由于轮胎在地面流动时,位于花纹槽中的空气被地面挤出与重新吸入过程所引起的泵气声,以及轮胎花纹与路面的撞击声。噪声的控制根据噪声产生和传播的机理,可以把噪声控制技术分为以下三类:一是对噪声源的控制,二是对噪声传播途径的控制,三是对噪声接受者的保护。其中对噪声源的控制是最根本、最直接的措施,包括降低噪声的激振力及降低发动机部位对激振力的响应等,即改造振源和声源。但是对噪声源难以进行控制时,就需要在噪声的传播途径中采取措施,例如吸声、隔声、消声、减振及隔振等措施。汽车的减振降噪水平与整车的动力性、经济性、可靠性及强度、刚度、质量、制造成本和使用密切相关。 1 发动机振动和噪声 1)发动机本体噪声降低发动机噪声是汽车噪声控制的重点。发动机是产生振动和噪声的根源。发动机本体的噪声可分为机械噪声和燃烧噪声,配气机构、正时齿轮及活塞的敲击噪声等合成的。 解决方案:降低发动机本体噪声就要改造振源和声源,包括用有限元法等方法分析设计发动—声。例如在油底壳上增设加强筋和横隔板,以提高油底壳的刚度,减少振动噪声。另外,给发动机涂阻尼材料也是一个有效的办法。阻尼材料能把动能转变成热能。进行阻尼处理的原理就是将一种阻尼材料与零件结合成一体来消耗振动能量。它有以下几种结构:自由阻尼层结构、间隔自由阻尼层结构、约束阻尼层结构和间隔约束阻尼层结构。它的采用明显地减少了共振的幅度,加快了自由振动的衰减,降低各个零件的传振能力,增加了零件在临界频率以上的隔振能力。目前,已有一些国家的专家设计了一种发动机主动隔振系统,用于减少发动机振动,以达到降低噪声的目的。 传播方式:机械噪声──通过机体向外传播 燃烧噪声──通过发动机体向外传播 (2)进气噪声 进气噪声是发动机的主要噪声源之一,系发动机的空气动力噪声,随发动机转速的提高而增强。非增压式发动机的进气噪声主要成分包括周期性压力脉动噪声、涡流噪声、汽缸的亥姆霍兹共振噪声等。增压式柴油机的进气噪声主要来自增压器的压气机。二冲程发动机的噪声源于罗茨泵。 解决方案:最有效的方法是采用进气消声器。类型有阻性消声器(吸声型)、抗性消声器(膨胀型、共振型、干涉型和多孔分散型)和复合型消声器。将其与空气滤清器结合起来(即在空滤器上增设共振腔和吸 声材料,例R3238型)就成为最有效的进气消声器,消声量可超过20dBA。

齿轮传动噪声形成的主要原因及对策

齿轮传动噪声形成的主要原因及对策 传统衡量齿轮传动性能的两个主要因素是:负载能力和疲劳寿命,往往将传动噪音与传动精度忽略掉。随着ISO14000、ISO18000两项标准的相继颁布,控制齿轮传动噪音这一因素的重要性日趋明显,工业发展与需求对高精密设备的传动误差的要求也越来越严格(齿轮传动侧隙)。目前已知的齿轮噪音形成因素,大致可从设计、制造、安装、使用维护等几个方面分析。 设计原因及对策 1. 齿轮精度等级 齿轮传动系统设计时,设计者往往从经济因素考虑,尽可能比较经济的确定齿轮精度等级,殊不知精度等级是齿轮产生噪声等级与侧隙的标记。美国齿轮制造协会曾通过大量的齿轮研究,确定高精度等级齿轮比低精度等级齿轮产生的噪声要小的多。因此,在条件允许的情况下,应尽可能提高齿轮的精度等级,来减小齿轮噪声,减少传动误差。 2. 齿轮宽度 在齿轮传动系统允许时,增加齿宽,可以减少恒定扭矩下的单位负荷。降低轮齿挠曲,减少噪声激励,从而降低传动噪声。德国H奥帕兹的研究表明,扭矩恒定时,小齿宽比大齿宽噪声曲线梯度高。同时增长齿宽能加大齿轮的承载能力。 3. 齿距和压力角 小齿距能保证有较多的轮齿同时接触,齿轮重叠增多,减少单个齿轮挠曲,降低传动噪声,提高传动精度。较小的压力角由于齿轮接触角和横向重叠比都比较大,因此运转噪声小、精度高。 4. 运转速度 根据德国H奥帕兹的试验研究表明,随着齿轮运转速度增加,噪声等级升高。 5. 齿轮箱结构 试验研究表明,采用圆筒形箱体对减震有利,在其他条件相同的情况下,普通结构齿轮箱体的噪声级比圆筒形箱体噪声级平均高6dB。对齿轮箱体进行共振测试,找出共振位置,增加适当的筋条(板),可以明显地减少振动,降低噪声。多级齿轮传

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

斑点噪声的形成原理与斑点噪声模型

第二章相干斑点噪声的形成原理与斑点噪声模型 相干斑点噪声是SAR影像的重要特征之一。要进行新滤波器的设计和开发,有必要了解斑点噪声的形成原理和斑点噪声模型以及其他相关知识,因此本章就斑点噪声的形成原理,概率分布函数、自相关函数、功率谱以及人们比较公认的斑点噪声模型做一个简要的介绍。 2.1 斑点噪声的形成原理 SAR影像上的斑点噪声是这样形成的[31],即当雷达波照射一个雷达波长尺度的粗糙表面时,返回的信号包含了一个分辨单元内部许多基本散射体的回波,由于表面粗糙的原因,各基本散射体与传感器之间的距离是不一样的,因此,尽管接收到的回波在频率上是相干的,回波在相位上已不再是相干的;如果回波相位一致,那么接收到的是强信号,如果回波相位不一致,则接收到的是弱信号。一幅SAR影像是通过对来自连续雷达脉冲的回波进行相干处理而形成的。其结果是导致回波强度发生逐像素的变化,这种变化在模式上表现为颗粒状,称为斑点噪声(Speckle)。SAR影像上斑点噪声的存在产生了许多后果,最明显的后果就是用单个像素的强度值来度量分布式目标的反射率会发生错误。 斑点噪声在SAR影像上表现为一种颗粒状的、黑白点相间的纹理。例如,对于一个均匀目标,如一片草覆盖的地区,在没有斑点噪声影响的情况下,影像上的像素值会呈现淡的色调(图2.1 A);然而,每个分辨单元内单个草的叶片的回波会导致影像上某些像素比平均值更亮,而另外一些像素则比平均值更暗(图2.1 B),这样,该目标就表现出斑点噪声效果[32]。 图2.1 斑点噪声的影响效果 2.2 斑点噪声的特征[33]

2.2.1 斑点噪声的概率分布函数 2.2.1.1单视SAR 图像 前人在光学和SAR 影像斑点噪声的理论分析上已经做了大量工作[31]、[34] 。单视图像的斑点噪声服从负指数分布,对均匀的目标场景,图像的像素强度的概率分布为: I I I I p ) /exp()(-= (2.1) 若以振幅A 或分贝值D 来表示,它们与强度I 的关系为 I=A 2 (2.2) I I D ln 10 ln 10log 1010== (2.3) 所以强度概率分布可以直接转化为下式: )/e x p (2)(2I A I A A p -= (2.4) I K I K D K D D p ))/e x p (e x p ()(-= (2.5) 其中k=10/ln10。它们均为Rayleigh 分布。 2.2.1.2多视SAR 图像 为了提高图像的信噪比要进行多视处理,多视处理是对同一场景的n 个不连续的子图像的平均。n 个独立子图像非相干迭加将改变斑点噪声的概率分布,强度I 的概率分布变成Gamma 分布: )/e x p ()!1()(1 I nI I n I n I p n n n --=- (2.6) )/e x p ()!1(2)(21 2I nA I n A n A p n n n --=- (2.7) ))/e x p (e x p ()!1()(I K D n K nD I n K n D p n n --= (2.8) 2.2.2 斑点噪声的自相关函数 斑点噪声的自相关函数具有指数分布形式如图2.2[33],可以看出在初始处有较宽的范围及噪声谱的非均匀性,即斑点噪声非白噪声。这可以用成像时邻域像素的相互干扰来解释。 2.2.3斑点噪声的功率密度谱 斑点噪声的功率谱密度如图2.3[33]所示呈椭圆结构,可用经验方程表示:

变速器振动信号的测量与分析方法

变速器是机械设备的重要零部件,与机械的平稳运行密切相关,因此,设备拥有者会十分注重变速器的正常运行。为了监控变速器的状态,学者们也提出了不少针对变速器产生振动信号的测量与分析方法。 为了保证变速器试验台能够安全正常可靠的运行,往往都会采用一些监测手段,连续的对变速器进行状态监测,并且用高速自动化的数据采集系统采集测量信号并处理:运行状态的监控是故障诊断的基础。在变速器的状态监控中最常见的有振动监测、噪声监测、温度监测、油液分析监测,振动信号能更迅速、更真实、更全面的反映出变速器的运行状态,能够很好的反映出齿轮、轴系、轴承的故障性质,采用振动监测作为状态监控与故障诊断的手段。变速器振动信号中携带着大量的运行状态信息,当变速器出现故障时,振动信号的一般就会出现能量分布以及频率成分发生变化的现象,通过这些变化来判断变速器运行状态及其故障性质与故障部位:以振动信号为手段进行状态监控,首先要采用正确合理的方式来拾取振动信号,例如对象的选择、传感器及其布置位置的选择等等,传感器拾取的振动信号通常是杂乱无章的,要对其进行预处理去除干扰,之后选取合适

的分析方法对振动信号进行变换处理,获得最敏感最有用的特征参数,以此为监控指标,对变速器进行状态监控。 变速器容易产生故障失效,因此,在使用过程中需要经常对其进行检测,但是变速器的测试过程比较繁琐,如果专门派人做变速器检测,将耗费大量人力,不如购置一台专业的变速器测试系统,将专业的工作交给专业的人去做,既节约人力又提升效率。四川志方科技有限公司研发的减速器测试系统采用模块化设计,依据国内外最新测试标准,结合用户测试需求,可完成各种精密减速器的生产出厂、性能测试及科研、教学演示。

变速箱噪音

外文资料译文 变速箱噪声 相关的传输错误和轴承预压的影响 摘要 这五附加论文都是处理变速箱的噪声和振动的。第一篇论文回顾了先前发表关于变速箱噪声和振动的文献。第二篇论文描述了该试验台是专门设计和建造噪音齿轮测试。有限元分析,用于预测试验台的动态特性和实验的变速箱壳体模态分析用于验证自然试验台。在第三篇论文中,齿轮精加工方法和变速箱齿轮的偏差影响的理论预测噪声主要是研究在什么的实验研究。十一对被测试设备制造使用三种不同的整理方法。传输错误,这被认为是一个重要的激励机制齿轮噪音,测量以及预测。该试验台是用于测量变速箱噪音及不同的测试装置对振动。测得的噪音和振动水平进行比较,预测和实测的传输错误。实验结果大多可以解释和预测传输测量误差项。但是,它似乎并不能够确定一个单一的参数,如测得的峰-峰值传输错误,可直接与测得的噪声和振动。测量结果还显示,拆卸和使用相同的变速箱齿轮副重组可以改变测得噪声和振动.这个水平发现表明,除了其他因素的影响齿轮齿轮噪音。第四,轴承影响或变速箱噪音和振动预紧力进行了调查。振动测量均在140牛米和400nm的扭矩水平,用0.15毫米和0毫米轴承间隙,并用0.15mm轴承预紧力。结果表明,轴承间隙和预紧力影响变速箱的振动。预装轴承,振动增加超过2000转和2000转的速度低于下降速度,相比与轴端间隙轴承。有限元模拟表现出同样的倾向作为测量值。第五本文介绍如何通过优化变速箱噪声为减少传输错误齿轮几何减少。关于齿轮偏差和不同扭矩的鲁棒性考虑,以便找到一个齿轮几何给予尽管从名义几何由于制造公差偏差范围内以适当的扭矩,噪音低。静态和动态的传输错误,噪声,振动测量和该。之间

液压噪声分析

液压设备在给人们带来诸多方便同时,液压系统的泄漏,振动和噪声,不易维修等缺点,也为液压系统的应用造成了障碍。尤其在现今随着技术水平不断提高,液压系统的噪声和振动也随之加剧,已经成为了限制液压传动技术发展的重要因数,因此,研究液压系统的噪声和振动有着积极的意义。 1,振动和噪声的危害 液压系统中的振动和噪声是两种并存的有害现像,从本质上说,它们是同一个物理现象的两个方面,两者互相依存,共同作用。随着液压传动的运动速度不断增加和压力不断提高,振动和噪声也势必加剧,振动容易破坏液压元件,损害机械的工作性能,影响到设备的使用寿命,而噪声则可能影响操作者的健康和情绪,增加操作者的疲劳度。 2,振动和噪声的来源 造成液压系统中的振动和噪声来源很多,大致有机械系统,液压泵,液压阀及管路等几方面。 机械系统的振动和噪声 机械系统的振动和噪声,主要是由驱动液压泵的机械传动系统引起的,主要有以下几方面。 1,回转体的不平衡在实际应用中,电机大都通过联轴节驱动液压泵工作,要使这些回转体做到完全的动平衡是非常困难的,如果不平衡力太大,就会在回转时产生较大的转轴的弯曲振动而产生噪声。 2,安装不当液压系统常因安装上存在问题,而引起振动和噪声。如系统管道支承不良及基础的缺陷或液压泵与电机轴不同心,以及联轴节松动,这些都会引起较大的振动和噪声。 2.2液压泵(液压马达)通常是整个液压系统中产生振动和噪声的最主要的液压元件. 液压泵产生振动和噪声的原因,一方面是由于机械的振动,另一方面是由于液体压力流量积聚变化引起的. 1,液压泵压力和流量的周期变化 液压泵的齿轮,叶片及拄塞在吸油,压油的过程中,使相应的工作产生周期性的流量和压力的过程中,使相应的工作腔产生周期的流量和压力的变化,进而引起泵的流量和压力脉动,造成液压泵的构件产生振动,而构件的振动又引起了与其相接触的空气产生疏密变化的振动,进而产生噪声的声压波传播出去. 2,液压泵的空穴现象液压泵在工作时,如果液压油吸入管道的阻力过大,此时,液压油来不及充满泵的吸油腔,造成吸油腔内局部真空,形成负压.如果这个压力恰好达到了油的空气分离

2011005646_噪音振动分析系统在变速器校验台上的应用

噪音振动分析在变速器校验台上的应用 摘要:传统的变速器校验台使用声级计测量变速器的噪音并通过校验人员人工判别变速器校验是否合格,由于环境噪音的客观存在和操作人员的主观因素导致校验结果可靠性不高。在江铃变速器校验台使用噪音振动分析系统,此系统通过加速度传感器将变速器表面的振动信号通过一系列数学变换转换为噪音能量,并使用阶次分析和频谱图直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。噪音振动分析系统的引入大幅提高了变速器校验的科学性和可靠性。 关键词:噪音振动系统阶次分析频谱图变速器校验 1.概述 现代工程信号处理技术的高速发展,使得采用信号分析在变速器乃至汽车整车NVH(振动、噪音及舒适性)测试方面的应用也越来越广泛,其中频谱分析便是其中最常用的方法之一。频谱分析的数学基础是离散傅里叶变换(DFT)。该方法的一般过程是通过传感器以固定的采样频率采集时域信号,然后通过傅里叶变换得到频域信号,或者说频谱。由于平稳旋转机械中相关部件如齿轮、电动机等它们的工作频率(即特征频率)相对稳定,因此在频谱图可以很直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。然而,当旋转机械的转速不平稳时则难以在频谱上判断出各运动部件的状态。例如在变速器总成加载校验中,就存在加载的过程同时转速也在不断变化的校验过程,这就需要新的处理方法。阶次分析就是近些年发展起来的,针对非稳态旋转机械状态检测和故障分析有效方法之一。 在江铃变速器校验台上使用的是德国Discom公司的Rotas噪音振动分析系统,通过加速度传感器将变速器的振动信号通过一系列数学变换转换为噪音能量并使用阶次分析将变速器输入轴、中间轴、输出轴的噪音信号分离,便于变速器的诊断。 2.阶次分析的基本原理 2.1.阶次的概念 阶次概念的提出,是为区别于传统频谱分析概念。阶次分析的本质上是基于参考轴转速的频率分析。 阶次O、频率f与参考轴转速n1之间的关系为: O =f/ n1 (1) 齿轮啮合频率的计算公式为:

变速箱齿轮噪声机理及应对措施研究

10.16638/https://www.wendangku.net/doc/3615887123.html,ki.1671-7988.2015.11.009 变速箱齿轮噪声机理及应对措施研究 徐丽梅1,石月奎2 (1.天津矢崎汽车配件有限公司,天津300457;2.中国汽车技术研究中心,天津300300) 摘要:为解决某试验样车在怠速和匀速行驶工况下变速箱噪声问题,分析了变速箱噪声的特点,通过频谱分析和阶次分析的理论,找到了敲击声和啸叫声的频率特点和范围,并根据传递路径的方法确定了敲击声的传递路径为变速箱悬置的主动侧支架,啸叫声为长啮合齿轮的主动齿引起的。通过改进变速箱悬置主动侧支架的频率响应降低了敲击声的传递;通过改进离合器刚度和阻尼参数及优化长啮合齿的齿形,降低了变速箱的啸叫声。 关键词:变速箱噪声;啸叫声;敲击声 中图分类号:U469 文献标识码:A 文章编号:1671-7988(2015)11-25-04 Study on Gear Rattle&Whine of Manual Transmission and Countermeasures Xu Limei 1, Shi Yuekui 2 ( 1. Tianjin YAZAKI Auto Parts Co., Ltd., Tianjin 300457; 2. China Automotive Technology & Research Center, Tianjin 300300 ) Abstract: To solve gearbox noise problems of a test vehicle under idle and cruise condition, analyzes the characteristics of gearbox noise, through the spectrum analysis and order analysis theory to find the frequency characteristics and range of rattle and whine noise, and according to the transfer path method determined the rattle noise transfer path is from the gearbox active side mount bracket, whine noise is caused by gear active tooth. By improving the frequency response of gearbox active side mount bracket, decreasing the transmission of the rattle noise; by modified clutch stiffness and damping parameters and optimized tooth profile of the active tooth, reducing the gearbox whine noise. Keywords: gearbox noise; rattle noise; whine noise CLC NO.: U469 Document Code: A Article ID: 1671-7988(2015)11-25-04 引言 随着汽车工业技术的发展,汽车已经不再仅仅满足结实耐用的一般需求,在舒适性特别是车内噪声方面已经有了显著的改善,怠速工况的车内噪声从几年前的45-46 dB(A)已经降低到现在42dB(A)左右,甚至有些已经达到了40 dB(A),要达到这个级别的声压级,悬置、进排气等系统对车内噪声的影响已经很小,而动力总成带来的噪声特别是怠速工况下变速箱的噪声对车内噪声的影响已经成为了主要影响因素。 对于匹配手动变速箱的动力总成来说,发动机在工作过程中活塞往复运动,将燃烧压力转换为旋转动力,曲轴每转动两圈,即活塞往复运动两次才有一次点火,燃烧在气缸中发生一次,这样就产生的扭矩波动,随着发动机追求更好的动力性,缸内平均有效压力也在不断增大,这种扭矩波动也越来越大。这一扭矩波动经过离合器传送到变速箱,尽管有离合器的减振,但是手动变速箱没有高粘性阻尼的内在液力变矩器[1],所以无法消除变速箱的噪声。 本文中所研究的MPV车型在怠速工况和匀速80km/h工况,驾驶员位置均能较明显的听到来自变速箱的噪声,通过优化离合器刚度和阻尼、优化传递路径等方法,显著降低了 作者简介:徐丽梅,就职于天津矢崎汽车配件有限公司。

产生电磁噪声的机制

产生电磁噪声的机制 【导读】噪声抑制主要是以使用屏蔽和滤波器作为典型手段,在噪声传播的路径中实现噪声抑制。为了有效使用这些手段,对电磁噪声产生和传播机制的充分了解就尤为重要。 就噪声源而言,有三种因素: 噪声源、传播路径及天线(假设噪声干扰最终是以电磁波形式传播,天线亦包含在内),如图1(a)所示。如果是作为噪声受害者,可以使用完全相同的原理图,即图1(b)中所示,只需将图左右翻转,并将噪声源改为噪声接收器。这就意味着可以认为产生和接收噪声两种情况的机制是相同的。 首先,将对噪声产生的机制进行说明。 图1 EMC的三个因素 噪声源 有各种不同的情况会产生可以成为噪声源的电流。例如,一个电路的运行需要某一信号分量而对其他电路产生了问题。另一种情况,尽管没有电路需要此信号分量,但也不可避免产生噪声。有时噪声可能是由于疏忽而造成的。当然,噪声抑制的思维方式视每种情况而异。但如果您能了解特定的噪声是如何产生的,则处理将会变得较为容易。 在本章节中,我们将采用以下三种噪声源典型案例,介绍产生噪声的机制及一般应对策略。 1(i)信号 2(ii)电源 3(iii)浪涌

信号成为噪声源或受害方时 在文中,我们将主要用于传递信息的线称为信号线。通常为了通过电路传输信息,总是需要一定量的电流,即使是非常小的电流。随后,电流周围便产生了磁场。当电流随着信息而发生变化时,会向周围发射无线电波,从而便产生了噪声。随着信息量的增加,通过信号线的电流频率也随之增加,或可能需要更多的信号线。通常,电流频率越高,或信号线数量越多,发射的无线电波强度就越大。因此,电子设备的性能越高、处理的信息量越大、电子设备中所使用的信号线越多,就越容易产生噪声干扰。 传输信息的电路大致可分为模拟电路和数字电路,分别使用模拟信号和数字信号。从电路噪声的角度出发对其一般特性做如下说明。 图2 模拟信号和数字信号 模拟电路 当模拟电路为噪声源时,一般产生的噪声较少,因为模拟电路使用有限频率,并采用控制电流流动的设计情况较多。 但如果有能量外泄,则仍会产生噪声干扰。例如,电视和广播接收器采用一个具有恒定频率的信号,此频率称为本地震荡频率,以便从天线接收的无线电波中有选择地放大目标频率。如果此频率泄漏到外部,则可能对其他设备产生干扰。为了防止发生此情况,调谐器部分会被屏蔽,或在线路中使用EMI静噪滤波器。

变速箱差速器异响的判断方法

变速箱差速器异响的判断方法: 一、发动机异响和后桥异响的分辨首先将汽车在平坦的路面上行驶一定的里程,使后桥的工作温度升至正常,然后当汽车行驶发出异响时,记下车速,停车后,置变速器于空挡位置,再缓缓地加速,直至发动机的转速与出现异响时的车速相当时,观察有无异响的发生,可以重复几次,以确定异响是否由于排气或发动机的不正常状况所引起的。 二、轮胎噪声与后桥噪声的分辨轮胎噪声是随路面而发生变化的,后桥噪声则不然。当汽车的速度低于48km/h时,后桥噪声消失,而轮胎噪声则继续存在。汽车在行驶和滑行时,轮胎的噪声是相同的,但后桥的噪声却不同。 三、轮毂轴承异响和后桥噪声的分辨汽车在行驶和滑行时,前轮轴承的噪声不变,如保持车速不变而稍施制动,可使轮载轴承减少部分负荷,从而可减弱噪声,即可发现噪声源来自何处。当车速大于48km/h时,除非后轮轴严重损坏,一般情况下后轮轴承的噪声很少能听到,汽车滑行或空挡时,裂损的后轮轴承会产生“隆隆”声响,而剥蚀的后轮轴承则发出“沙沙”声响。 四、减速器圆锥主动轴承与差速器轴承异响的分辨减速器轴承通常产生刺耳的“隆隆”声或“嘎嘎”声,声音节拍稳定,随着车速变化而变化。减速器的圆锥主动齿轮前轴承声在汽车滑行时较大,后轴承的噪声则在行驶时较大。差速器轴承的噪声通常是一种不变的刺耳声,但它的节拍比减速器圆锥主动齿轮轴承的噪声要缓和得多。 五、后桥齿轮噪声的分辨在正常直线行驶时,由于差速器半轴齿轮和行星齿轮几乎没有相对运动,所以听不到噪声。汽车行驶过程中,后桥齿轮发生异响的原因大多是由润滑不良所致,从而导致减速器齿轮磨出伤痕,如果在各种滑行速度下都能听到异响,则说明是由减速器主动齿轮的螺帽松动造成的。低速时,后桥部位发生敲击声,加速或减速时,发出特别沉闷的异响。上述故障可从下列一处或多处查出原因:①差速器半轴齿轮轴颈与差速器壳的间隙不当。②差速器十字轴轴颈与差速器壳的配合不当。③半轴花键齿轮与差速器半轴齿轮键槽的侧隙不当。④差速器半轴齿轮与行星齿轮的啮合齿隙不当。⑤差速器圆锥主动、被动齿轮啮合齿隙不当。⑥止推垫圈磨损。车辆行驶中,后桥发生异响是因为齿轮啮合的间隙不当,差速器轴承预加负荷调整不当或两者兼而有之。排除异响时,需拆开检查差速器齿轮与减速

压缩机机械噪声的产生机理

压缩机机械噪声的产生机理 回转式压缩机的机械噪声主要包括摩擦噪声、阀片噪声和结构振动噪声。 1、摩擦噪声 物体在一定的压力作用下相互接触并作相对运动时,则物体之间产生摩擦,摩擦力以反运动方向在接触面上作用于运动物体。摩擦能激发物体振动并发出噪声。压缩机的滑片和缸体之间的相对运动产生的噪声就是典型的摩擦噪声。摩擦声绝大部分是摩擦引起物体的张弛振动所激发的噪声,尤其当振动频率与物体固有振动频率吻合时,物体共振产生强烈的摩擦噪声。 2、阀片噪声 利用冲击力做功的机械会产生较强的撞击噪声。压缩机在每一次排气时,高速高压气体冲击排气阀片产生的脉动噪声,称之为撞击噪声。这种撞击噪声的发声机制有以下四种: 1)撞击瞬间,由于阀片间的高速流动制冷剂气体所引起的喷射噪声。 2)撞击瞬间,在阀片上产生突然变形,以致在该面附近激发强的压力脉冲噪声。 3)撞击瞬间,由于阀片表面的变形,在这些部件表面侧向产生突然的膨胀,形成向外辐射的压力脉动噪声。 4)撞击后,阀座的振动传递到压缩机外壳,引起压缩机外壳振动从而激发出结构噪声。

在以上四种发声机制中,以机械结构噪声影响最强,其辐射噪声的维持时间最长同。撞击频率与撞击的物理过程有关,较硬的光滑物体碰撞,则作用时间短,作用力大,激励的宽频带,激发物体本征振动方程式就多,呈宽频带撞击噪声,反之就呈现窄频带噪声。 3、结构振动噪声 机械噪声是由于机械运动系统的受迫振动和固有振动所引起的,其中起主要作用的是固有振动。这种噪声以振动系统的一个或多个固有振动频率为主要组成部分。振动系统的固有频率与其结构性质有关,故称这种噪声为结构噪声。 上述三种机械力所引起的噪声中,以结构噪声最为突出。任何机械部件均有其固有振动方式,不同的振动方式有相应不同振动频率。而其较低阶次的振动方式决定其振动特点。振动的方式、频率与部件材料的物理性质、结构形状和振动的边界条件有关。 以上文档感谢重庆大学杨博士

齿轮噪音原因分析

齿轮噪音原因分析 齿轮传动噪声产生原因及控制 齿轮传动的噪音是很早以前人们就关注的问题。但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。噪音不但影响周围环境,而且影响机床设备的加工精度。由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。因此,如何解决变速箱齿轮传动的噪音尤为重要。下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。 1 噪音产生的原因 1.1 转速的影响 齿轮传动若转速较高,则齿轮的振动频率增高,啮台冲击更加频繁,高频波更高。据有关资料介绍,转速在1400转/分钟时产生的振动频率达5000H。产生的声波达88dB形成噪音软。一般光学设备变速箱输出轴的转速都较高。高达2000~2800转/分钟。因此,光学设备要解决噪音问题是需要研究的。 1.2 载荷的影响 我们将齿轮传动作为一个振动弹簧体系,齿轮本身作为质量的振动系统。那么该系统由于受到变化不同的冲击载荷,产生齿轮圆周方向扭转振动,形成圆周方向的振动力。加上齿轮本身刚性较差就会产生周期振幅出现噪音。这种噪音平稳而不尖叫。 1.3 齿形误差的影响 齿形误差对齿轮的振动和噪音有敏感的影响。齿轮的齿形曲线偏离标准渐开线形状,它的公法线长度误差也就增大。同时齿形误差的偏离量使齿顶与齿根互相干扰,出现齿顼棱边啮合,从而产生振动和噪音。 1.4 共振现象的影响 齿轮的共振现象是产生噪音的重要原因之一。所谓共振现象就是一个齿轮由于刚性较差齿轮本身的固有振动频率与啮合齿轮产生相同的振动频率,这时就会产生共振现象。由于共振现象的存在,齿轮的振动频率提高,产生高一级的振动噪音。要解决共振现象的噪音问题,只有提高齿轮的刚性。 1.5 啮合齿面的表面粗糙度影响 齿轮啮合面粗糙度会激起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,

第2章:产生电磁噪声的机制-3

株式会社村田制作所 产生电磁噪声的机制 [阅读所需平均时间: 约47分钟] 2-4. 数字信号中的谐波 如章节2-3所述,谐波是数字电路产生的一种噪声源。如果能够很好地控制谐波,便能有效抑制数字电路产生的噪声。本章节将讲述数字信号所包括谐波的基本性质。 2-4-1. 谐波的本质(就噪声而言) (1) 数字信号是由谐波组成的 通常而言,具有恒定循环周期的所有波形都可以分解为包括循环频率和谐波的基波,其中谐波的频率为循环频率的整数倍。[参考文献 2]基波的倍数称为谐波次数。 在精确重复波的情况下,除此之外没有任何其它频率成分。数字信号有很多循环波形。因此,在测量频率分布(称为“频谱”)时,可以精确分解为谐波,显示出离散分布的频谱。 (2) 测量时钟脉冲信号的谐波 图2-4-1显示了频谱分析仪测量的33MHz时钟脉冲信号谐波的示例。像针一样向上突起的部分为谐波,其出现的间隔正好为33MHz。可以发现奇次谐波和偶次谐波的趋势不一样。最下面部分约为40dB或更低,指示频谱分析仪的背景噪声。

图2-4-1 谐波的本质 (3) 如何从噪声频率中找出噪声源 上面提及的谐波性质有助于根据噪声频率找出噪声源。通过测量噪声频谱间隔,可以类比推导出造成噪声的信号循环频率。例如,我们在电子设备中观察到了如图2-4-2所示的噪声。出现强烈噪声的频率的间隔似乎是33MHz。因此,可以认为噪声是与33MHz时钟同步运行的电路造成的。 即使此电子设备当前使用的电路具有非常接近的循环频率,如33.3MHz或34MHz,如果可以精确测量噪声频率和间隔,就可分离出这样的频率。例如,如果在图2-4-2中330MHz处存在噪声,则可以假设噪声是由33.0MHz的电路而不是33.3MHz的电路所造成的。这是因为33.3MHz或34MHz信号都不包括330MHz谐波。 (4) 只包括整数倍频率 此外,循环波形并不包括低于基频的任何频率成分。例如,100MHz信号绝不会产生 20MHz、50MHz或90MHz的噪声。如果出现此种频率,则噪声是由分频信号而不是源信号所导致的。 数字电路通常与时钟脉冲信号同步运行,而且很多数字电路的运行频率为时钟脉冲信号的1/N(称为“分频”)。在这种情况下,谐波是分频信号频率的整数倍。但是,如果两个或更多电路以经过分频的相同时钟脉冲信号运行,时钟脉冲信号的谐波会与分频信号的谐波相互重叠,导致难以对其进行区分。

相关文档
相关文档 最新文档