文档库 最新最全的文档下载
当前位置:文档库 › 地下连续墙的特点及设计计算主要内容

地下连续墙的特点及设计计算主要内容

地下连续墙的特点及设计计算主要内容
地下连续墙的特点及设计计算主要内容

【tips】本文由李雪梅老师精心收编整理,同学们定要好好复习!

地下连续墙的特点及设计计算主要内容

地下连续墙优点:

1、施工时对环境影响小。没有噪音,无振动,不必放坡,可紧邻相近的建筑和地下设施施工;

2、墙体刚度大,整体性好,结构和地基变形都较小,可用于超深围护结构>>>详细

地下连续墙缺点 :

1、弃土和废泥浆处理。除增加工程费用外,若处理不当,还会造成新的环境污染。

2、地质条件和施工的适应性问题。

3、槽壁坍塌问题。

地下连续墙使用场合 :

1、基坑深度大于10m;

2、软土地基或砂土地基;

3、在密集的建筑群或重要的地下管线条件下施工。

地下连续墙设计计算的主要内容:

1 、确定在施工过程和使用阶段各工况的荷载,即作用于连续墙的土压力、水压力以及上部传来的垂直荷载。

2、确定地下连续墙所需的入土深度,以满足抗管涌、抗隆起,防基坑整体失稳破坏以及满足地基承载力的需要。

3、验算开挖槽段的槽壁稳定,必要时重新调整槽段长、宽、深度的尺寸。

4、地下连续墙结构体系(包括墙体和支撑)的内力分析和变形验算。

上海MOU项目地下连续墙计算书

第一部分概述 (1)本工程基坑面积约为48860m2,周长约为950米,基坑开挖深度详见以下开挖信息表。 表1 各分区开挖信息表 图1 地下连续墙平面布置图 基坑总体方案如下:: “前阶段整体逆作,后阶段塔楼先顺作、纯地下室后逆作”方案 普遍区域采用1200 厚“两墙合一”地下连续墙;塔楼顺作区内部采用1000厚临时隔断地下连续墙,塔楼顺作区域坑内设置五道钢筋混凝土支撑。

本工程根据基坑挖深及周边环境情况,地下连续墙分为A、B、C、D、E、F及G七种槽段型式,不同槽段型式的地下连续墙相关信息如下表所示: 本工程地下室周边地下连续墙在临时施工阶段作为基坑围护结构,在正常使用阶段普遍区域地下连续墙作为永久结构外墙,而且在临时施工阶段和正常使用阶段,墙外水土压力分布、主体结构梁板对地下连续墙的约束条件及二者的持续时间均存在较大差别,致使两个阶段墙体计算边界条件不同,因此需分别对两个阶段下地下连续墙的受力进行计算。下文计算书包括各型“两墙合一”地下连续墙在开挖阶段与永久使用工况下的受力及配筋计算。

第二部分 施工临时工况下地下连续墙计算 一、施工临时工况下地下连续墙计算模式 (1)计算模式 根据上海市标准《基坑工程设计规程》的规定,在施工临时工况下,地下连续墙的计算采用规范推荐的竖向弹性地基梁法(“m ”法)。弹性地基梁法取单位宽度的挡土墙作为竖向放置的弹性地基梁,支撑简化为与截面积、弹性模量、计算长度有关的弹簧单元,如图1为弹性地基梁法典型的计算简图。 图1 竖向弹性地基梁法计算简图 基坑开挖面或地面以下,水平弹簧支座的压缩弹簧刚度H K 可按下式计算: h b k K h H ..= z m k h .= 式中,H K 为土弹簧压缩刚度(kN/m);h k 为地基土水平向基床系数(kN/m 3);m 为基床系数的比例系数;z 为距离开挖面的深度;b 、h 分别为弹簧的水平向和垂直向计算间距(m)。 基坑内支撑的刚度根据支撑体系的布置和支撑构件的材质与轴向刚度等条件有关,按下式计算: B L A E K ....2α= 式中:K ——内支撑的刚度系数(kN/m/m); α——与支撑松弛有关的折减系数,一般取0.5~1.0;混凝土支撑或钢支撑施加预压力 时,取1.0; E ——支撑构件材料的弹性模量(kN/m 2); A ——支撑构件的截面积(m 2); L ——支撑的计算长度(m);

地下连续墙设计计算

6667设计计算 已知条件: (1)土压力系数计算 主动土压力系数: K a1=tan2(45°—φ1/2)=tan2(45°—10°/2)=0.70 a1=0.84 K a2=tan2(45°—φ2/2)=tan2(45°—18°/2)=0.52 a2=0.72 K a3=tan2(45°—φ3/2)=tan2(45°—19.2°/2)=0.64 a3=0.71 K a4=tan2(45°—φ4/2)=tan2(45°—18.9/2)=0.52 a4=0.70 K a5=tan2(45°—φ5/2)=tan2(45°—19.2/2)=0.41 a5=0.72 被动土压力系数: K p1=tan2(45°+φ5/2)=tan2(45°+19.2°/2)=1.98 p1=1.40 (2)水平荷载和水平抗力的计算 水平荷载计算: e a=q0k a1-2C=20×0.59-2×10×0.84=-5kPa e ab上=(q0+h1)K a1-2c1a1=(20+18×2.5)×0.59-2×10×0.84=21.55kPa e ab下=(q0+h1)K a2-2c2a2=(20+18×2.5)×0.36-2×19×0.6=0.6kPa e ac上=(q0+h1+h2)K a2-2c2a2=(20+18×2.5+19.9×1.1)×0.36-2×19× 0.6=8.48kPa e ac下=(q0+h1+h2)K a3-2c3a3=(20+18×2.5+19.9×1.1)×0.64-2×44×0.8=-14.79kPa e ad上=(q0+h1+h2+h3)K a3-2c3a3=(20+18×2.5+19.9×1.1+18.8×1.4)× 0.64-2×44×0.8=2.05kPa e ad下=(q0+h1+h2+h3)K a4-2c4a4=(20+18×2.5+19.9×1.1+18.8×1.4)× 0.34-2×21×0.59=13.71kPa e ae上=(q0+h1+h2+h3+h4)K a4-2c4a4=(20+18×2.5+19.9×1.1+18.8×1.4+19.9×0.5)×0.34-2×21×0.59=17.09kPa e ae下=(q0+h1+h2+h3+h4)K a5-2c5a5=(20+18×2.5+19.9×1.1+18.8×1.4

地下连续墙施工规范

地下连续墙规范 一般规定 第11.1.1条广东地区地下连续墙常用的施工工艺如下:用液压抓斗(或机械抓斗)和冲孔桩机进行联合成槽作业.抓斗抓土。冲孔桩机入岩并修边,形成具有一定长度、宽度、深度的单元槽段,然后在槽段内放入预先制好的钢筋笼,灌注水下混凝土筑成墙段。如此连续施工,使各墙段相互连接形成一道完整的地下墙体,作为挡土防渗的施工支护结构,或(兼)作为承重的永久性地下结构。 第11.1.2条施工前,应具备详细的地质条件资料,其内容包括: 一、土层的分布是否存在孤石、土洞等; 二、地下水的水位(有无承压水)及变化情况,是否具有腐蚀性等; 三、基岩的构造、岩性、风化程度和层厚度,是否存在溶洞、断层破碎带等。 第11.1.3条由于成槽机械和浇筑设备的限制,地下连续墙的最小墙体厚度为600mm。 第一节导墙的施工 第11.2.1条槽段放线后,应沿地下连续墙轴线两侧构筑导墙,以防地表土的坍塌和保证成槽的精度。导墙要具有足够的刚度和承载能力,导墙一般用现浇钢筋混凝土制作。 第11.2.2条导墙的横断面一般可采用┑┏形、┘┗形或】【形等型式,导墙混凝土的厚度一般为200mm,导墙的高度一般取1.5m。导墙顶面略高于施工地面,并应高于地下水位1.5m以上。 第11.2.3条导墙宜建筑在密实的粘性土地基或杂填土地基上。如遇不良地基时,应进行换填粘土夯实处理。 第11.2.4条现浇钢筋混凝土导墙拆模后应立即在两片导墙间按一定间距加设支撑。然后才能回填。导墙背后和导墙内均应用粘性土回填。导墙背后要分层夯实。 第11.2.5条现浇钢筋混凝土导墙养护3d,强度达到设计强度的50%时,方可进行成槽作业。 第11.2.6条导墙的内间距要比地下连续墙设计厚度加宽50mm。 第11.2.7条导墙的施工允许偏差: 一、导墙的轴线允许偏差为±10mm; 二、导墙顶面应平整,要求平整度为30mm; 三、内外导墙净距允许偏差为±10mm。 第11.2.7 导墙一般采用单面配筋,宜采用螺纹筋,间距150mm~250mm。 第三节槽段的开挖 第11.3.1条挖槽机械应根据成槽地点的工程地质和水文地质情况、施工环境、设备能力、地下墙的结构、尺寸及质量要求等条件进行选用。一般常用的机具有挖斗式、冲击式、回转式。 第11.3.2条挖槽前,应预先将地下墙划分为若干个施工槽段。槽段平面形状常有一字形、L形(拐角处)、T形(与柱子相接处)等。有拐角的单元槽段,其拐角应不小于90°。槽段的长短应根据设计要求、土层性质、地下水情况、钢筋笼的轻重大小及设备起吊能力、混凝土供应能力等条件确定,一般为3~6m。 第11.3.3条地下墙槽段间应跳挖,宜相隔1~2段跳段进行。 第11.3.4条同一槽段内槽底开挖的深度宜一致,同幅不同深的槽段,必须先挖较深的槽段,后挖较浅的槽段。 第11.3.5条成槽机抓斗在成槽过程中必须保证垂直均匀地上下,尽量减少对侧壁的扰动。 第11.3.6条如遇坍孔,宜回填黄泥,待其自然沉淀后再进行开挖,同时在钢筋笼的靠基坑面上固定一夹板等措施进行处理。 第11.3.7条槽段终槽深度的控制应符合下列要求: 一、非承重墙的槽段、终槽深度必须保证设计深度; 二、承重墙的槽段终槽深度应根据设计入岩要求,参照地质剖面图上岩层标高,成槽时的钻进速度和鉴别槽底岩屑样品等综合确定。第11.3.8条槽段开挖完毕,应检查槽位、槽深、槽宽及槽壁垂直度,合格后方可进行清槽换浆工作。 第11.3.9条槽段的长度、厚度、倾斜度等应符合下列要求: 一、槽段长度允许偏差±2.0%; 二、槽段厚度允许偏差1.5%、-1.0%; 三、槽段垂直度允许偏差±1/50; 四、墙面上预埋件位置偏差不应大于100mm。

弹性地基梁法(“m”法)公式以及地下连续墙计算书

根据上海市标准《基坑工程设计规程》的规定,在施工临时工况下,地下连续墙的计算采用规范推荐的竖向弹性地基梁法(“m ”法)。弹性地基梁法取单位宽度的挡土墙作为竖向放置的弹性地基梁,支撑简化为与截面积、弹性模量、计算长度有关的弹簧单元,如图1为弹性地基梁法典型的计算简图。 图1 竖向弹性地基梁法计算简图 基坑开挖面或地面以下,水平弹簧支座的压缩弹簧刚度H K 可按下式计算: h b k K h H ..= z m k h .= 式中,H K 为土弹簧压缩刚度(kN/m);h k 为地基土水平向基床系数(kN/m 3);m 为基床系数的比例系数;z 为距离开挖面的深度;b 、h 分别为弹簧的水平向和垂直向计算间距(m)。 基坑内支撑的刚度根据支撑体系的布置和支撑构件的材质与轴向刚度等条件有关,按下式计算: B L A E K ....2α= 式中:K ——内支撑的刚度系数(kN/m/m); α——与支撑松弛有关的折减系数,一般取0.5~1.0;混凝土支撑或钢支撑施加预压力时,取1.0; E ——支撑构件材料的弹性模量(kN/m 2); A ——支撑构件的截面积(m 2); L ——支撑的计算长度(m); S ——支撑的水平间距(m)。 (2)水土压力计算模式 作用在弹性地基梁上的水土压力与土层分布以及地下水位有关系。水土压力计算采用水土分算,利用土体的有效重度和c 、?强度指标计算土压力,然后叠加水压力即得主动侧的水

土压力。土的c 、?值均采用勘察报告提供的固结快剪指标,地下连续墙变形、内力计算和各项稳定验算均采用水土分算原则,计算中地面超载原则上取为20kPa 。基坑周边地下连续墙配筋计算时分项系数取1.25。 ①土压力计算: 墙后主动土压力计算采用朗肯土压力计算理论,主动土压力强度(kPa )计算公式如下: a a i i a K c K h r q p 2)(-+=∑ 其中,i r 为计算点以上各土层的重度,地下水位以上取天然重度,地下水位以下取水下重度; i h 为各土层的厚度; a K 为计算点处的主动土压力系数,)2 45(tan 2φ-= a K ; φ,c 为计算点处土的总应力抗剪强度指标。 按三轴固结不排水试验或直剪固快试验峰值强度指标取用。 ②水压力计算:作用在支护结构上主动土压力侧的水压力在基坑内地下水位以上按静水压力三角形分布计算;在基坑内地下水位以下水压力按矩形分布计算(水压力为常量),并不计算作用于支护结构被动土压力侧的水压力,见下图所示。其中, w h ?为基坑内外水位差,w r 为水的重度,取为10kN/m 3。 图2 静水压力分布模式

地下连续墙施工工艺概述

《地下连续墙施工工艺概述》 英文名称:diaphragm wall panel trench, slurry trench, slurry wall,continuous diaphragm wall, cut-off wall等。地下连续墙开挖技术起源于欧洲。它是根据打井和石油钻井使用泥浆和水下浇注混凝土的方法而发展起来的,1950年在意大利米兰首先采用了护壁泥浆地下连续墙施工,20世纪50~60年代该项技术在西方发达国家及前苏联得到推广,成为地下工程和深基础施工中有效的技术。 中文名:地下连续墙。 外文名:diaphragm wall panel trench 类型:挖槽机械 定义:地下连续墙是远方基础工程在地面上采用一种挖槽机械,沿着深开挖工程的周边轴线,在泥浆护壁条件下,开挖出一条狭长的深槽,清槽后,在槽内吊放钢筋笼,然后用导管法灌筑水下混凝土筑成一个单元槽段,如此逐段进行,在地下筑成一道连续的钢筋混凝土墙壁,作为截水、防渗、承重、挡水结构。本法特点是:施工振动小,墙体刚度大,整体性好,施工速度快,可省土石方,可用于密集建筑群中建造深基坑支护及进行逆作法施工,可用于各种地质条件下,包括砂性土层、粒径50mm以下的砂砾层中施工等。适用于建造建筑物的地下室、地下商场、停车场、地下油库、挡土墙、高层建筑的深基础、逆作法施工围护结构,工业建筑的深池、坑;竖井等。在地面上,利用一些种挖槽机械,借助于泥浆的护壁作用,在地下挖出窄而深的基槽,并在其内浇注适当的材料而形成的一道具有防渗、挡土和承重功能的连续的地下墙体。 发展: 目前中国的成槽机械发展得很快,与之相适应的成槽工法层出不穷;有不少新的工法已经不再使用膨润土作为泥浆;墙体材料已经由过去以混凝土为主的局面而转向多样化发展;不再单纯地用于防渗或挡土支护,越来越多地作为建筑物的基础。 经过几十年的发展,地下连续墙的技术已经相当成熟,其中日本在此项技术上最为发达,已经累计建成了1500万平方米以上,目前地下连续墙的最大开挖深度为140m,最薄的地下连续墙厚度为20cm。1958年,我国水电部门首先在青岛丹子口水库用此技术修建了水坝防渗墙,到2013年为止,全国绝大多数省份都先后应用了此项技术,估计已建成地下连续墙120万~140万平方米。地下连续墙已经并且正在代替很多传统的施工方法,而被用于基础工程的很多方面。在它的初期阶段,基本上都是用作防渗墙或临时挡土墙。通过开发使用许多新技术、新设备和新材料,现在已经越来越多地用作结构物的一部分或用作主体结构,2003年到2013年前后更被用于大型的深基坑工程中。 分类 (1)按成墙方式可分为:1.桩排式2.槽板式3.组合式 (2)按墙的用途可分为:1. 防渗墙2.临时挡土墙3.永久挡土(承重) \(4)作为基础; (3)按墙体材料可分为: 1.钢筋混凝土墙 2.塑性混凝土墙 3.固化灰浆墙 4.自硬泥浆墙 5.预制墙 6.泥浆槽墙 7.后张预应力墙 8.钢制墙。 (4)按开挖情况可分为:1.地下挡土墙(开挖) 地下防渗墙(不开挖)。 由于受到施工机械的限制,地下连续墙的厚度具有固定的模数,不能像灌注桩一样根据桩径和刚度灵活调整。因此,地下连续墙只有在一定深度的基坑工程或其它特殊条件下才能显示出经济性和特有优势。 一般适用于如下条件: 1.开挖深度超过10米的深基坑工程。 2.围护结构亦作为主体结构的一部分,且对防水、抗渗有较严格要求的工程。 3.采用逆作法施工,地上和地下同步施工时,一般采用地下连续墙作为围护墙。 4.邻近存在保护要求较高的建(构)筑物,对基坑本身的变形和防水要求较高的工程。 5.基坑内空间有限,地下室外墙与红线距离极近,采用其他围护形式无法满足留设施工操作要求的工程。 6.在超深基坑中,例如30m-50m的深基坑工程,采用其他围护体无法满足要求时,常采用地下连续墙作为围护结构。 用途:泵站、水池、建筑物基坑、地下油库和仓库、市政管沟和涵洞、盾构等工程的竖井各种深基础和桩基码头、护案和干船坞水利水电、露天矿山和尾矿坝(池)和环保工程的防渗墙地下构筑物(例如地下铁道、地下道路、地下停车场和地下街道、商店以及地下变电站等) 特点: 优点: 地下连续墙之所以能够得到如此广泛的应用,是因为它具有十大优点: 工效高、工期短、质量可靠、经济效益高。 施工时振动小,噪音低,非常适于在城市施工。 占地少,可以充分利用建筑红线以内有限的地面和空间,充分发挥投资效益。 防渗性能好,由于墙体接头形式和施工方法的改进,使地下连续墙几乎不透水。

地下连续墙施工工艺

2 地下连续墙施工工艺 2.1 工艺流程(见图 1) 2.2 导墙施工 2.2.1 导墙的结构形式 导墙可以由以下几种材料做成: (1)木材。厚5cm的木板和10cm×10cm方木,深度1.7~2.0m。 (2)砖。75号砂浆砌100号砖,常与混凝土做成混合结构。 (3)钢筋混凝土和混凝土,深度1.0~1.5m。 (4)钢板。 (5)型钢。 (6)预制钢筋-混凝土结构。 (7)水泥土。

导墙的位置、尺寸准确与否直接决定地下连续墙的平面位置和墙体尺寸能否满足设计要求。导墙间距应为设计墙厚加余量(4~6cm),允许偏差±5mm,轴线偏差±10mm,一般墙面倾斜度应大于1/500。到强的顶部应平整,以便架设钻机机架轨道,并作为钢筋笼、混凝土导管、结构管等得支撑面。导墙后的填土必须分层回填密实,以免被泥浆掏刷后发生孔壁坍塌。常见的导墙结构形式见图2。 2.2.2 导墙施工方法 (1)导墙是保证连续墙精度的首要条件,因此,在施工放线前做好技术交底,严格复合,保证定位放线准确。 (2)导墙施作时放宽40~60mm(沿中轴线向两侧,每边放宽20~30mm),是为了保证抓斗钻头及钢筋网片、锁扣管进出较为顺利。 (3)为保证连续墙既满足设计精度又不侵入车站建筑界限,同时保证内衬墙结构厚度,在放线时将连续墙中轴线向外多放120~130mm(一般连续墙内侧轮廓放宽100mm)。 (4)导墙垂直度控制在±7.5mm内,导墙内墙垂直度控制在±3mm内,导墙顶面平行,全长范围内高差控制在±5mm内,导墙轴向误差控制在±10mm之内。 (5)导墙上口高出地面100mm,以防垃圾和雨水冲入导槽内污染或者稀释泥浆。

地下连续墙设计计算书

目录 一工程概况................................................................................................................................ - 1 - 二工程地质条件........................................................................................................................ - 1 - 三支护方案选型........................................................................................................................ - 1 - 四地下连续墙结构设计............................................................................................................ - 2 - 1 确定荷载,计算土压力:............................................................................................ - 2 - γ,平均粘聚力c,平均内摩檫角?..... - 2 - 1.1计算○1○2○3○4○5○6层土的平均重度 1.2 计算地下连续墙嵌固深度................................................................................... - 2 - 1.3 主动土压力与水土总压力计算........................................................................... - 3 - 2 地下连续墙稳定性验算................................................................................................ - 5 - 2.1 抗隆起稳定性验算............................................................................................... - 5 - 2.2基坑的抗渗流稳定性验算.................................................................................... - 6 - 3 地下连续墙静力计算.................................................................................................... - 7 - 3.1 山肩邦男法........................................................................................................... - 7 - 3.2开挖计算................................................................................................................ - 9 - 4 地下连续墙配筋.......................................................................................................... - 11 - 4.1 配筋计算............................................................................................................. - 11 - 4.2 截面承载力计算................................................................................................ - 12 - 参考文献.................................................................................................................................... - 12 -

2016基坑支护设计计算书模板 (1)

第一章工程概要 1.1 工程概况 工程概况,附上基坑周边环境平面图 1.2场区工程地质条件 附上典型的地质剖面图 1.3 水文地质条件 1.4 主要设计内容 分析评价了场地的岩土工程条件。 根据场地的工程地质条件、水文地质条件,充分考虑到周边地层条件,选择技术上可行,经济上合理,并且具有整体性好、水平位移小,同时便于基坑开挖及后续施工的可靠支护措施,通过分析论证选择合适的基坑支护方案。 对基坑支护结构进行了具体设计计算,其中包括土压力计算、钻孔灌注桩的设计计算及锚杆的设计计算、稳定性验算(根据具体选择的支护方式,按照规范的要求进行设计,计算,和验算)。当不能满足稳定性要求的时候,需要重新设计计算或者做必要的处理,直至达到稳定性的安全要求。 选择经济、实效、合理的基坑降水与止水方案。 基坑支护工程的施工组织设计与工程监测设计。 1.5 设计依据 (1)甲方提供资料,岩土工程勘察报告(列出详细的清单) (2)现行规范、标准、图集等(按照规定的格式列出详细的清单,必须是现行规范)

第二章基坑支护方案设计 2.1 设计原则(摘自规范) 2.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计 2.1.2 基坑支护结构极限状态可分为下列两类: a. 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; b.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 2.1.3 基坑支护结构设计应根据表3选用相应的侧壁安全等级及重要性系数。 表2.1 基坑侧壁安全等级及重要性系数 安全等级破坏后果 1.10 一级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响很严重 1.00 二级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响一般 0.90 三级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行决定 2.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 2.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 2.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:

地下连续墙作为支护结构的内力计算

地下连续墙作为支护结构时的内力计算 (2009-01-07 16:40:54) 标签:分类: (一)荷载 用作支护结构的地下连续墙,作用于其上的荷载主要是土压力、水压力和地面荷载引起的附加荷载。若地下连续墙用作永久结构,还有上部结构传来的垂直力、水平力和弯矩等。作用于地下连续墙主动侧的土压力值,与墙体刚度、支撑情况及加设方式、土方开挖方法等有关。 当地下连续墙的厚度较小,开挖土方后加设的支撑较少、较弱,其变形较大,主动侧的土压力可按朗肯土压力公式计算。我国有关的设计单位曾对地下连续墙的土压力进行过原体观测,发现当位移与墙高的比值△/H达到1‰一8‰时,在墙的主动侧,其土压力值将基本上达到朗肯土压力公式计算的土压力值。所以,当地下连续墙的变形较大时,用其计算主动土压力基本能反映实际情况。 对于刚度较大,且设有多层支撑或锚杆的地下连续墙,由于开挖后变形较小,其主动侧的土压力值往往更接近于静止土压力。如日本的《建筑物基础结构设计规范》中既做如此规定。 至于地下连续墙被动侧的土压力就更加复杂。由于产生被动土压力所需的位移(我国实测位移与墙高比值△/H需达到1%一5%才会达到被动土压力值)往往为设计和使用所不允许,即在正常使用情况下,基坑底面以下的被动区,地下连续墙不允许产生使静止土压力全部变为被动土压力的位移。因而,地下连续墙被动侧的土压力也就小于被动土压力值。

目前,我国计算地下连续墙多采用竖向弹性地基梁(或板)的基床系数法,即把地下连续墙入土部分视作弹性地基梁,采用文克尔假定计算,基床系数沿深度变化。 (二)内力计算 作为支护结构的地下连续墙,其内力计算方法国内采用的有:弹性法、塑性法、弹塑性法、经验法和有限元法。 根据我国的情况,对设有支撑的地下连续墙,可采用竖向弹性地基梁(或板)的基床系数法(m 法)和弹性线法。应优先采用前者,对一般性工程或墙体刚度不大时,亦可采用弹性线法。此外有限元法,亦可用于地下连续墙的内力计算。 用竖向弹性地基梁的基床系数法计算时,假定墙体顶部的水平力H、弯矩M及分布荷载q1和q2作用下,产生弹性弯曲变形,坑底面以下地基土产生弹性抗力,整个墙体绕坑底面以下某点O转动(图4-2-1 )、在O点上下地基土的弹性抗力的方向相反。 图4-2-1 竖向弹性地基梁基床系数法计算简图 地下连续墙视为埋入地基土中的弹性杆件,假定其基床系数在坑底处为零,随深度成正比增加。当α2h≤时,假定墙体刚度为无限大,按刚性基础计算;当α2h>时,按弹性基础计算,其中变形系数 α2= (4-2-1) 式中m——地基土的比例系数,有表可查,参阅有关地下连续墙设计与施工规程。如流塑粘土,液性指数I L≥l,地面处最大位移达6mm时,m=300--500;

地下连续墙施工常见技术难点分析

地下连续墙施工及常见技术难点分析 1.1地下连续墙施工方法简介 1.1.1概述地下连续墙分类 虽然地下连续墙已经有了50 多年的历史,但是要严格分类,仍是很难的。 (1)按成墙方式可分为:①桩排式;②槽板式;③组合式。 (2)按墙的用途可分为:①防渗墙;②临时挡土墙;③永久挡土(承重)墙;④作为基础用的地下连续墙。 (3)按强体材料可分为:①钢筋混凝土墙;②塑性混凝土墙;③固化灰浆墙;④自硬泥浆墙;⑤预制墙;⑥泥浆槽墙(回填砾石、粘土和水泥三合土);⑦后张预应力地下连续墙;⑧钢制地下连续墙。 (4)按开挖情况可分为:①地下连续墙(开挖);②地下防渗墙(不开挖)。 1.1.2地下连续墙施工工艺的优缺点 地下连续墙的优点有很多,主要有: (1)施工时振动小,噪音低,非常适于在城市施工。 (2)墙体刚度大,用于基坑开挖时,极少发生地基沉降或塌方事故。 (3)防渗性能好。 (4)可以贴近施工,由于上述几项优点,我们可以紧贴原有建筑物施工地下连续墙。 (5)可用于逆作法施工。 (6)适用于多种地基条件。 (7)可用作刚性基础。 (8)占地少,可以充分利用建筑红线以内有限的地面和空间,充分发挥投资效益。 (9)工效高,工期短,质量可靠,经济效益高。地下连续墙的缺点主要有: (1)在一些特殊的地质条件下(如很软的淤泥质土,含漂石的冲积层和超硬岩石等)施工难度很大。 (2)如果施工方法不当或地质条件特殊,可能出现相邻槽段不能对齐和漏水的问题。 (3)地下连续墙如果用作临时的挡土结构,比其它方法的费用要高些。 (4)在城市施工时,废泥浆地处理比较麻烦。 1.1.3采用地下连续墙常见的几种工程 地下连续墙主要被用于:1. 水利水电、露天矿山和尾矿坝(池)和环保工程的防渗墙

地下连续墙“两墙合一”设计问题探讨

龙源期刊网 https://www.wendangku.net/doc/3a693839.html, 地下连续墙“两墙合一”设计问题探讨 作者:杨文旻 来源:《中国房地产业·下半月》2016年第06期 【摘要】本文主要探讨地下连续墙“两墙合一”的相关设计问题。包括“两墙合一”的受力特性、节点设计以及防水措施。引入实际工程应用情况,说明其应用的合理性。为地下连续墙“两墙合一”的推广及应用提供参考。 【关键词】地下连续墙;两墙合一;受力特性;节点设计;防水措施 地下连续墙用于基础埋深大、地质条件差、水位高、场地周边建筑较贴等地下工程施工情况,有着明显的优势。目前地下连续墙主要充当施工期间的临时支护,当地下施工完成并回填后就退出舞台,后期建筑结构使用过程中不再考虑地下连续墙的作用,造成一定浪费。地下连续墙兼做主体结构参与正常使用阶段的结构受力,有着重大的意义。实现地下连续墙兼做主体结构,引出了“两墙合一”的概念。“两墙合一”即在地下施工阶段地下连续墙作为围护支挡结构,地下施工完成后,开始充当地下室外墙,通过设置与地下主体结构梁板的有效连接,成为主体结构的一部分,在正常使用阶段参与主体结构受力。随着地下连续墙作为主体结构的应用,实际工程对“两墙合一”的设计、施工以及防水措施等方面[1]提出了严格的要求。本文主要介绍地下连续墙“两墙合一”设计方面的问题。 1、“两墙合一”受力特性 地下连续墙作为主体结构的一部分,其荷载及受力特性随各个阶段而不同。 首先,地下连续墙在施工阶段作为基坑支护结构,其主要作用为临时挡土与止水,此时连续墙主要承受土压力、水压力。连续墙可近似为下端固支,上端铰支的梁,其底部固支部位内力最大。当连续墙埋深较深时,底部内力大,需增加连续墙厚度。此时,可在地下室范围内增加多层水平支撑,减少计算跨度,降低底部内力,达到优化设计的目的。还可以在连续墙外侧增加临时锚杆,用于平衡连续墙内力。然而后者受现场施工环境限制,对于周边建筑物较多或地基土质较差时无法使用。 其次,地下连续墙在主体结构竣工后,其主要功能在于充当地下室外墙,同时作为地下室楼层梁板的边支座,起到一定的竖向构件[2]作用。此时连续墙主要承受土压力、水压力以及 主体结构的竖向、水平荷载产生的内力。连续墙可近似为下端固支,上端铰支,中间多道侧向约束的连续梁。除了承受土压力、水压力及路面荷载外,还承受主体结构传递过来的竖向与水平力。

地下连续墙计算

五里河站明挖施工方法的确定 明挖法即为采用围护结构做围挡,主体结构为露天作业的一种施工方法。该方法能较好地利用地下空间, 紧凑合理, 管理方便。同时具有施工作业面宽, 方法简单, 施工安全, 技术成熟, 工程进度周期短, 工程质量易于保证及工程造价低等优点。沈阳市地铁二号线五里河站位于南二环路与青年大街交叉南侧, 青年大街东侧的绿地内, 为浑河北岸约200 米远处。地面以上车站周围现状为绿地和商业区待用地。地面以下有通信电缆管线。但埋深较浅, 对车站埋深不起控制作用, 因施工厂地开阔, 可采用明挖法施工方案。 明挖法施工方案工序分为四个步骤进行: 先进行维护结构施工, 内部土方开挖, 工程结构施工, 恢复管线和覆土。从施工步骤的内容上看: 围护结构部分是地铁站实施的第一个步骤, 它在工程建设中起着至关重要的作用, 其方案确定的合理与否将直接影响到明挖法施工的成败, 因此根据不同现场情况和其地质条件来选定与之相适用的围护结构方案, 这样才能确保地铁工程安全, 经济有序的进行。 2 主体围护结构方案的确定 地铁工程中常用的围护结构有: 排桩围护结构, 地下连续墙围护结构和土钉围护结构。当基坑较线5 米以内及侧压力较小时,一般不设置水平支撑构件。当基坑较深时, 在围护结构坑内侧就需要设置多层多道水平支撑构件, 其目的是为了降低围护结构的水平变位。 排桩围护结构是以某种桩型按队列式布置组成的基坑支护结构。排桩围护结构特点是整体性差, 但施工方便, 投资小, 工程造价低。它适用于边坡稳定性好, 变形小及地下水位较低的地质条件。由于其防水防渗性能差,地铁工程采用排桩围护结构时, 一般采用坑外降水的方法来降地下水, 其排水费用较大。 地下连续墙结构: 是用机械施工方法成槽浇灌, 钢筋混凝土形成的地下墙体, 其墙厚应根据基坑深度和侧土 压力的大小来确定, 常用为800 ̄1200mm 厚。其特点是: 整体性好, 刚度大, 对周围建筑结构的安全性影响小, 防水抗渗性能良好。它不仅适用于软弱流动性能较大的土质, 同时还适于多种不同情况的地质条件, 但其造价高, 投资大。由于其结构的防水防渗性能好, 采用此结构做围护结构时, 一般用坑内降水法降地下水, 其降水费用相对低。 土钉墙结构: 是在基坑开挖过程中, 将土钉置入原状土体中, 并在支护面上喷射钢筋混凝土面层, 通过土钉、土体和喷射的混凝土面层的共同作用形成的结构。这种结构适用于浅基坑地下水位以上或经过人工降水后的粘性土、粉土、杂填土及非松散砂土和卵石土等。其结构特点是提高土体的整体稳定性, 边开挖边支护, 不占用独立工期, 施工安全快捷。设备简单, 操作方便, 造价低。 五里河站由于其施工场地开阔, 地下土质以砂层为主, 其土质稳定性好, 变形小, 但此站距离浑河近地下水位高, 如果采用排桩围护结构坑外降水方案降水量过大, 降水费用太高, 且该站地铁的标准段基坑深度为32.45m, 基坑较深。故采用防水性能较好的地下连续墙围护结构较排桩结构而言能更安全合理, 降水方式为坑内降水。由于车站基坑较深, 其坑上围护墙上设置了六道水平支撑杆件, 以防边坡侧壁位移过大, 影响主体结构的正常施工。基坑情况见图一。

地下连续墙施工工序

地下连续墙施工工序 谈到地下连续墙施工工序问题,现阶段,我国对地下连续墙施工工艺情况如何?基本情况怎么样?以下是我们整理建筑术语地下连续墙施工方法基本介绍: 地下连续墙开挖技术起源于欧洲。它是根据打井和石油钻井使用泥浆和水下浇注混凝土的方法而发展起来的,1950年在意大利米兰首先采用了护壁泥浆地下连续墙施工,20世纪50~60年代该项技术在西方发达国家及前苏联得到推广,成为地下工程和深基础施工中有效的技术。 地下连续墙施工工序: 地下连续墙的施工工序分为:准备工作阶段、成槽阶段、浇捣混凝土阶段。施工的主要工艺是:首先挖导墙槽,然后按设计要求浇筑混凝土导墙,内、外导墙之间的宽度即是地下墙的宽度,也就是设计宽度。将配制好的护壁泥浆输入槽内,然后根据设计深度逐段挖槽,并随着挖槽进程,不断输入泥浆,等挖到设计深度后,放人钢筋笼,用导管灌注混凝土,置换出护壁泥浆。这样就形成一段钢筋混凝土地下墙,逐段连续施工即成地下连续墙。

地下连续墙施工工序相关延伸: 地下连续墙施工控制要点: 1.地下墙露筋现象的预防措施 (1)钢筋笼必须在水平的钢筋平台上制作,制作时必须保证有足够的刚度,架设型钢固定。防止起吊变形。 (2)必须按设计和规范要求放置保护层钢垫板。严禁遗漏。 (3)吊放钢筋笼时发现槽壁有塌方现象。应立即停止吊放,重新成槽清渣后再吊放钢筋笼。 (4)确保成槽垂直度。

2.水下砼浇筑质量保证措施 (1)导管使用前应进行水密试验,检验压力大于O.4Mpa. (2)浇灌砼前必须将槽底清好。保持砼流畅。 (3)第一批砼量应满足导管开管时所要求的埋管深度。 (4)砼浇灌应连续进行,不允许间断,中途停顿时间不能超过30分钟。停顿过程中,经常抽动导管,使导管内砼保持很好的流动性。 (5)浇筑过程中。控制导管埋深在2~6m.不允许超过6m,相邻两导管内砼高差不大于O.5m.导管拆卸应同步进行。 (6)当砼浇筑灌到接近地面时。由于压力差减小,砼较难浇灌,此时导管埋深可适当减小保持在lm左右。

地下连续墙设计计算书

目录 一工程概况 (1) 二工程地质条件 (1) 三支护方案选型 (1) 四地下连续墙结构设计 (2) 1确定荷载,计算土压力: (2) 1.1计算○1○2○3○4○5○6层土的平均重度γ,平均粘聚力c,平均内摩檫角? (2) 1.2计算地下连续墙嵌固深度 (2) 1.3主动土压力与水土总压力计算 (3) 2地下连续墙稳定性验算 (6) 2.1抗隆起稳定性验算 (6) 2.2基坑的抗渗流稳定性验算 (7) 3地下连续墙静力计算 (8) 3.1山肩邦男法 (8) 3.2开挖计算 (10) 4地下连续墙配筋 (12) 4.1配筋计算 (12) 4.2截面承载力计算 (13) 参考文献 (13)

一工程概况 拟建的钦州市妇幼保健医院住院大楼,项目地址位于钦州市安州大道与南珠东大街交叉路口东南侧。整个项目总用地净面积12702.98m2,使用面积11411.73m2 ,地上总建筑面积49273.94m2 ,地下总建筑面积7857.64m2 ,总建筑基底面积3815.92m2 。该项目为1栋楼高22~23F 的住院大楼,下设两层地下室,详细尺寸及布局见“总平面图”和“建筑物和勘探点平面位置图”。未进入设计条件,拟建建筑的荷载、上部结构及室内整平标高均未知、基础类型待定。受业主委托,由本院对拟建场地进行岩土工程详细勘察工作。 二工程地质条件 拟建工程场地位于钦州市安州大道与南珠东大街交叉路口东南侧,其北临南珠东大街,西侧为安州大道,南面为已建的9F 妇幼保健医院门诊、办公楼。拟建场地几年前经过填土整平,场地内原有较多旧建筑物,部分已经拆除,现况场地总体地形平坦,相对高差不大,约1.21m。场地地貌上属于低丘缓坡地貌。 地地基土在钻探深度范围内揭露的地层有:素填土①,第四系(Q 3)洪冲积粘土②、粗砂③、粉砂④;下伏基岩为侏罗系中统(J 2)的强风化砂岩⑤和中风化砂岩⑥,各层土的物理力学性质如下: 各种土的力学参数表 名称h(m))(0?C(kPa))/(3m kN γ素填土① 2.453521粘土② 1.02 5.844.319.6粗砂③ 4.0530019.5粉砂④ 1.5825 4 19.0强风化岩⑤ 6.6721.0中风化砂岩⑥ 9.91 23.0 三支护方案选型 拟建工程场地位于钦州市安州大道与南珠东大街交叉路口东南侧,其北临南珠东大街,西侧为安州大道,南面为已建的9F 妇幼保健医院门诊、办公楼。拟建场地几年前经过填土整平,场地内原有较多旧建筑物,部分已经拆除,现况场地总体地形平坦,相对高差不大,约1.21m。场地地貌上属于低丘缓坡地貌。必

地下连续墙基坑支护设计-专家送审版

***广场基坑工程 地下连续墙方案设计计算书 For personal use only in study and research; not for commercial use 设计依据:《上海市标准—基坑工程技术规范(DG/TJ08-61-2010)》 For personal use only in study and research; not for commercial use

****设计研究院有限公司 (采用同济启明星基坑软件计算) 1 工程概况 该基坑设计总深16.8m,按二级基坑、选用《上海市标准—基坑工程技术规范(DG/TJ08-61-2010)》进行设计计算,计算断面编号:1。 1.1 土层参数 续表

地下水位埋深:1.00m。 1.2 基坑周边荷载 地面超载:20.0kPa 2 开挖与支护设计 基坑支护方案如图:

XX基坑工程基坑支护方案图 2.1 挡墙设计 ·挡墙类型:地下连续墙; ·嵌入深度:11.200m; ·露出长度:0.000m; ·厚度:600mm; ·混凝土等级:C30; 2.2 坑内加固设计 第1层,加固深度:16.800m;加固厚度:3.500m;加固范围:全面积加固。加固土的物理指标:c=25.00kPa;φ=25.00°;γ=19.0kN/m3; m=5.0MN/m4; Kmax=0.0MN/m3; 2.3 支撑(锚)结构设计 本方案设置5道支撑(锚),各层数据如下: 第1道支撑(锚)为平面内支撑,距墙顶深度0.500m,工作面超过深度0.300m,预加轴力

55.00kN/m,对挡墙的水平约束刚度取100000.0kN/m/m。该道平面内支撑具体数据如下:·支撑材料:钢支撑; ·支撑长度:20.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°; ·不动点调整系数:0.500; ·型钢型号:@609*16; ·根数:1; ·松弛系数:1.000。 计算点位置系数:0.000。 第2道支撑(锚)为平面内支撑,距墙顶深度3.800m,工作面超过深度0.300m,预加轴力 190.00kN/m,对挡墙的水平约束刚度取100000.0kN/m/m。该道平面内支撑具体数据如下:·支撑材料:钢筋混凝土撑; ·支撑长度:30.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°; ·不动点调整系数:0.500; ·混凝土等级:C30; ·截面高:800mm; ·截面宽:600mm。 计算点位置系数:0.000。 第3道支撑(锚)为平面内支撑,距墙顶深度6.900m,工作面超过深度0.300m,预加轴力350.00kN/m,对挡墙的水平约束刚度取100000.0kN/m/m。该道平面内支撑具体数据如下:·支撑材料:钢筋混凝土撑; ·支撑长度:30.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°; ·不动点调整系数:0.500; ·混凝土等级:C30; ·截面高:800mm; ·截面宽:600mm。 计算点位置系数:0.000。 第4道支撑(锚)为平面内支撑,距墙顶深度10.400m,工作面超过深度0.300m,预加轴力 420.00kN/m,对挡墙的水平约束刚度取100000.0kN/m/m。该道平面内支撑具体数据如下:·支撑材料:钢筋混凝土撑; ·支撑长度:30.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°; ·不动点调整系数:0.500; ·混凝土等级:C30; ·截面高:800mm; ·截面宽:600mm。

相关文档